Skip to main content

Mechanisms of Reactions Induced by Photocatalysis of Titanium Dioxide Nanoparticles

  • Chapter
  • First Online:
Environmental Photochemistry Part III

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 35))

Abstract

Photochemical reactions induced by TiO2 nanoparticles share common mechanistic features where electron and hole pairs are formed, migrate to the surface, and their recombination competes with their reaction with various substrates. The main interest in TiO2 photocatalysis is related to its potential application for decontamination of water and air. However, the absorption of TiO2, which is limited to UV light, does not enable the use of natural or cheap light sources, and therefore tremendous effort has been invested in inducing visible-light activity via modification of TiO2 including doping with nonmetals and metals, surface coating, and bi- and multicomponent assembling. In addition, much research has been carried out to inhibit the electron–hole recombination and enhance the reactions of holes and electrons with substrates. The basic mechanism of bare and modified TiO2 and the main principles of the photocatalytic processes remain similar, although the excitation energy is different and the energies of the electrons and holes and their reaction kinetic parameters may vary. These photocatalytic processes are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakardjieva S, Stengl V, Szatmary L, Subrt J, Lukac J, Murafa N, Niznansky D, Cizek K, Jirkovsky J, Petrova N (2006) Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity. J Mater Chem 16:1709–1716

    CAS  Google Scholar 

  2. Liu L, Zhao H, Andino JM, Li Y (2012) Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal 2:1817–1828

    CAS  Google Scholar 

  3. Rothenberger G, Moser J, Gratzel M, Serpone N, Sharma DK (1985) Charge carrier trapping and recombination dynamics in small semiconductor particles. J Am Chem Soc 107:8054–8059

    CAS  Google Scholar 

  4. Serpone N, Lawless D, Khairutdinov R, Pelizzetti E (1995) Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes Rp = 1.0–13.4 nm). Relevance to heterogeneous photocatalysis. J Phys Chem 99:16655–16661

    CAS  Google Scholar 

  5. Kavan L, Graetzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118:6716–6723

    CAS  Google Scholar 

  6. Asahi R, Taga Y, Mannstadt W, Freeman AJ (2000) Electronic and optical properties of anatase TiO2. Phys Rev B 61:7459–7465

    CAS  Google Scholar 

  7. Safrany A, Gao RM, Rabani J (2000) Optical properties and reactions of radiation induced TiO2 electrons in aqueous colloid solutions. J Phys Chem B 104:5848–5853

    CAS  Google Scholar 

  8. Bahnemann D, Henglein A, Lilie J, Spanhel L (1984) Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal titanium dioxide. J Phys Chem 88:709–711

    CAS  Google Scholar 

  9. Kolle U, Moser J, Graetzel M (1985) Dynamics of interfacial charge-transfer reactions in semiconductor dispersions. Reduction of cobaltocenium dicarboxylate in colloidal TiO2. Inorg Chem 24:2253–2258

    Google Scholar 

  10. Kamat PV, Bedja I, Hotchandani S (1994) Photoinduced charge transfer between carbon and semiconductor clusters. One-electron reduction of Ca in colloidal TiO2 semiconductor suspensions. J Phys Chem B 98:9137–9142

    CAS  Google Scholar 

  11. O’Regan B, Graetzel M, Fitzmaurice D (1991) Optical electrochemistry. 2. Real-time spectroscopy of conduction band electrons in a metal oxide semiconductor electrode. J Phys Chem 95:10525–10528

    Google Scholar 

  12. O’Regan B, Graetzel M, Fitzmaurice D (1991) Optical electrochemistry I. Steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode. Chem Phys Lett 183:89–93

    Google Scholar 

  13. Tamaki Y, Hara K, Katoh R, Tachiya M, Furube A (2009) Femtosecond visible-to-IR spectroscopy of TiO2 nanocrystalline films: elucidation of the electron mobility before deep trapping. J Phys Chem C 113:11741–11746

    CAS  Google Scholar 

  14. Yoshihara T, Katoh R, Furube A, Tamaki Y, Murai M, Hara K, Murata S, Arakawa H, Tachiya M (2004) Identification of reactive species in photoexcited nanocrystalline TiO2 films by wide-wavelength-range (400–2500 nm) transient absorption spectroscopy. J Phys Chem B 108:3817–3823

    CAS  Google Scholar 

  15. Arbour C, Sharma DK, Langford CH (1990) Picosecond flash spectroscopy of titania colloids with adsorbed dyes. J Phys Chem 94:331–335

    CAS  Google Scholar 

  16. Skinner DE, Colombo DP Jr, Cavaleri JJ, Bowman RM (1995) Femtosecond investigation of electron trapping in semiconductor nanoclusters. J Phys Chem 99:7853–7856

    CAS  Google Scholar 

  17. Colombo J, Philip D, Bowman RM (1996) Does interfacial charge transfer compete with charge carrier recombination? A femtosecond diffuse reflectance investigation of TiO2 nanoparticles. J Phys Chem 100:18445–18449

    CAS  Google Scholar 

  18. Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M (2007) Dynamics of efficient electron–hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition. Phys Chem Chem Phys 9:1453–1460

    CAS  Google Scholar 

  19. Howe RF, Gratzel M (1985) EPR observation of trapped electrons in colloidal TiO2. J Phys Chem 89:4495–4499

    CAS  Google Scholar 

  20. Rabani J, Yamashita K, Ushida K, Stark J, Kira A (1998) Fundamental reactions in illuminated titanium dioxide nanocrystallite layers studied by pulsed laser. J Phys Chem B 102:1689–1695

    CAS  Google Scholar 

  21. Colombo DP Jr, Roussel KA, Saeh J, Skinner DE, Cavaleri JJ, Bowman RM (1995) Femtosecond study of the intensity dependence of electron-hole dynamics in TiO2 nanoclusters. Chem Phys Lett 232:207–214

    CAS  Google Scholar 

  22. Bahnemann D, Henglein A, Spanhel L (1984) Detection of the intermediates of colloidal titania-catalyzed photoreactions. Faraday Discuss Chem Soc 78:151–163

    CAS  Google Scholar 

  23. Lawless D, Serpone N, Meisel D (1991) Role of OH radicals and trapped holes in photocatalysis. A pulse radlolysls study. J Phys Chem 95:5166–5170

    CAS  Google Scholar 

  24. Bahnemann DW, Hilgendorff M, Memming R (1997) Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J Phys Chem B 101:4265–4275

    CAS  Google Scholar 

  25. Lepore GP, Langford CH, Vichova J, Vlcek A (1993) Photochemistry and picosecond absorption-spectra of aqueous suspensions of a polycrystalline titanium-dioxide optically transparent in the visible spectrum. J Photochem Photobiol A Chem 75:67–75

    CAS  Google Scholar 

  26. Jaeger CD, Bard AJ (1979) Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. J Phys Chem 83:3146–3152

    CAS  Google Scholar 

  27. Anpo M, Shima T, Kubokawa Y (1985) ESR and photoluminescence evidence for the photocatalytic formation of hydroxyl radicals on small titanium dioxide (TiO2) particles. Chem Lett 168:1799–1802

    Google Scholar 

  28. Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic-water contaminants – mechanisms involving hydroxyl radical attack. J Catal 122:178–192

    CAS  Google Scholar 

  29. Fujihira M, Satoh Y, Osa T (1981) Heterogeneous photocatalytic oxidation of aromatic compounds on titanium dioxide. Nature (London) 293:206–208

    CAS  Google Scholar 

  30. Ollis DF, Hsiao CY, Budiman L, Lee CL (1984) Heterogeneous photoassisted catalysis: conversions of perchloroethylene, dichloroethane, chloroacetic acids, and chlorobenzenes. J Catal 88:89–96

    CAS  Google Scholar 

  31. Al-Ekabi H, Serpone N, Pelizzetti E, Minero C, Fox MA, Draper RB (1989) Kinetic studies in heterogeneous photocatalysis. 2. Titania-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous media. Langmuir 5:250–255

    CAS  Google Scholar 

  32. Okamoto K, Yamamoto Y, Tanaka H, Tanaka M, Itaya A (1985) Heterogeneous photocatalytic decomposition of phenol over anatase powder. Bull Chem Soc Jpn 58:2015–2022

    CAS  Google Scholar 

  33. Minero C, Aliberti C, Pelizzetti E, Terzian R, Serpone N (1991) Kinetic studies in heterogeneous photocatalysis. 6. AM1 simulated sunlight photodegradation over titania in aqueous media: a first case of fluorinated aromatics and identification of intermediates. Langmuir 7:928–936

    CAS  Google Scholar 

  34. Matthews RW (1984) Hydroxylation reactions induced by near-ultraviolet photolysis of aqueous titanium dioxide suspensions. J Chem Soc Faraday Trans 1(80):457–471

    Google Scholar 

  35. Wei T-Y, Wan C (1992) Kinetics of photocatalytic oxidation of phenol on titanium oxide (TiO2) surface. J Photochem Photobiol A 69:241–249

    CAS  Google Scholar 

  36. Mills A, Morris S, Davies R (1993) Photomineralization of 4-chlorophenol sensitized by titanium dioxide: a study of the intermediates. J Photochem Photobiol A Chem 70:183–191

    CAS  Google Scholar 

  37. Richard C (1993) Regioselectivity of oxidation by positive holes (H+) in photocatalytic aqueous transformations. J Photochem Photobiol A Chem 72:179–182

    CAS  Google Scholar 

  38. Cunningham J, Srijaranai S (1988) Isotope-effect evidence for hydroxyl radical involvement in alcohol photooxidation sensitized by titanium dioxide in aqueous suspension. J Photochem Photobiol A 43:329–335

    CAS  Google Scholar 

  39. Goldstein S, Czapsky G, Rabani J (1994) Oxidation of phenol by radiolytically generated OH and chemically generated SO4 •−. A distinction between OH transfer and hole oxidation in the photolysis of TiO2 colloid solution. J Phys Chem 98:6586–6591

    CAS  Google Scholar 

  40. Goldstein S, Meyerstein D, Czapski G (1993) The Fenton reagents. Free Radic Biol Med 15:435–445

    CAS  Google Scholar 

  41. Meyerstein D, Goldstein S (1999) Comments on the mechanism of “Fenton-like” process. Acc Chem Res 32:547–550

    Google Scholar 

  42. Rajh T, Saponjic ZV, Micic OI (1992) Reactions of hydrous titanium oxide colloids with strong oxidizing agents. Langmuir 8:1265–1270

    CAS  Google Scholar 

  43. Micic OI, Zhang Y, Cromack KR, Trifunac AD, Thurnauer MC (1993) Trapped holes on titania colloids studied by electron paramagnetic resonance. J Phys Chem 97:7277–7283

    CAS  Google Scholar 

  44. Salvador P (2007) On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: a revision in the light of the electronic structure of adsorbed water. J Phys Chem C 111:17038–17043

    CAS  Google Scholar 

  45. Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308

    CAS  Google Scholar 

  46. Kurtz RL, Stockbauer R, Madey TE, Roman E, De SJL (1989) Synchrotron radiation studies of water adsorption on titania(110). Surf Sci 218:178–200

    CAS  Google Scholar 

  47. Krischok S, Hofft O, Gunster J, Stultz J, Goodman DW, Kempter V (2001) H2O interaction with bare and Li-precovered TiO2. Studies with electron spectroscopies (MIES and UPS(HeI and II)). Surf Sci 495:8–18

