Skip to main content

Spectroscopic Methods for Investigating Reaction Pathways

  • Chapter
  • First Online:
  • 1202 Accesses

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 35))

Abstract

This chapter reviews the use of infrared spectroscopy and electron paramagnetic resonance (EPR) spectroscopy to investigate reaction pathways in photocatalysis. In the case of infrared spectroscopy, examples are given from four different experimental methods for obtaining spectra of photocatalysts and adsorbed species: transmission, diffuse reflectance IR Fourier transform (DRIFT), attenuated total reflectance (ATR) and reflection–absorption infrared spectroscopy (RAIRS),which is applicable to single-crystal surfaces. EPR spectroscopy has been employed to observe trapped charge species (electrons and holes) and radical intermediates produced by reaction of electrons or holes with adsorbed species. Examples of both are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Niemantsverdriet JW (2007) Spectroscopy in catalysis. 3rd edition, Wiley VCH, Berlin Elsevier. (ISBN 978-3-527-31651-9)

    Google Scholar 

  2. Weckuysen BM (ed) (2012) In-situ spectroscopy of catalysts. American Scientific Publishers, Valencia, California (ISBN 1-58883-026-8)

    Google Scholar 

  3. Haw JF (ed) (2002) In-situ spectroscopy in heterogeneous catalysis. Wiley VCH, Berlin

    Google Scholar 

  4. Delana C, Fois E, Coluccia S, Martra G (2010) J Phys Chem C 114:21531

    Article  Google Scholar 

  5. Wu WC, Chuang CC, Lin JL (2000) J Phys Chem B 104:8719

    Article  CAS  Google Scholar 

  6. Tiloca A, Selloni A (2004) J Phys Chem B 108:19314

    Article  Google Scholar 

  7. Zhao J, Yang J, Petek H (2009) Phys Rev B 80:235416

    Article  Google Scholar 

  8. Panayotov D, Burrows SP, Morris JR (2012) J Phys Chem C 116:6673

    Google Scholar 

  9. Szczepankiewicz SH, Colussi AJ, Hoffmann MR (2000) J Phys Chem B 104:9842

    Article  CAS  Google Scholar 

  10. Berger T, Sterrer M, Diwald O, Knozinger E, Panayatov D, Thompson TL, Yates JT (2005) J Phys Chem B 109:6061

    Article  CAS  Google Scholar 

  11. Yu Z, Chuang SSC (2007) J Catal 246:118

    Article  CAS  Google Scholar 

  12. Yu Z, Chuang SSC (2007) J Phys Chem C 111:13813

    Article  CAS  Google Scholar 

  13. Ramakrishnan G, Zhao S, Han W, Orlov A (2011) Chem Eng J 170:445

    Article  CAS  Google Scholar 

  14. Sa J, Anderson JA (2008) Appl Catal B 77:409

    Article  CAS  Google Scholar 

  15. Mendive C, Hansmann D, Bredow T, Bahnemann D (2011) J Phys Chem C 115:19676

    Article  CAS  Google Scholar 

  16. Gong D, Subramaniam VP, Highfield JG, Tang Y, Lai Y, Chen Z (2011) ACS Catal 1:864

    Article  CAS  Google Scholar 

  17. Dolamic I, Burgi T (2006) J Phys Chem B 110:14898

    Article  CAS  Google Scholar 

  18. Dolamic I, Burgi T (2007) J Catal 248:268

    Article  CAS  Google Scholar 

  19. Hu X, Burgi T (2012) Appl Catal A. doi:10.1016/j.apcata.2012.09.017

  20. Friedbacker G, Bubert H (eds) (2011) Surface and thin film analysis. 2nd edition, Wiley-VCH, Berlin

    Google Scholar 

  21. Takahashi K, Yui H (2009) J Phys Chem C 113:20322

    Article  CAS  Google Scholar 

  22. Xu M, Gao Y, Moreno EM, Kunst M, Muhler M, Wang Y, Idriss H, Woll C (2011) Phys Rev Lett 106:138302

    Article  Google Scholar 

  23. Bruckner A (2010) Chem Soc Rev 39:4673

    Article  Google Scholar 

  24. Weil JA, Bolton JR (2007) Electron paramagnetic resonance. Wiley, Hoboken, New Jersey

    Google Scholar 

  25. Drescher M, Jeschke G (eds) (2012) EPR spectroscopy: applications in chemistry and biology. Springer-Verlag, Berlin

    Google Scholar 

  26. Brustolon M (2009) EPR spectroscopy: a practitioners toolkit. Wiley, Hoboken, New Jersey

    Google Scholar 

  27. Chiesa M, Giamello E, Che M (2010) Chem Rev 110:1320

    Article  CAS  Google Scholar 

  28. Howe RF, Graetzel M (1985) J Phys Chem 89:4495

    Article  CAS  Google Scholar 

  29. Howe RF, Graetzel M (1987) J Phys Chem 91:3906

    Article  CAS  Google Scholar 

  30. Chiesa M, Paganini MC, Giamello E (2011) J Phys Chem 115:25413

    Google Scholar 

  31. Ke SC, Wang TC, Wong MS, Gopal NO (2006) J Phys Chem B 110:11628

    Article  CAS  Google Scholar 

  32. Macdonald IR, Howe RF, Zhang X, Zhou W (2010) J Photochem Photobiol A 216:238

    Article  CAS  Google Scholar 

  33. Livraghi S, Maurelli S, Paganini MC, Chiesa M, Giamello E (2011) Angew Chem Int Ed 50:8038

    Article  CAS  Google Scholar 

  34. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545

    Article  CAS  Google Scholar 

  35. Hurum DC, Agrios AG, Crist SE, Gray KA, Rajh T, Thurnauer MC (2006) J Electron Spectors 150:155

    Article  CAS  Google Scholar 

  36. Komaguchi K, Nakano H, Araki A, Harima Y (2006) Chem Phys Lett 428:338

    Article  CAS  Google Scholar 

  37. Shkrob I, Cheremisov S (2009) J Phys Chem C 113:17138

    Article  CAS  Google Scholar 

  38. Kraeutler B, Bard AJ (1978) J Am Chem Soc 100:5985

    Article  CAS  Google Scholar 

  39. Manley DW, McBurney RT, Miller P, Howe RF, Rhydderch S, Walton JC (2012) J Am Chem Soc 134:13580

    Article  CAS  Google Scholar 

  40. Dimitrijevic N, Shkrob I, Gosztola DJ, Rajh T (2012) J Phys Chem C 116:878

    Article  CAS  Google Scholar 

  41. Cermenati L, Richter C, Albini A (1998) Chem Commun 805

    Google Scholar 

  42. Macdonald IR, Rhydderch S, Holt E, Grant N, Storey JMD, Howe RF (2012) Catal Today 182:39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell F. Howe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Howe, R.F. (2014). Spectroscopic Methods for Investigating Reaction Pathways. In: Bahnemann, D., Robertson, P. (eds) Environmental Photochemistry Part III. The Handbook of Environmental Chemistry, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2014_255

Download citation

Publish with us

Policies and ethics