    CAS  Google Scholar 

  48. Winter B, Weber R, Widdra W, Dittmar M, Faubel M, Hertel IV (2004) Full valence band photoemission from liquid water using EUV synchrotron radiation. J Phys Chem A 108:2625–2632

    CAS  Google Scholar 

  49. Nakamura R, Nakato Y (2004) Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc 126:1290–1298

    CAS  Google Scholar 

  50. Brookes IM, Muryn CA, Thornton G (2001) Imaging water dissociation on TiO2(110). Phys Rev Lett 87:266103-1–266103-4

    Google Scholar 

  51. Ji Y, Wang B, Luo Y (2012) Location of trapped hole on rutile-TiO2(110) surface and its role in water oxidation. J Phys Chem C 116:7863–7866

    CAS  Google Scholar 

  52. Siripala W, Tomkiewicz M (1982) Interactions between photoinduced and dark charge transfer across n-titania-aqueous electrolyte interface. J Electrochem Soc 129:1240–1245

    CAS  Google Scholar 

  53. Fan FR, Bard AJ (1990) Scanning tunneling microscopy and tunneling spectroscopy of the n-TiO2 (001) surface. J Phys Chem 94:3761–3766

    CAS  Google Scholar 

  54. Redmond G, Fitzmaurice D, Graetzel M (1993) Effect of surface chelation on the energy of an intraband surface state of a nanocrystalline titania film. J Phys Chem 97:6951–6954

    CAS  Google Scholar 

  55. Boschloo GK, Goossens A (1996) Electron trapping in porphyrin-sensitized porous nanocrystalline TiO2 electrodes. J Phys Chem 100:19489–19494

    CAS  Google Scholar 

  56. Boschloo G, Fitzmaurice D (1999) Spectroelectrochemical investigation of surface states in nanostructured TiO2 electrodes. J Phys Chem B 103:2228–2231

    CAS  Google Scholar 

  57. Dung D, Ramsden J, Graetzel M (1982) Dynamics of interfacial electron-transfer processes in colloidal semiconductor systems. J Am Chem Soc 104:2977–2985

    CAS  Google Scholar 

  58. Dimitrijevic NM, Savic D, Micic OI, Nozik AJ (1984) Interfacial electron-transfer equilibria and flatband potentials of a-ferric oxide and titanium dioxide colloids studied by pulse radiolysis. J Phys Chem 88:4278–4283

    CAS  Google Scholar 

  59. Fitzmaurice DJ, Frei H (1991) Transient near-infrared spectroscopy of visible light sensitized oxidation of iodide at colloidal titania. Langmuir 7:1129–1137

    CAS  Google Scholar 

  60. Fitzmaurice DJ, Eschle M, Frei H, Moser J (1993) Time-resolved rise of iodine molecule (1-) upon oxidation of iodide at aqueous titania colloid. J Phys Chem 97:3806–3812

    CAS  Google Scholar 

  61. Liu L-M, Crawford P, Hu P (2009) The interaction between adsorbed OH and O2 on TiO2 surfaces. Prog Surf Sci 84:155–176

    CAS  Google Scholar 

  62. Henderson MA (1996) Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces. Langmuir 12:5093–5098

    CAS  Google Scholar 

  63. Herrmann JM, Disdier J, Pichat P (1981) Oxygen species ionosorbed on powder photocatalyst oxides from room-temperature photoconductivity as a function of oxygen pressure. J Chem Soc Faraday Trans 1(77):2815–2826

    Google Scholar 

  64. Zhang L, Ji H, Lei Y, Xiao W (2011) Oxygen adsorption on anatase surfaces and edges. Appl Surf Sci 257:8402–8408

    CAS  Google Scholar 

  65. Herrmann J-M (2010) Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal B 99:461–468

    CAS  Google Scholar 

  66. Serpone N (1995) Brief introductory remarks on heterogeneous photocatalysis. Sol Energy Mater Sol Cells 38:369–379

    CAS  Google Scholar 

  67. Ollis DF (2005) Kinetics of liquid phase photocatalyzed reactions: an illuminating approach. J Phys Chem B 109:2439–2444

    CAS  Google Scholar 

  68. Monllor-Satoca D, Gomez R, Gonzalez-Hidalgo M, Salvador P (2007) The “Direct-Indirect” model: an alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface. Catal Today 129:247–255

    CAS  Google Scholar 

  69. Montoya JF, Velasquez JA, Salvador P (2009) The direct-indirect kinetic model in photocatalysis: a reanalysis of phenol and formic acid degradation rate dependence on photon flow and concentration in TiO2 aqueous dispersions. Appl Catal B 88:50–58

    CAS  Google Scholar 

  70. Montoya JF, Peral J, Salvador P (2011) Commentary on the article: “A new kinetic model for heterogeneous photocatalysis with titanium dioxide: case of non-specific adsorption considering back reaction, by S. Valencia, F. Catano, L. Rios, G. Restrepo and J. Marin, published in Applied Catalysis B: Environmental, 104 (2011) 300–304”. Appl Catal B 111–112:649–650

    Google Scholar 

  71. Montoya JF, Salvador P (2010) The influence of surface fluorination in the photocatalytic behavior of TiO2 aqueous dispersions: an analysis in the light of the direct-indirect kinetic model. Appl Catal B 94:97–107

    CAS  Google Scholar 

  72. Jia C, Qin Q, Wang Y, Zhang C (2012) Photocatalytic degradation of bisphenol A in aqueous suspensions of titanium dioxide. Adv Mater Res 433–440:172–177

    Google Scholar 

  73. Kubacka A, Ferrer M, Fernandez-Garcia M (2012) Kinetics of photocatalytic disinfection in TiO2-containing polymer thin films: UV and visible light performances. Appl Catal B 121–122:230–238

    Google Scholar 

  74. Moreira J, Serrano B, Ortiz A, de Lasa H (2012) A unified kinetic model for phenol photocatalytic degradation over TiO2 photocatalysts. Chem Eng Sci 78:186–203

    CAS  Google Scholar 

  75. Ishibashi KI, Fujishima A, Watanabe T, Hashimoto K (2000) Generation and deactivation processes of superoxide formed on TiO2 film illuminated by very weak UV light in air or water. J Phys Chem B 104:4934–4938

    CAS  Google Scholar 

  76. Rabani J, Klugroth D, Henglein A (1974) Pulse radiolytic investigations of OHCH2O2 radicals. J Phys Chem 78:2089–2093

    CAS  Google Scholar 

  77. von-Sonntag C, Dowideit P, Fang X, Mertens R, Pan X, Schuchmann MN, Shuchmannn H-P (1997) The fate of peroxyl radicals in aqueous solution. Water Sci Technol 35:9–15

    CAS  Google Scholar 

  78. Kormann C, Bahnemann DW, Hoffmann MR (1991) Photolysis of chloroform and other organic-molecules in aqueous TiO2 suspensions. Environ Sci Technol 25:494–500

    CAS  Google Scholar 

  79. Curco D, Malato S, Blanco J, Gimenez J, Marco P (1996) Photocatalytic degradation of phenol: comparison between pilot-plant-scale and laboratory results. Sol Energy 56:387–400

    CAS  Google Scholar 

  80. Gimenez J, Curco D, Marco P (1997) Reactor modelling in the photocatalytic oxidation of wastewater. Water Sci Technol 35:207–213

    CAS  Google Scholar 

  81. Brandi RJ, Alfano OM, Cassano AE (2000) Evaluation of radiation absorption in slurry photocatalytic reactors. 2. Experimental verification of the proposed method. Environ Sci Technol 34:2631–2639

    CAS  Google Scholar 

  82. Christensen PA, Dilks A, Egerton TA, Temperley J (2000) Infrared spectroscopic evaluation of the photodegradation of paint – Part II: the effect of UV intensity & wavelength on the degradation of acrylic films pigmented with titanium dioxide. J Mater Sci 35:5353–5358

    CAS  Google Scholar 

  83. Fisher AC, Peter LM, Ponomarev EA, Walker AB, Wijayantha KGU (2000) Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells. J Phys Chem B 104:949–958

    CAS  Google Scholar 

  84. Kuo WS, Lin YT (2000) Photocatalytic oxidation of xenobiotics in water with immobilized TiO2 on agitator. J Environ Sci Health B 35:61–75

    CAS  Google Scholar 

  85. Golego N, Studenikin SA, Cocivera M (2000) Sensor photoresponse of thin-film oxides of zinc and titanium to oxygen gas. J Electrochem Soc 147:1592–1594

    CAS  Google Scholar 

  86. Wang C, Bahnemann DW, Dohrmann JK (2001) Determination of photonic efficiency and quantum yield of formaldehyde formation in the presence of various TiO2 photocatalysts. Water Sci Technol 44:279–286

    CAS  Google Scholar 

  87. Brandi RJ, Rintoul G, Alfano OM, Cassano AE (2002) Photocatalytic reactors – reaction kinetics in a flat plate solar simulator. Catal Today 76:161–175

    CAS  Google Scholar 

  88. Wang CY, Rabani J, Bahnemann DW, Dohrmann JK (2002) Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts. J Photochem Photobiol A Chem 148:169–176

    CAS  Google Scholar 

  89. Gao RM, Stark J, Bahnemann DW, Rabani J (2002) Quantum yields of hydroxyl radicals in illuminated TiO2 nanocrystallite layers. J Photochem Photobiol A Chem 148:387–391

    CAS  Google Scholar 

  90. Vulliet E, Chovelon J-M, Guillard C, Herrmann J-M (2003) Factors influencing the photocatalytic degradation of sulfonylurea herbicides by TiO2 aqueous suspension. J Photochem Photobiol A Chem 159:71–79

    CAS  Google Scholar 

  91. Du Y, Rabani J (2003) The measure of TiO2 photocatalytic efficiency and the comparison of different photocatalytic titania. J Phys Chem B 107:11970–11978

    CAS  Google Scholar 

  92. Yoshikawa N, Kimura T, Kawase Y (2003) Oxidative degradation of nonionic surfactants with TiO2 photocatalyst in a bubble column reactor. Can J Chem Eng 81:719–724

    CAS  Google Scholar 

  93. Nakashima T, Ohko Y, Kubota Y, Fujishima A (2003) Photocatalytic decomposition of estrogens in aquatic environment by reciprocating immersion of TiO2-modified polytetrafluoroethylene mesh sheets. J Photochem Photobiol A Chem 160:115–120

    CAS  Google Scholar 

  94. Villarreal TL, Gomez R, Gonzalez M, Salvador P (2004) A kinetic model for distinguishing between direct and indirect interfacial hole transfer in the heterogeneous photooxidation of dissolved organics on TiO2 nanoparticle suspensions. J Phys Chem B 108:20278–20290

    CAS  Google Scholar 

  95. Kimura T, Yoshikawa N, Matsumura N, Kawase Y (2004) Photocatalytic degradation of nonionic surfactants with immobilized TiO2 in an airlift reactor. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2867–2881

    Google Scholar 

  96. Lim TH, Kim SD (2004) Trichloroethylene degradation by photocatalysis in annular flow and annulus fluidized bed photoreactors. Chemosphere 54:305–312

    CAS  Google Scholar 

  97. Heyd DV, Au B (2005) Fluorescence development during 514 nm irradiation of catechol adsorbed on nanocrystalline titanium dioxide. J Photochem Photobiol A Chem 174:62–70

    CAS  Google Scholar 

  98. Coleman HM, Abdullah MI, Eggins BR, Palmer FL (2005) Photocatalytic degradation of 17 beta-oestradiol, oestriol and 17 alpha-ethynyloestradiol in water monitored using fluorescence spectroscopy. Appl Catal B Environ 55:23–30

    CAS  Google Scholar 

  99. Lu Y, Spitler MT, Parkinson BA (2006) Photochronocoulometric measurement of the coverage of surface-bound dyes on titanium dioxide crystal surfaces. J Phys Chem B 110:25273–25278

    CAS  Google Scholar 

  100. Jin CQ, Christensen PA, Egerton TA, White JR (2006) Rapid measurement of photocatalytic oxidation of poly(vinyl chloride) by in situ FIR spectrometry of evolved CO2. Mater Sci Technol 22:908–914

    CAS  Google Scholar 

  101. Jin CQ, Christensen PA, Egerton TA, Lawson EJ, White JR (2006) Rapid measurement of polymer photo-degradation by FTIR spectrometry of evolved carbon dioxide. Polym Degrad Stab 91:1086–1096

    CAS  Google Scholar 

  102. Sakanoue M, Kinoshita Y, Otsuka Y, Imai H (2007) Photocatalytic activities of rutile and anatase nanoparticles selectively prepared from an aqueous solution. J Ceramic Soc (Japan) 115:821–825

    CAS  Google Scholar 

  103. Li YJ, Sun SG, Ma MY, Ouyang YZ, Yan WB (2008) Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO2-coated activated carbon catalyst: effects of initial RhB content, light intensity and TiO2 content in the catalyst. Chem Eng J 142:147–155

    CAS  Google Scholar 

  104. Goldstein S, Behar D, Rabani J (2008) Mechanism of visible light photocatalytic oxidation of methanol in aerated aqueous suspensions of carbon-doped TiO2. J Phys Chem C 112:15134–15139

    CAS  Google Scholar 

  105. Satuf ML, Brandi RJ, Cassano AE, Alfano OM (2008) Photocatalytic degradation of 4-chlorophenol: a kinetic study. Appl Catal B Environ 82:37–49

    CAS  Google Scholar 

  106. Marugan J, van Grieken R, Cassano AE, Alfano OM (2009) Scaling-up of slurry reactors for the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions. Catal Today 144:87–93

    CAS  Google Scholar 

  107. Turchi CS, Ollis DF (1989) Mixed reactant photocatalysis: intermediates and mutual rate inhibition. J Catal 119:483–496

    CAS  Google Scholar 

  108. Luo Y, Ollis DF (1996) Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity. J Catal 163:1–11

    CAS  Google Scholar 

  109. Upadhya S, Ollis DF (1998) A simple kinetic model for the simultaneous concentration and intensity dependencies of TCE photocatalyzed destruction. J Adv Oxid Technol 3:199–202

    CAS  Google Scholar 

  110. Chen J, Ollis DF, Rulkens WH, Bruning H (1999) Kinetic processes of photocatalytic mineralization of alcohols on metalized titanium dioxide. Water Res 33:1173–1180

    CAS  Google Scholar 

  111. Ollis DF (2002) Photocatalytic powder layer reactor: a uniformly mixed gas phase occurring in a catalytic fixed-bed flow reactor. Ind Eng Chem Res 41:6409–6412

    CAS  Google Scholar 

  112. Lewandowski M, Ollis DF (2003) Extension of a two-site transient kinetic model of TiO2 deactivation during photocatalytic oxidation of aromatics: concentration variations and catalyst regeneration studies. Appl Catal B 45:223–238

    CAS  Google Scholar 

  113. Mills A, Wang J, Ollis DF (2006) Dependence of the kinetics of liquid-phase photocatalyzed reactions on oxygen concentration and light intensity. J Catal 243:1–6

    CAS  Google Scholar 

  114. Chin P, Roberts GW, Ollis DF (2007) Kinetic modeling of photocatalyzed soot oxidation on titanium dioxide thin films. Ind Eng Chem Res 46:7598–7604

    CAS  Google Scholar 

  115. Chin P, Ollis DF (2008) Design approaches for a cycling adsorbent/photocatalyst system for indoor air purification: formaldehyde example. J Air Waste Manage Assoc 58:494–501

    CAS  Google Scholar 

  116. Ollis D (2010) Kinetics of photocatalyzed film removal on self-cleaning surfaces: simple configurations and useful models. Appl Catal B 99:478–484

    CAS  Google Scholar 

  117. Khairutdinov RF, Burshtein KY, Serpone N (1996) Photochemical reactions on the surface of a circular disk: a theoretical approach to kinetics in restricted two-dimensional space. J Photochem Photobiol A Chem 98:1–14

    CAS  Google Scholar 

  118. Khairutdinov RF, Burshtein KY, Serpone N (1997) Theoretical study of the quenching of excited molecules on the surface of disk-shaped nanoparticles. Khim Fiz 16:20–30

    CAS  Google Scholar 

  119. Serpone N (2007) Some remarks on so-called heterogeneous photocatalysis and on the mechanical application of the Langmuir-Hinshelwood kinetic model. J Adv Oxid Technol 10:111–115

    CAS  Google Scholar 

  120. Ferguson MA, Hoffmann MR, Hering JG (2005) TiO2-photocatalyzed As(III) oxidation in aqueous suspensions: reaction kinetics and effects of adsorption. Environ Sci Technol 39:1880–1886

    CAS  Google Scholar 

  121. Mladenova D, Dushkin C, Li PG (2008) Photocatalysis with TiO2 and SnO2/TiO2 films examined by a kinetic model. J Adv Oxid Technol 11:477–485

    CAS  Google Scholar 

  122. Huang HH, Tseng DH, Juang LC (2008) Titanium dioxide mediated photocatalytic degradation of monochlorobenzene in aqueous phase. Chemosphere 71:398–405

    CAS  Google Scholar 

  123. Sun L, Hoy AR, Bolton JR (1996) Generation efficiency of the hydroxyl radical adduct of the DMPO spin trap in homogeneous and heterogeneous media. J Adv Oxid Technol 1:44–52

    CAS  Google Scholar 

  124. Chen J, Ollis DF, Rulkens WH, Bruning H (1998) Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metalized TiO2 suspensions. Part (II): photocatalytic mechanisms. Water Res 33:669–676

    Google Scholar 

  125. Ferry JL, Glaze WH (1998) Photocatalytic reduction of nitro organics over illuminated titanium dioxide: role of the TiO2 surface. Langmuir 14:3551–3555

    CAS  Google Scholar 

  126. Stark J, Rabani J (1999) Photocatalytic dechlorination of aqueous carbon tetrachloride solutions in TiO2 layer systems: a chain reaction mechanism. J Phys Chem B 103:8524–8531

    CAS  Google Scholar 

  127. Tada H, Teranishi K, Ito S (1999) Additive effect of sacrificial electron donors on Ag/TiO2 photocatalytic reduction of bis(2-dipyridyl)disulfide to 2-mercaptopyridine in aqueous media. Langmuir 15:7084–7087

    CAS  Google Scholar 

  128. Kawahara T, Konishi Y, Tada H, Tohge N, Ito S (2001) Patterned TiO2/SnO2 bilayer type photocatalyst. 2. Efficient dehydrogenation of methanol. Langmuir 17:7442–7445

    CAS  Google Scholar 

  129. Wang C-Y, Pagel R, Bahnemann DW, Dohrmann JK (2004) Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts: effect of intermittent illumination, platinization, and deoxygenation. J Phys Chem B 108:14082–14092

    CAS  Google Scholar 

  130. Wang CY, Pagel R, Dohrmann JK, Bahnemann DW (2006) Antenna mechanism and deaggregation concept: novel mechanistic principles for photocatalysis. C R Chim 9:761–773

    CAS  Google Scholar 

  131. Kitano M, Matsuoka M, Hosoda T, Ueshima M, Anpo M (2008) Effect of HF treatment on the activity of TiO2 thin films for photocatalytic water splitting. Res Chem Intermediat 34:577–585

    CAS  Google Scholar 

  132. Chiarello GL, Ferri D, Selli E (2011) Effect of the CH3OH/H2O ratio on the mechanism of the gas-phase photocatalytic reforming of methanol on noble metal-modified TiO2. J Catal 280:168–177

    CAS  Google Scholar 

  133. Kandiel TA, Dillert R, Robben L, Bahnemann DW (2011) Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catal Today 161:196–201

    CAS  Google Scholar 

  134. Mohamed HH, Mendive CB, Dillert R, Bahnemann DW (2011) Kinetic and mechanistic investigations of multielectron transfer reactions induced by stored electrons in TiO2 nanoparticles: a stopped flow study. J Phys Chem A 115:2139–2147

    CAS  Google Scholar 

  135. Sun L, Bolton JR (1996) Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. J Phys Chem 100:4127–4134

    CAS  Google Scholar 

  136. Gao RM, Safrany A, Rabani J (2003) Reactions of TiO2 excess electron in nanocrystallite aqueous solutions studied in pulse and gamma-radiolytic systems. Radiat Phys Chem 67:25–39

    CAS  Google Scholar 

  137. Du Y, Goldstein S, Rabani J (2011) The catalytic effects of copper ions on photooxidation in TiO2 suspensions: the role of superoxide radicals. J Photochem Photobiol A Chem 225:1–7

    CAS  Google Scholar 

  138. Grabner G, Li GZ, Quint RM, Quint R, Getoff N (1991) Pulsed laser-induced oxidation of phenol in acid aqueous TiO2 sols. J Chem Soc Faraday Trans 87:1097–1101

    CAS  Google Scholar 

  139. Fitzmaurice D, Frei H, Rabani J (1995) Time-resolved optical study on the charge-carrier dynamics in a TiO2/AgI sandwich colloid. J Phys Chem 99:9176–9181

    CAS  Google Scholar 

  140. Fujihara K, Izumi S, Ohno T, Matsumura M (2000) Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions. J Photochem Photobiol A Chem 132:99–104

    CAS  Google Scholar 

  141. Tachikawa T, Tojo S, Fujitsuka M, Majima T (2003) One-electron oxidation of aromatic sulfides adsorbed on the surface of TiO2 particles studied by time-resolved diffuse reflectance spectroscopy. Chem Phys Lett 382:618–625

    CAS  Google Scholar 

  142. Mytych P, Karocki A, Stasicka Z (2003) Mechanism of photochemical reduction of chromium(VI) by alcohols and its environmental aspects. J Photochem Photobiol A Chem 160:163–170

    CAS  Google Scholar 

  143. Tachikawa T, Tojo S, Fujitsuka M, Majima T (2004) Direct observation of the one-electron reduction of methyl viologen mediated by the CO2 radical anion during TiO2 photocatalytic reactions. Langmuir 20:9441–9444

    CAS  Google Scholar 

  144. Tachikawa T, Tojo S, Fujitsuka M, Majima T (2004) Formation of the dimer radical cation of aromatic sulfide on the TiO2 surface during photocatalytic reactions. Langmuir 20:4327–4329

    CAS  Google Scholar 

  145. Shkrob IA, Sauer MC, Gosztola D (2004) Efficient, rapid photooxidation of chemisorbed polyhydroxyl alcohols and carbohydrates by TiO2 nanoparticles in an aqueous solution. J Phys Chem B 108:12512–12517

    CAS  Google Scholar 

  146. Chang BK, Jang BW, Dai S, Overbury SH (2005) Transient studies of the mechanisms of CO oxidation over Au/TiO2 using time-resolved FTIR spectroscopy and product analysis. J Catal 236:392–400

    CAS  Google Scholar 

  147. Gundlach L, Ernstorfer R, Willig F (2006) Escape dynamics of photoexcited electrons at catechol: TiO2(110). Phys Rev B 74:035324 (035310)

    Google Scholar 

  148. Min L, Wu X-Z, Tetsuya S, Inoue H (2007) Time-resolved chemiluminescence study of the TiO2 photocatalytic reaction and its induced active oxygen species. Luminescence 22:105–112

    CAS  Google Scholar 

  149. Graetzel M, Frank AJ (1982) Interfacial electron-transfer reactions in colloidal semiconductor dispersions. Kinetic analysis. J Phys Chem 86:2964–2967

    CAS  Google Scholar 

  150. Rossetti R, Beck SM, Brus LE (1984) Direct observation of charge-transfer reactions across semiconductor: aqueous solution interfaces using transient Raman spectroscopy. J Am Chem Soc 106:980–984

    CAS  Google Scholar 

  151. Nosaka Y, Fox MA (1988) Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width. J Phys Chem 92:1893–1897

    CAS  Google Scholar 

  152. Shkrob IA, Sauer MC Jr (2004) Hole scavenging and photostimulated recombination of electron-hole pairs in aqueous TiO2 nanoparticles. J Phys Chem B 108:12497–12511

    CAS  Google Scholar 

  153. Green ANM, Chandler RE, Haque SA, Nelson J, Durrant JR (2005) Transient absorption studies and numerical modeling of iodine photoreduction by nanocrystalline TiO2 films. J Phys Chem B 109:142–150

    CAS  Google Scholar 

  154. Tachikawa T, Tojo S, Fujitsuka M, Majima T (2006) One-electron oxidation pathways during beta-cyclodextrin-modified TiO2 photocatalytic reactions. Chemistry 12:7585–7594

    CAS  Google Scholar 

  155. Chen T, Feng Z, Wu G, Shi J, Ma G, Ying P, Li C (2007) Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy. J Phys Chem C 111:8005–8014

    CAS  Google Scholar 

  156. Rowley JG, Meyer GJ (2011) Di- and tri-iodide reactivity at illuminated titanium dioxide interfaces. J Phys Chem C 115:6156–6161

    CAS  Google Scholar 

  157. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278

    CAS  Google Scholar 

  158. Dimitrijevic NM, Shkrob IA, Gosztola DJ, Rajh T (2012) Dynamics of interfacial charge transfer to formic acid, formaldehyde, and methanol on surface of TiO2 nanoparticles and role in methane production. J Phys Chem C 116:878–885

    CAS  Google Scholar 

  159. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature (London) 277:637–638

    CAS  Google Scholar 

  160. Abe R, Sayama K, Arakawa H (2003) Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst: suppression of backward reaction. Chem Phys Lett 371:360–364

    CAS  Google Scholar 

  161. Gao RM, Safrany A, Rabani J (2002) Fundamental reactions in TiO2 nanocrystallite aqueous solutions studied by pulse radiolysis. Radiat Phys Chem 65:599–609

    CAS  Google Scholar 

  162. Kasarevic-Popovic Z, Behar D, Rabani J (2004) Role of excess electrons in TiO2 nanoparticles coated with Pt in reduction reactions studied in radiolysis of aqueous solutions. J Phys Chem B 108:20291–20295

    CAS  Google Scholar 

  163. Behar D, Rabani J (2006) Kinetics of hydrogen production upon reduction of aqueous TiO2 nanoparticles catalyzed by Pd0, Pt0, or Au0 coatings and an unusual hydrogen abstraction; steady state and pulse radiolysis study. J Phys Chem B 110:8750–8755

    CAS  Google Scholar 

  164. Mohamed HH, Dillert R, Bahnemann DW (2011) Reaction dynamics of the transfer of stored electrons on TiO2 nanoparticles: a stopped flow study. J Photochem Photobiol A Chem 217:271–274

    CAS  Google Scholar 

  165. Mohamed HH, Dillert R, Bahnemann DW (2011) Growth and reactivity of silver nanoparticles on the surface of TiO2: a stopped-flow study. J Phys Chem C 115:12163–12172

    CAS  Google Scholar 

  166. Mohamed HH, Dillert R, Bahnemann DW (2012) Kinetic and mechanistic investigations of the light induced formation of gold nanoparticles on the surface of TiO2. Chemistry 18:4314–4321

    CAS  Google Scholar 

  167. Lide DR (ed) (1992–1993) Handbook of chemistry and physics, 73rd edn. CRC Press, London

    Google Scholar 

  168. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    CAS  Google Scholar 

  169. Zhang H, Chen G, Bahnemann DW (2009) Photoelectrocatalytic materials for environmental applications. J Mater Chem 19:5089–5121

    CAS  Google Scholar 

  170. Kuznetsov VN, Serpone N (2009) On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments. J Phys Chem C 113:15110–15123

    CAS  Google Scholar 

  171. Yang Y, Zhong H, Tian C (2011) Photocatalytic mechanisms of modified titania under visible light. Res Chem Intermediat 37:91–102

    Google Scholar 

  172. Grabowska E, Reszczynska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46:5453–5471

    CAS  Google Scholar 

  173. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    CAS  Google Scholar 

  174. Belver C, Bellod R, Stewart SJ, Requejo FG, Fernandez-Garcia M (2006) Nitrogen-containing TiO2 photocatalysts. Part 2. Photocatalytic behavior under sunlight excitation. Appl Catal B 65:309–314

    CAS  Google Scholar 

  175. Emeline AV, Kuzmin GN, Serpone N (2008) Wavelength-dependent photostimulated adsorption of molecular O2 and H2 on second generation titania photocatalysts: the case of the visible-light-active N-doped TiO2 system. Chem Phys Lett 454:279–283

    CAS  Google Scholar 

  176. Fu H, Zhang L, Zhang S, Zhu Y, Zhao J (2006) Electron spin resonance spin-trapping detection of radical intermediates in N-doped TiO2-assisted photodegradation of 4-chlorophenol. J Phys Chem B 110:3061–3065

    CAS  Google Scholar 

  177. Asahi R, Morikawa T (2007) Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis. Chem Phys 339:57–63

    CAS  Google Scholar 

  178. Emeline AV, Sheremetyeva NV, Khomchenko NV, Ryabchuk VK, Serpone N (2007) Photoinduced formation of defects and nitrogen stabilization of color centers in N-doped titanium dioxide. J Phys Chem C 111:11456–11462

    CAS  Google Scholar 

  179. Fang X, Zhang Z, Chen Q, Ji H, Gao X (2007) Dependence of nitrogen doping on TiO2 precursor annealed under NH3 flow. J Solid State Chem 180:1325–1332

    CAS  Google Scholar 

  180. Chen D, Yang D, Geng J, Zhu J, Jiang Z (2008) Improving visible-light photocatalytic activity of N-doped TiO2 nanoparticles via sensitization by Zn porphyrin. Appl Surf Sci 255:2879–2884

    CAS  Google Scholar 

  181. Li Q, Li YW, Wu P, Xie R, Shang JK (2008) Palladium oxide nanoparticles on nitrogen-doped titanium oxide: accelerated photocatalytic disinfection and post-illumination catalytic “memory”. Adv Mater 20:3717–3723

    CAS  Google Scholar 

  182. Jagadale TC, Takale SP, Sonawane RS, Joshi HM, Patil SI, Kale BB, Ogale SB (2008) N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. J Phys Chem C 112:14595–14602

    CAS  Google Scholar 

  183. Huang D, Liao S, Quan S, Liu L, He Z, Wan J, Zhou W (2008) Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process. J Non-Cryst Solids 354:3965–3972

    CAS  Google Scholar 

  184. Yang S, Gao L (2008) Photocatalytic activity of nitrogen doped rutile TiO2 nanoparticles under visible light irradiation. Mater Res Bull 43:1872–1876

    CAS  Google Scholar 

  185. Zhao L, Jiang Q, Lian J (2008) Visible-light photocatalytic activity of nitrogen-doped TiO2 thin film prepared by pulsed laser deposition. Appl Surf Sci 254:4620–4625

    CAS  Google Scholar 

  186. Zhang J, Wang Y, Jin Z, Wu Z, Zhang Z (2008) Visible-light photocatalytic behavior of two different N-doped TiO2. Appl Surf Sci 254:4462–4466

    CAS  Google Scholar 

  187. Kun R, Tarjan S, Oszko A, Seemann T, Zoellmer V, Busse M, Dekany I (2009) Preparation and characterization of mesoporous N-doped and sulfuric acid treated anatase TiO2 catalysts and their photocatalytic activity under UV and Vis illumination. J Solid State Chem 182:3076–3084

    CAS  Google Scholar 

  188. Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131:12290–12297

    CAS  Google Scholar 

  189. Gao X, Liu J, Chen P (2011) Nitrogen-doped titania photocatalysts induced by shock wave. Mater Res Bull 44:1842–1845

    Google Scholar 

  190. Bellardita M, Addamo M, Di PA, Palmisano L, Venezia AM (2009) Preparation of N-doped TiO2: characterization and photocatalytic performance under UV and visible light. Phys Chem Chem Phys 11:4084–4093

    CAS  Google Scholar 

  191. Wang Y, Zhou G, Li T, Qiao W, Li Y (2009) Catalytic activity of mesoporous TiO2-xNx photocatalysts for the decomposition of methyl orange under solar simulated light. Catal Commun 10:412–415

    CAS  Google Scholar 

  192. Wang J, Wang Z, Li H, Cui Y, Du Y (2010) Visible light-driven nitrogen doped TiO2 nanoarray films: preparation and photocatalytic activity. J Alloys Compd 494:372–377

    CAS  Google Scholar 

  193. Cho HJ, Hwang PG, Jung D (2011) Preparation and photocatalytic activity of nitrogen-doped TiO2 hollow nanospheres. J Phys Chem Solids 72:1462–1466

    CAS  Google Scholar 

  194. In S, Vesborg PCK, Abrams BL, Hou YD, Chorkendorff I (2011) A comparative study of two techniques for determining photocatalytic activity of nitrogen doped TiO2 nanotubes under visible light irradiation: photocatalytic reduction of dye and photocatalytic oxidation of organic molecules. J Photochem Photobiol A Chem 222:258–262

    CAS  Google Scholar 

  195. Jie HS, Lee HB, Chae KH, Huh MY, Matsuoka M, Cho SH, Park JK (2012) Nitrogen-doped TiO2 nanopowders prepared by chemical vapor synthesis: band structure and photocatalytic activity under visible light. Res Chem Intermediat 38:1171–1180

    CAS  Google Scholar 

  196. Choi H, Antoniou MG, Pelaez M, De la Cruz AA, Shoemaker JA, Dionysiou DD (2007) Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ Sci Tech 41:7530–7535

    CAS  Google Scholar 

  197. Li X, Xiong R, Wei G (2008) S-N co-doped TiO2 photocatalysts with visible-light activity prepared by sol-gel method. Catal Lett 125:104–109

    CAS  Google Scholar 

  198. Liu C, Tang X, Mo C, Qiang Z (2008) Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium. J Solid State Chem 181:913–919

    CAS  Google Scholar 

  199. Liu G, Zhao Y, Sun C, Li F, Lu GQ, Cheng HM (2008) Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angew Chem Int Ed 47:4516–4520

    CAS  Google Scholar 

  200. Song K, Zhou J, Bao J, Feng Y (2008) Photocatalytic activity of (copper, nitrogen)-codoped titanium dioxide nanoparticles. J Am Ceram Soc 91:1369–1371

    CAS  Google Scholar 

  201. Fan JW, Liu JY, Hong J, Zhang J (2009) The synthesis of nanostructure TiO2 co-doped with N and Fe and their application for micro-polluted source water treatment. Environ Technol 30:1447–1452

    CAS  Google Scholar 

  202. Livraghi S, Elghniji K, Czoska AM, Paganini MC, Giamello E, Ksibi M (2009) Nitrogen-doped and nitrogen-fluorine-codoped titanium dioxide. Nature and concentration of the photoactive species and their role in determining the photocatalytic activity under visible light. J Photochem Photobiol A Chem 205:93–97

    CAS  Google Scholar 

  203. Lv Y, Ding Y, Zhou J, Xiao W, Feng Y (2009) Preparation, characterization, and photocatalytic activity of N, S-codoped TiO2 nanoparticles. J Am Ceram Soc 92:938–941

    CAS  Google Scholar 

  204. Sathish M, Viswanath RP, Gopinath CS (2009) N, S-co-doped TiO2 nanophotocatalyst: synthesis, electronic structure and photocatalysis. J Nanosci Nanotechnol 9:423–432

    CAS  Google Scholar 

  205. Shen Y, Xiong T, Du H, Jin H, Shang J, Yang K (2009) Investigation of Br-N co-doped TiO2 photocatalysts: preparation and photocatalytic activities under visible light. J Sol-Gel Sci Technol 52:41–48

    CAS  Google Scholar 

  206. Tan K, Zhang H, Xie C, Zheng H, Gu Y, Zhang WF (2010) Visible-light absorption and photocatalytic activity in molybdenum- and nitrogen-codoped TiO2. Catal Commun 11:331–335

    CAS  Google Scholar 

  207. Wu M, Yang B, Lv Y, Fu Z, Xu J, Guo T, Zhao Y (2010) Efficient one-pot synthesis of Ag nanoparticles loaded on N-doped multiphase TiO2 hollow nanorod arrays with enhanced photocatalytic activity. Appl Surf Sci 256:7125–7130

    CAS  Google Scholar 

  208. Kurtoglu ME, Longenbach T, Sohlberg K, Gogotsi Y (2011) Strong coupling of Cr and N in Cr-N-doped TiO2 and its effect on photocatalytic activity. J Phys Chem C 115:17392–17399

    CAS  Google Scholar 

  209. Wang E, He T, Zhao L, Chen Y, Cao Y (2011) Improved visible light photocatalytic activity of titania doped with tin and nitrogen. J Mater Chem 21:144–150

    CAS  Google Scholar 

  210. Dolat D, Quici N, Kusiak-Nejman E, Morawski AW, Li PG (2012) One-step, hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N, C-TiO2) photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation. Appl Catal B 115–116:81–89

    Google Scholar 

  211. Wu D, Long M (2012) Visible light assisted photocatalytic degradation of methyl orange using Ag/N-TiO2 photocatalysts. Water Sci Technol 65:1027–1032

    CAS  Google Scholar 

  212. Xiao Q, Yao C (2012) Visible light photocatalytic activity of C, N, S-tridoped anatase TiO2 nanosheets. Adv Mater Res 391–392:1117–1122

    Google Scholar 

  213. Han X, Shao G (2011) Electronic properties of rutile TiO2 with nonmetal dopants from first principles. J Phys Chem C 115:8274–8282

    CAS  Google Scholar 

  214. Nguyen CK, Nguyen VK, Nguyen HA, Nga DT, Nguyen VM (2011) The origin of visible light photocatalytic activity of N-doped and weak ferromagnetism of Fe-doped TiO2 anatase. Adv Nat Sci Nanosci Nanotechnol 2:15008

    Google Scholar 

  215. Xu L, Steinmiller EMP, Skrabalak SE (2011) Achieving synergy with a potential photocatalytic Z-scheme: synthesis and evaluation of nitrogen-doped TiO2/SnO2 composites. J Phys Chem C 116:871–877

    Google Scholar 

  216. Xie Y, Zhao X (2008) The effects of synthesis temperature on the structure and visible-light-induced catalytic activity of F, N-codoped and S, N-codoped titania. J Mol Catal A Chem 285:142–149

    CAS  Google Scholar 

  217. Umezawa N, Ye J (2012) Role of complex defects in photocatalytic activities of nitrogen-doped anatase TiO2. Phys Chem Chem Phys 14:5924–5934

    CAS  Google Scholar 

  218. Zhang Z, Long J, Xie X, Zhuang H, Zhou Y, Lin H, Yuan R, Dai W, Ding Z, Wang X, Fu X (2012) Controlling the synergistic effect of oxygen vacancies and N dopants to enhance photocatalytic activity of N-doped TiO2 by H2 reduction. Appl Catal A 425–426:117–124

    Google Scholar 

  219. Pelaez M, Falaras P, Kontos AG, De la Cruz AA, O’Shea K, Dunlop PSM, Byrne JA, Dionysiou DD (2012) A comparative study on the removal of cylindrospermopsin and microcystins from water with NF-TiO2-P25 composite films with visible and UV-vis light photocatalytic activity. Appl Catal B Environ 121–122:30–39

    Google Scholar 

  220. Kang QM, Yuan BL, Xu JG, Fu ML (2011) Synthesis, characterization and photocatalytic performance of TiO2 codoped with bismuth and nitrogen. Catal Lett 141:1371–1377

    CAS  Google Scholar 

  221. Tachikawa T, Tojo S, Kawai K, Endo M, Fujitsuka M, Ohno T, Nishijima K, Miyamoto Z, Majima T (2004) Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. J Phys Chem B 108:19299–19306

    CAS  Google Scholar 

  222. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42:4908–4911

    CAS  Google Scholar 

  223. Neumann B, Bogdanoff P, Tributsch H, Sakthivel S, Kisch H (2005) Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. J Phys Chem B 109:16579–16586

    CAS  Google Scholar 

  224. Zabek P, Eberl J, Kisch H (2009) On the origin of visible light activity in carbon-modified titania. Photochem Photobiol Sci 8:264–269

    CAS  Google Scholar 

  225. Wang H, Wu Z, Liu Y (2009) A simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres. J Phys Chem C 113:13317–13324

    CAS  Google Scholar 

  226. Wu Z, Dong F, Liu Y, Wang H (2009) Enhancement of the visible light photocatalytic performance of C-doped TiO2 by loading with V2O5. Catal Commun 11:82–86

    CAS  Google Scholar 

  227. Dong F, Guo S, Wang H, Li X, Wu Z (2011) Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach. J Phys Chem C 115:13285–13292

    CAS  Google Scholar 

  228. Xue LM, Zhang FH, Fan HJ, Bai XF (2011) Preparation of C doped TiO2 photocatalysts and their photocatalytic reduction of carbon dioxide. Adv Mater Res 183–185:1842–1846

    Google Scholar 

  229. Jung D, Kim G, Kim MS, Kim BW (2012) Evaluation of photocatalytic activity of carbon-doped TiO2 films under solar irradiation. Korean J Chem Eng 29:703–706

    CAS  Google Scholar 

  230. Li LH, Lu J, Wang ZS, Yang L, Zhou XF, Han L (2012) Fabrication of the CN co-doped rod-like TiO2 photocatalyst with visible-light responsive photocatalytic activity. Mater Res Bull 47:1508–1512

    CAS  Google Scholar 

  231. Goldstein S, Behar D, Rabani J (2009) Nature of the oxidizing species formed upon UV photolysis of C-TiO2 aqueous suspensions. J Phys Chem C 113:12489–12494

    CAS  Google Scholar 

  232. Li Y, Hwang DS, Lee NH, Kim SJ (2005) Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chem Phys Lett 404:25–29

    CAS  Google Scholar 

  233. Wu G, Nishikawa T, Ohtani B, Chen A (2007) Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response. Chem Mater 19:4530–4537

    CAS  Google Scholar 

  234. Wang Y, Wang Y, Meng Y, Ding H, Shan Y, Zhao X, Tang X (2008) A highly efficient visible-light-activated photocatalyst based on bismuth- and sulfur-codoped TiO2. J Phys Chem C 112:6620–6626

    CAS  Google Scholar 

  235. Cui Y, Du H, Wen L (2009) Origin of visible-light-induced photocatalytic properties of S-doped anatase TiO2 by first-principles investigation. Solid State Commun 149:634–637

    CAS  Google Scholar 

  236. Yu J, Liu S, Xiu Z, Yu W, Feng G (2009) Synthesis of sulfur-doped TiO2 by solvothermal method and its visible-light photocatalytic activity. J Alloys Compd 471:L23–L25

    CAS  Google Scholar 

  237. Rockafellow EM, Stewart LK, Jenks WS (2009) Is sulfur-doped TiO2 an effective visible light photocatalyst for remediation? Appl Catal B 91:554–562

    CAS  Google Scholar 

  238. Yu CL, Cai DJ, Yang K, Yu JC, Zhou Y, Fan CF (2010) Sol-gel derived S, I-co-doped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. J Phys Chem Solids 71:1337–1343

    CAS  Google Scholar 

  239. Umebayashi T, Yamaki T, Yamamoto S, Miyashita A, Tanaka S, Sumita T, Asai K (2003) Sulfur-doping of rutile-titanium dioxide by ion implantation: photocurrent spectroscopy and first-principles band calculation studies. J Appl Phys 93:5156–5160

    CAS  Google Scholar 

  240. Jiang Y, Liu Y, Yang L, Li G, Liu H (2011) Preparation and photocatalysis of sulfur-doped nano-TiO2/Ti film. Adv Mater Res 177:281–283

    CAS  Google Scholar 

  241. Dozzi MV, Livraghi S, Giamello E, Selli E (2011) Photocatalytic activity of S- and F-doped TiO2 in formic acid mineralization. Photochem Photobiol Sci 10:343–349

    CAS  Google Scholar 

  242. Han C, Pelaez M, Likodimos V, Kontos AG, Falaras P, Dionysiou DD (2011) Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl Catal B Environ 107:77–87

    CAS  Google Scholar 

  243. Peng Y, He J, Liu Q, Sun Z, Yan W, Pan Z, Wu Y, Liang S, Cheng W, Wei S (2011) Impurity concentration dependence of optical absorption for phosphorus-doped anatase TiO2. J Phys Chem C 115:8184–8188

    CAS  Google Scholar 

  244. Wang Y-W, Li Y-F, Yang P-H (2011) Preparation, characterization of nonmetal doped TiO2 nanoparticles with their excellent photocatalytic properties. Adv Mater Res 183–185:2254–2257

    Google Scholar 

  245. Tojo S, Tachikawa T, Fujitsuka M, Majima T (2008) Iodine-doped TiO2 photocatalysts: correlation between band structure and mechanism. J Phys Chem C 112:14948–14954

    CAS  Google Scholar 

  246. Xu H, Zheng Z, Zhang L, Zhang H, Deng F (2008) Hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods: large-scale synthesis and high photocatalytic activity. J Solid State Chem 181:2516–2522

    CAS  Google Scholar 

  247. Deng P, Hu J, Wang H, Sun B (2010) Hydrothermal preparation and comparative study of halogen-doping TiO2 photocatalysts. J Adv Oxid Technol 13:200–205

    CAS  Google Scholar 

  248. Li D, Haneda H, Hishita S, Ohashi N, Labhsetwar NK (2005) Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J Fluorine Chem 126:69–77

    CAS  Google Scholar 

  249. Li D, Haneda H, Hishita S, Ohashi N (2005) Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem Mater 17:2596–2602

    CAS  Google Scholar 

  250. Ho W, Yu JC, Lee S (2006) Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem Commun 10:1115–1117

    Google Scholar 

  251. Dozzi MV, Ohtani B, Selli E (2011) Absorption and action spectra analysis of ammonium fluoride-doped titania photocatalysts. Phys Chem Chem Phys 13:18217–18227

    CAS  Google Scholar 

  252. Kuznetsov VN, Serpone N (2006) Visible light absorption by various titanium dioxide specimens. J Phys Chem B 110:25203–25209

    CAS  Google Scholar 

  253. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293

    CAS  Google Scholar 

  254. Miyauchi M, Ikezawa A, Tobimatsu H, Irie H, Hashimoto K (2004) Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys Chem Chem Phys 6:865–870

    CAS  Google Scholar 

  255. Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J Phys Chem B 107:5483–5486

    CAS  Google Scholar 

  256. Long R, English NJ (2009) First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania. Appl Phys Lett 94:132102-1–132102-3

    Google Scholar 

  257. Jiang Y, Scott J, Amal R (2012) Exploring the relationship between surface structure and photocatalytic activity of flame-made TiO2-based catalysts. Appl Catal B 126:290–297

    CAS  Google Scholar 

  258. Jia L, Wu C, Li Y, Han S, Li Z, Chi B, Pu J, Jian L (2011) Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping. Appl Phys Lett 98:211903-1–211903-3

    Google Scholar 

  259. Dvoranová D, Brezová V, Mazúra M, Malati MA (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal B Environ 37:91–105

    Google Scholar 

  260. Khan R, Kim SW, Kim TJ, Nam CM (2008) Comparative study of the photocatalytic performance of boron-iron co-doped and boron-doped TiO2 nanoparticles. Mater Chem Phys 112:167–172

    CAS  Google Scholar 

  261. Jiang H, Song H, Zhou Z, Liu X, Meng G (2008) Characterization of LiF-doped TiO2 and its photocatalytic activity for decomposition of trichloromethane. Mater Res Bull 43:3037–3046

    CAS  Google Scholar 

  262. Xu J, Ao Y, Chen M, Fu D (2009) Low-temperature preparation of boron-doped titania by hydrothermal method and its photocatalytic activity. J Alloys Compd 484:73–79

    CAS  Google Scholar 

  263. Chen Q, Shi W, Xu Y, Wu D, Sun Y (2010) Ag-Si co-doped TiO2 photocatalyst synthesized via a nonaqueous method. J Nanosci Nanotechnol 10:7221–7225

    CAS  Google Scholar 

  264. Thomas J, Yoon M (2012) Facile synthesis of pure TiO2(B) nanofibers doped with gold nanoparticles and solar photocatalytic activities. Appl Catal B 111–112:502–508

    Google Scholar 

  265. Guo L, Fu F, Wang D, Qiang X, Wei QB, Wu Y (2011) Preparation of silver-doped TiO2 photocatalyst via a simple sol-hydrothermal and their visible light photocatalytic activity. Mater Sci Forum 694:824–830

    CAS  Google Scholar 

  266. Hamal DB, Klabunde KJ (2011) Valence state and catalytic role of cobalt ions in cobalt TiO2 nanoparticle photocatalysts for acetaldehyde degradation under visible light. J Phys Chem C 115:17359–17367

    CAS  Google Scholar 

  267. Thind SS, Wu G, Chen A (2012) Synthesis of mesoporous nitrogen-tungsten co-doped TiO2 photocatalysts with high visible light activity. Appl Catal B 111–112:38–45

    Google Scholar 

  268. Zielinska A, Kowalska E, Sobczak JW, Lacka I, Gazda M, Ohtani B, Hupka J, Zaleska A (2010) Silver-doped TiO2 prepared by microemulsion method: surface properties, bio- and photoactivity. Sep Purif Technol 72:309–318

    CAS  Google Scholar 

  269. Grabowska E, Zaleska A, Sobczak JW, Gazda M, Hupka J (2009) Boron-doped TiO2: characteristics and photoactivity under visible light. Procedia Chem 1:1553–1559

    CAS  Google Scholar 

  270. Zaleska A, Grabowska E, Sobczak JW, Gazda M, Hupka J (2009) Photocatalytic activity of boron-modified TiO2 under visible light: the effect of boron content, calcination temperature and TiO2 matrix. Appl Catal B 89:469–475

    CAS  Google Scholar 

  271. Gracia F, Holgado JP, Caballero A, Gonzalez-Elipe AR (2004) Structural, optical, and photoelectrochemical properties of Mn2+-TiO2 model thin film photocatalysts. J Phys Chem B 108:17466–17476

    CAS  Google Scholar 

  272. Hao H, Zhang J (2009) The study of Iron (III) and nitrogen co-doped mesoporous TiO2 photocatalysts: synthesis, characterization and activity. Microporous Mesoporous Mater 121:52–57

    CAS  Google Scholar 

  273. Lin X, Rong F, Ji X, Fu D (2011) Visible light photocatalytic activity and photoelectrochemical property of Fe-doped TiO2 hollow spheres by sol-gel method. J Sol-Gel Sci Technol 59:283–289

    CAS  Google Scholar 

  274. Serpone N, Lawless D, Disdier J, Herrmann J-M (1994) Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 10:643–652

    CAS  Google Scholar 

  275. Diamandescu L, Vasiliu F, Tarabasanu-Mihaila D, Feder M, Vlaicu AM, Teodorescu CM, Macovei D, Enculescu I, Parvulescu V, Vasile E (2008) Structural and photocatalytic properties of iron- and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions. Mater Chem Phys 112:146–153

    CAS  Google Scholar 

  276. Vu AT, Nguyen QT, Bui THL, Tran MC, Dang TP, Tran TKH (2010) Synthesis and characterization of TiO2 photocatalyst doped by transition metal ions (Fe3+, Cr3+ and V5+). Adv Nat Sci Nanosci Nanotechnol 1:015009

    Google Scholar 

  277. Di PA, Garcia-Lopez E, Ikeda S, Marci G, Ohtani B, Palmisano L (2002) Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal Today 75:87–93

    Google Scholar 

  278. Di PA, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B (2002) Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. J Phys Chem B 106:637–645

    Google Scholar 

  279. Yu J, Xiang Q, Zhou M (2009) Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Catal B 90:595–602

    CAS  Google Scholar 

  280. Teoh WY, Amal R, Maedler L, Pratsinis SE (2007) Flame sprayed visible light-active Fe-TiO2 for photomineralization of oxalic acid. Catal Today 120:203–213

    CAS  Google Scholar 

  281. Wang CY, Bahnemann DW, Dohrmann JK (2000) A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. Chem Commun 16:1539–1540

    Google Scholar 

  282. Wang Q, Xu S, Shen F (2011) Preparation and characterization of TiO2 photocatalysts co-doped with iron (III) and lanthanum for the degradation of organic pollutants. Appl Surf Sci 257:7671–7677

    CAS  Google Scholar 

  283. Suciu R-C, Corina RM, Silipas TD, Indrea E, Popescu V, Popescu GL (2011) Fe2O3–TiO2 thin films prepared by sol-gel method. Environ Eng Manag J 10:187–192

    CAS  Google Scholar 

  284. Ji T, Yang F, Lv Y, Zhou J, Sun J (2009) Synthesis and visible-light photocatalytic activity of Bi-doped TiO2 nanobelts. Mater Lett 63:2044–2046

    CAS  Google Scholar 

  285. Liu S, Guo E, Yin L (2012) Tailored visible-light driven anatase TiO2 photocatalysts based on controllable metal ion doping and ordered mesoporous structure. J Mater Chem 22:5031–5041

    CAS  Google Scholar 

  286. Song YT, Shao WN, Cao WB (2011) Preparation of nanocrystalline W-doped TiO2 powders and their photocatalytic properties under visible light irradiation. Mater Sci Forum 695:489–492

    CAS  Google Scholar 

  287. Deng QR, Xia XH, Guo ML, Gao Y, Shao G (2011) Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity. Mater Lett 65:2051–2054

    CAS  Google Scholar 

  288. Li J, Wang D, Liu H, Zhu Z (2012) Multilayered Mo-doped TiO2 nanofibers and enhanced photocatalytic activity. Mater Manuf Process 27:631–635

    CAS  Google Scholar 

  289. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679

    Google Scholar 

  290. Devi LG, Murthy BN, Kumar SG (2009) Photocatalytic activity of V5+, Mo6+ and Th4+ doped polycrystalline TiO2 for the degradation of chlorpyrifos under UV/solar light. J Mol Catal A Chem 308:174–181

    CAS  Google Scholar 

  291. Dutta SS, Singh D, Saini KK, Kant C, Sharma V, Jain SC, Sharma CP (2006) Sol-gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst. Appl Catal A 314:40–46

    Google Scholar 

  292. Gao H, Liu W (2012) La and/or Y doped TiO2: facile synthesis and enhanced photocatalysis. Adv Mater Res 463–464:290–294

    Google Scholar 

  293. Yao S, Sui C, Shi Z (2011) Preparation and characterization of visible-light-driven europium doped mesoporous titania photocatalyst. J Rare Earth 29:929–933

    CAS  Google Scholar 

  294. Fan X, Chen X, Zhu S, Li Z, Yu T, Ye J, Zou Z (2008) The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2. J Mol Catal A Chem 284:155–160

    CAS  Google Scholar 

  295. Lin WC, Yang WD (2012) Synthesis, characterization and photocatalytic activity of copper(II)-doped titanium dioxide powders. Adv Mater Res 391–392:728–731

    Google Scholar 

  296. Devi LG, Murthy BN, Kumar SG (2010) Photocatalytic activity of TiO2 doped with Zn2+ and V5+ transition metal ions: influence of crystallite size and dopant electronic configuration on photocatalytic activity. Mater Sci Eng B 166:1–6

    CAS  Google Scholar 

  297. Choudhury B, Borah B, Choudhury A (2012) Extending photocatalytic activity of TiO2 nanoparticles to visible region of illumination by doping of cerium. J Photochem Photobiol A Chem 88:257–264

    CAS  Google Scholar 

  298. Li G, Dimitrijevic NM, Chen L, Rajh T, Gray KA (2008) Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites. J Phys Chem C 112:19040–19044

    CAS  Google Scholar 

  299. Herrmann JM, Disdier J, Pichat P (1984) Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination. Chem Phys Lett 108:618–622

    CAS  Google Scholar 

  300. Gratzel M, Howe RF (1990) Electron paramagnetic resonance studies of doped TiO2 colloids. J Phys Chem 94:2566–2572

    Google Scholar 

  301. Wang CY, Boettcher C, Bahnemann DW, Dohrmann JK (2003) A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity. J Mater Chem 13:2322–2329

    CAS  Google Scholar 

  302. Wang XH, Li JG, Kamiyama H, Moriyoshi Y, Ishigaki T (2006) Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. J Phys Chem B 110:6804–6809

    CAS  Google Scholar 

  303. Yu J, Yu H, Ao CH, Lee SC, Yu JC, Ho W (2006) Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films. Thin Solid Films 494:273–280

    Google Scholar 

  304. Mu W, Herrimann J-M, Pichat P (1989) Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catal Lett 3:73–84

    CAS  Google Scholar 

  305. Radecka M, Wierzbicka M, Komornicki S, Rekas M (2004) Influence of Cr on photoelectrochemical properties of TiO2 thin films. Physica B Condens Matter 348:160–168

    CAS  Google Scholar 

  306. Wilke K, Breuer HD (1999) The influence of transition metal doping on the physical and photocatalytic properties of titania. J Photochem Photobiol A Chem 121:49–53

    CAS  Google Scholar 

  307. Martin ST, Morrison CL, Hoffmann MR (1994) Photochemical mechanism of size-quantized vanadium-doped TiO2 particles. J Phys Chem 98:13695–13704

    CAS  Google Scholar 

  308. Trejo-Tzab R, Alvarado-Gil JJ, Quintana P, Bartolo-Perez P (2012) N-doped TiO2 P25/Cu powder obtained using nitrogen (N2) gas plasma. Catal Today 193:179–185

    CAS  Google Scholar 

  309. Kaleji BK, Sarraf-Mamoory R (2012) Nanocrystalline sol-gel TiO2-SnO2 coatings: preparation, characterization and photocatalytic performance. Mater Res Bull 47:362–369

    CAS  Google Scholar 

  310. Kim C, Choi M, Jang J (2010) Nitrogen-doped SiO2/TiO2 core/shell nanoparticles as highly efficient visible light photocatalyst. Catal Commun 11:378–382

    CAS  Google Scholar 

  311. Wang D-H, Jia L, Wu X-L, Lu L-Q, Xu A-W (2012) One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4:576–584

    CAS  Google Scholar 

  312. Ye F, Ohmori A (2002) The photocatalytic activity and photoabsorption of plasma sprayed TiO2-Fe3O4 binary oxide coatings. Surf Coat Technol 160:62–67

    CAS  Google Scholar 

  313. Li G, Ciston S, Saponjic ZV, Chen L, Dimitrijevic NM, Rajh T, Gray KA (2008) Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photooxidation and photoreduction applications. J Catal 253:105–110

    CAS  Google Scholar 

  314. Leon-Ramos JA, Kibanova D, Santiago-Jacinto P, Mar-Santiago Y, Trejo-Valdez M (2011) Synthesis, characterization and photocatalytic properties of tungsten-doped hydrothermal TiO2. J Sol-Gel Sci Technol 57:43–50

    CAS  Google Scholar 

  315. Zhang P, Xu M, Fang H, Li L (2009) Low-temperature synthesis of InVO4 doped TiO2 sol and visible-light photocatalytic activities of InVO4-TiO2 films. Mater Lett 63:2146–2148

    CAS  Google Scholar 

  316. Ang TP, Toh CS, Han YF (2009) Synthesis, characterization, and activity of visible-light-driven nitrogen-doped TiO2-SiO2 mixed oxide photocatalysts. J Phys Chem C 113:10560–10567

    CAS  Google Scholar 

  317. Hou YD, Wang XC, Wu L, Chen XF, Ding ZX, Wang XX, Fu XZ (2008) N-doped SiO2/TiO2 mesoporous nanoparticles with enhanced photocatalytic activity under visible-light irradiation. Chemosphere 72:414–421

    CAS  Google Scholar 

  318. Fuerte A, Hernandez-Alonso MD, Maira AJ, Martinez-Arias A, Fernandez-Garcia M, Conesa JC, Soria J (2001) Visible light-activated nanosized doped-TiO2 photocatalysts. Chem Commun 24:2718–2719

    Google Scholar 

  319. Xu L, Steinmiller EMP, Skrabalak SE (2012) Achieving synergy with a potential photocatalytic Z-scheme: synthesis and evaluation of nitrogen-doped TiO2/SnO2 composites. J Phys Chem C 116:871–877

    CAS  Google Scholar 

  320. Mishra T, Hait J, Aman N, Jana RK, Chakravarty S (2007) Effect of UV and visible light on photocatalytic reduction of lead and cadmium over titania based binary oxide materials. J Colloid Interface Sci 316:80–84

    CAS  Google Scholar 

  321. Neppolian B, Wang Q, Yamashita H, Choi H (2007) Synthesis and characterization of ZrO2-TiO2 binary oxide semiconductor nanoparticles: application and interparticle electron transfer process. Appl Catal A 333:264–271

    CAS  Google Scholar 

  322. Wu B, Yuan R, Fu X (2009) Structural characterization and photocatalytic activity of hollow binary ZrO2/TiO2 oxide fibers. J Solid State Chem 182:560–565

    CAS  Google Scholar 

  323. Kambur A, Pozan GS, Boz I (2012) Preparation, characterization and photocatalytic activity of TiO2-ZrO2 binary oxide nanoparticles. Appl Catal B 115–116:149–158

    Google Scholar 

  324. Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl Catal A 244:383–391

    CAS  Google Scholar 

  325. Kolen’ko YV, Churagulov BR, Kunst M, Mazerolles L, Colbeau-Justin C (2004) Photocatalytic properties of titania powders prepared by hydrothermal method. Appl Catal B 54:51–58

    Google Scholar 

  326. Bakardjieva S, Subrt J, Stengl V, Dianez MJ, Sayagues MJ (2005) Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl Catal B 58:193–202

    CAS  Google Scholar 

  327. Kawahara T, Ozawa T, Iwasaki M, Tada H, Ito S (2003) Photocatalytic activity of rutile-anatase coupled TiO2 particles prepared by a dissolution-reprecipitation method. J Colloid Interface Sci 267:377–381

    CAS  Google Scholar 

  328. Tatsuma T, Saitoh S, Ngaotrakanwiwat P, Ohko Y, Fujishima A (2002) Energy storage of TiO2-WO3 photocatalysis systems in the gas phase. Langmuir 18:7777–7779

    CAS  Google Scholar 

  329. Rampaul A, Parkin IP, O’Neill SA, DeSouza J, Mills A, Elliott N (2003) Titania and tungsten doped titania thin films on glass; active photocatalysts. Polyhedron 22:35–44

    CAS  Google Scholar 

  330. Shchukin D, Poznyak S, Kulak A, Pichat P (2004) TiO2-In2O3 photocatalysts: preparation, characterizations and activity for 2-chlorophenol degradation in water. J Photochem Photobiol A Chem 162:423–430

    CAS  Google Scholar 

  331. Enriquez R, Beaugiraud B, Pichat P (2004) Mechanistic implications of the effect of TiO2 accessibility in TiO2-SiO2 coatings upon chlorinated organics photocatalytic removal in water. Water Sci Technol 49:147–152

    CAS  Google Scholar 

  332. Navio JA, Colon G, Herrmann JM (1997) Photoconductive and photocatalytic properties of ZrTiO4. Comparison with the parent oxides TiO2 and ZrO2. J Photochem Photobiol A Chem 108:179–185

    CAS  Google Scholar 

  333. Chu SZ, Inoue S, Wada K, Li D, Suzuki J (2005) Fabrication and photocatalytic characterizations of ordered nanoporous X-doped (X = N, C, S, Ru, Te, and Si) TiO2/Al2O3 films on ITO/glass. Langmuir 21:8035–8041

    CAS  Google Scholar 

  334. Fernandez A, Lassaletta G, Jimenez VM, Justo A, Gonzalez-Elipe AR, Herrmann JM, Tahiri H, Ait-Ichou Y (1995) Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl Catal B 7:49–63

    CAS  Google Scholar 

  335. Kundu S, Kafizas A, Hyett G, Mills A, Darr JA, Parkin IP (2011) An investigation into the effect of thickness of titanium dioxide and gold-silver nanoparticle titanium dioxide composite thin-films on photocatalytic activity and photoinduced oxygen production in a sacrificial system. J Mater Chem 21:6854–6863

    CAS  Google Scholar 

  336. Sato S (1988) Effects of surface modification with silicon oxides on the photochemical properties of powdered titania. Langmuir 4:1156–1159

    CAS  Google Scholar 

  337. Ryu J, Choi W (2004) Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides. Environ Sci Technol 38:2928–2933

    CAS  Google Scholar 

  338. Hidalgo MC, Maicu M, Navio JA, Colon G (2007) Photocatalytic properties of surface modified platinized TiO2: effects of particle size and structural composition. Catal Today 129:43–49

    CAS  Google Scholar 

  339. Kozlova EA, Lyubina TP, Nasalevich MA, Vorontsov AV, Miller AV, Kaichev VV, Parmon VN (2011) Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate. Catal Commun 12:597–601

    CAS  Google Scholar 

  340. Khnayzer RS, Thompson LB, Zamkov M, Ardo S, Meyer GJ, Murphy CJ, Castellano FN (2012) Photocatalytic hydrogen production at titania-supported Pt nanoclusters that are derived from surface-anchored molecular precursors. J Phys Chem C 116:1429–1438

    CAS  Google Scholar 

  341. Kowalska E, Remita H, Colbeau-Justin C, Hupka J, Belloni J (2008) Modification of titanium dioxide with platinum ions and clusters: application in photocatalysis. J Phys Chem C 112:1124–1131

    CAS  Google Scholar 

  342. Ikeda S, Sugiyama N, Pal B, Marci G, Palmisano L, Noguchi H, Uosaki K, Ohtani B (2001) Photocatalytic activity of transition-metal-loaded titanium(IV) oxide powders suspended in aqueous solutions: correlation with electron-hole recombination kinetics. Phys Chem Chem Phys 3:267–273

    CAS  Google Scholar 

  343. Ohtani B, Iwai K, Nishimoto SI, Sato S (1997) Role of platinum deposits on titanium(IV) oxide particles: structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. J Phys Chem B 101:3349–3359

    CAS  Google Scholar 

  344. Crittenden JC, Liu J, Hand DW, Perram DL (1997) Photocatalytic oxidation of chlorinated hydrocarbons in water. Water Res 31:429–438

    CAS  Google Scholar 

  345. Sun B, Smirniotis PG, Boolchand P (2005) Visible light photocatalysis with platinized rutile TiO2 for aqueous organic oxidation. Langmuir 21:11397–11403

    CAS  Google Scholar 

  346. Colon G, Maicu M, Hidalgo MC, Navio JA, Kubacka A, Fernandez-Garcia M (2010) Gas phase photocatalytic oxidation of toluene using highly active Pt doped TiO2. J Mol Catal A Chem 320:14–18

    CAS  Google Scholar 

  347. Wang Y, Jing M, Zhang M, Yang J (2012) Facile synthesis and photocatalytic activity of platinum decorated TiO2-xNx: perspective to oxygen vacancies and chemical state of dopants. Catal Commun 20:46–50

    Google Scholar 

  348. Li X, Zhuang Z, Li W, Pan H (2012) Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl Catal A 429–430:31–38

    Google Scholar 

  349. Kim J, Monllor-Satoca D, Choi W (2012) Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components. Energ Environ Sci 5:7647–7656

    CAS  Google Scholar 

  350. Alaoui QT, Herissan A, Le QC, MM Z, Sorgues S, Remita H, Colbeau-Justin C (2012) Elaboration, charge-carrier lifetimes and activity of Pd-TiO2 photocatalysts obtained by gamma radiolysis. J Photochem Photobiol A Chem 242:34–43

    Google Scholar 

  351. Lee WI, Choi GJ, Do YR (1997) Effect of Au and WO3 on the surface structure and photocatalytic activity of TiO2. Bull Korean Chem Soc 18:667–670

    CAS  Google Scholar 

  352. Dawson A, Kamat PV (2001) Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles. J Phys Chem B 105:960–966

    CAS  Google Scholar 

  353. Wu CG, Tzeng LF, Kuo YT, Shu CH (2002) Enhancement of the photocatalytic activity of TiO2 film via surface modification of the substrate. Appl Catal A 226:199–211

    CAS  Google Scholar 

  354. Arabatzis IM, Stergiopoulos T, Andreeva D, Kitova S, Neophytides SG, Falaras P (2003) Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J Catal 220:127–135

    CAS  Google Scholar 

  355. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126:4943–4950

    CAS  Google Scholar 

  356. Kowalska E, Abe R, Ohtani B (2009) Visible light-induced photocatalytic reaction of gold-modified titanium(iv) oxide particles: action spectrum analysis. Chem Commun 241–243

    Google Scholar 

  357. Dozzi MV, Chiarello GL, Selli E (2010) Effects of surface modification on the photocatalytic activity of TiO2. J Adv Oxid Technol 13:305–312

    CAS  Google Scholar 

  358. Lee M, Amaratunga P, Kim J, Lee D (2010) TiO2 nanoparticle photocatalysts modified with monolayer-protected gold clusters. J Phys Chem C 114:18366–18371

    CAS  Google Scholar 

  359. Kochuveedu ST, Kim DP, Kim DH (2012) Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration. J Phys Chem C 116:2500–2506

    CAS  Google Scholar 

  360. Kowalska E, Mahaney OOP, Abe R, Ohtani B (2010) Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys Chem Chem Phys 12:2344–2355

    CAS  Google Scholar 

  361. Zielinska-Jurek A, Kowalska E, Sobczak JW, Lisowski W, Ohtani B, Zaleska A (2011) Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light. Appl Catal B 101:504–514

    CAS  Google Scholar 

  362. Tanaka A, Ogino A, Iwaki M, Hashimoto K, Ohnuma A, Amano F, Ohtani B, Kominami H (2012) Gold-titanium(IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: correlation between physical properties and photocatalytic activities. Langmuir 28:13105–13111

    CAS  Google Scholar 

  363. Kowalska E, Rau S, Ohtani B (2012) Plasmonic titania photocatalysts active under UV and visible-light irradiation: influence of gold amount, size, and shape. J Nanotechnol 2012:361853–361864

    Google Scholar 

  364. Cai C, Zhang J, Pan F, Zhang W, Zhu H, Wang T (2008) Influence of metal (Au, Ag) micro-grid on the photocatalytic activity of TiO2 film. Catal Lett 123:51–55

    CAS  Google Scholar 

  365. Cao Y, Tan H, Shi T, Tang T, Li J (2008) Preparation of Ag-doped TiO2 nanoparticles for photocatalytic degradation of acetamiprid in water. J Chem Technol Biotechnol 83:546–552

    CAS  Google Scholar 

  366. Priya R, Baiju KV, Shukla S, Biju S, Reddy MLP, Patil K, Warrier KGK (2009) Comparing ultraviolet and chemical reduction techniques for enhancing photocatalytic activity of silver oxide/silver deposited nanocrystalline anatase titania. J Phys Chem C 113:6243–6255

    CAS  Google Scholar 

  367. Wang E, Liu S, Lu Q, Xiu Z, Li T, Song L (2011) Photocatalytic property of surface-modified TiO2 nanobelts under visible light irradiation. J Sol-Gel Sci Technol 58:705–710

    CAS  Google Scholar 

  368. Zhang S, Peng F, Wang H, Yu H, Zhang S, Yang J, Zhao H (2011) Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Catal Commun 12:689–693

    CAS  Google Scholar 

  369. Subrahmanyam A, Biju KP, Rajesh P, Jagadeesh KK, Raveendra KM (2012) Surface modification of sol gel TiO2 surface with sputtered metallic silver for sun light photocatalytic activity: initial studies. Sol Energy Mater Sol Cells 101:241–248

    CAS  Google Scholar 

  370. Korzhak AV, Ermokhina NI, Stroyuk AL, Bukhtiyarov VK, Raevskaya AE, Litvin VI, Kuchmiy SY, Ilyin VG, Manorik PA (2008) Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites. J Photochem Photobiol A Chem 198:126–134

    CAS  Google Scholar 

  371. Mills A, Hill G, Stewart M, Graham D, Smith WE, Hodgen S, Halfpenny PJ, Faulds K, Robertson P (2004) Characterization of novel Ag on TiO2 films for surface-enhanced Raman scattering. Appl Spectrosc 58:922–928

    CAS  Google Scholar 

  372. Irie H, Miura S, Kamiya K, Hashimoto K (2008) Efficient visible light-sensitive photocatalysts: grafting Cu(II) ions onto TiO2 and WO3 photocatalysts. Chem Phys Lett 457:202–205

    CAS  Google Scholar 

  373. Higashimoto S, Tanihata W, Nakagawa Y, Azuma M, Ohue H, Sakata Y (2008) Effective photocatalytic decomposition of VOC under visible-light irradiation on N-doped TiO2 modified by vanadium species. Appl Catal A 340:98–104

    CAS  Google Scholar 

  374. Zhou W, Liu H, Wang J, Liu D, Du G, Cui J (2010) Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl Mater Interfaces 2:2385–2392

    CAS  Google Scholar 

  375. Jin Q, Fujishima M, Tada H (2011) Visible light-active iron oxide-modified anatase titanium(IV) dioxide. J Phys Chem C 115:6478–6483

    CAS  Google Scholar 

  376. Jin Q, Ikeda T, Fujishima M, Tada H (2011) Nickel(II) oxide surface-modified titanium(IV) dioxide as a visible-light-active photocatalyst. Chem Commun 47:8814–8816

    CAS  Google Scholar 

  377. Liu P, Li W, Zhang J, Lin Y (2011) Photocatalytic activity enhancement of TiO2 porous thin film due to homogeneous surface modification of RuO2. J Mater Res 26:1532–1538

    CAS  Google Scholar 

  378. Tada H, Jin Q, Nishijima H, Yamamoto H, Fujishima M, Okuoka S-I, Hattori T, Sumida Y, Kobayashi H (2011) Titanium(IV) dioxide surface-modified with iron oxide as a visible light photocatalyst. Angew Chem Int Ed 50:3501–3505

    Google Scholar 

  379. Fujishima M, Jin Q, Yamamoto H, Tada H, Nolan M (2012) Tin oxide-surface modified anatase titanium(iv) dioxide with enhanced UV-light photocatalytic activity. Phys Chem Chem Phys 14:705–711

    CAS  Google Scholar 

  380. Jin Q, Fujishima M, Nolan M, Iwaszuk A, Tada H (2012) Photocatalytic activities of Tin(IV) oxide surface-modified titanium(IV) dioxide show a strong sensitivity to the TiO2 crystal form. J Phys Chem C 116:12621–12626

    CAS  Google Scholar 

  381. Nolan M, Iwaszuk A, Tada H (2012) Molecular metal oxide cluster-surface modified titanium(iv) dioxide photocatalysts. Aust J Chem 65:624–632

    CAS  Google Scholar 

  382. Ozer RR, Ferry JL (2001) Investigation of the photocatalytic activity of TiO2-polyoxometalate systems. Environ Sci Technol 35:3242–3246

    CAS  Google Scholar 

  383. Pearson A, Bhargava SK, Bansal V (2011) UV-switchable polyoxometalate sandwiched between TiO2 and metal nanoparticles for enhanced visible and solar light photococatalysis. Langmuir 27:9245–9252

    CAS  Google Scholar 

  384. Chen C, Lei P, Ji H, Ma W, Zhao J, Hidaka H, Serpone N (2004) Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts. Intermediates and mechanistic study. Environ Sci Technol 38:329–337

    CAS  Google Scholar 

  385. Schwitzgebel J, Ekerdt JG, Gerischer H, Heller A (1995) Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions. J Phys Chem 99:5633–5638

    CAS  Google Scholar 

  386. Wang CM, Heller A, Gerischer H (1992) Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds. J Am Chem Soc 114:5230–5234

    CAS  Google Scholar 

  387. Gerischer H, Heller A (1991) The role of oxygen in photooxidation of organic molecules on semiconductor particles. J Phys Chem 95:5261–5267

    CAS  Google Scholar 

  388. Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H (1995) Exploiting the interparticle electron transfer process in the photocatalyzed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobiol A Chem 85:247–255

    CAS  Google Scholar 

  389. Kesselman JM, Shreve GA, Hoffmann MR, Lewis NS (1994) Flux-matching conditions at TiO2 photoelectrodes: is interfacial electron transfer to O2 rate-limiting in the TiO2-catalyzed photochemical degradation of organics? J Phys Chem 98:13385–13395

    CAS  Google Scholar 

  390. Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) Radiation-induced synthesis of mono- and multimetallic clusters and nanocolloids. New J Chem 22:1239–1255

    CAS  Google Scholar 

  391. Libera JA, Elam JW, Sather NF, Rajh T, Dimitrijevic NM (2010) Iron(III)-oxo centers on TiO2 for visible-light photocatalysis. Chem Mater 22:409–413

    CAS  Google Scholar 

  392. Sakthivela S, Shankarb MV, Palanichamyb M, Arabindoob B, Bahnemanna DW, Murugesanb V (2004) Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38:3001–3008

    Google Scholar 

  393. Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527

    CAS  Google Scholar 

  394. Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49:741–772

    CAS  Google Scholar 

  395. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239

    CAS  Google Scholar 

  396. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  397. Ding S, Chen JS, Luan D, Boey FYC, Madhavi S, Lou XW (2011) Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chem Commun 47:5780–5782

    CAS  Google Scholar 

  398. Katsnelson MI, Novoselov KS (2007) Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun 143:3–13

    CAS  Google Scholar 

  399. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    CAS  Google Scholar 

  400. Ng YH, Lightcap IV, Goodwin K, Matsumura M, Kamat PV (2010) To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J Phys Chem Lett 1:2222–2227

    CAS  Google Scholar 

  401. Jiang B, Tian C, Pan Q, Jiang Z, Wang JQ, Yan W, Fu H (2011) Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed 001 facets. J Phys Chem C 115:23718–23725

    CAS  Google Scholar 

  402. Dong P, Wang Y, Guo L, Liu B, Xin S, Zhang J, Shi Y, Zeng W, Yin S (2012) A facile one-step solvothermal synthesis of graphene/rod-shaped TiO2 nanocomposite and its improved photocatalytic activity. Nanoscale 4:4641–4649

    CAS  Google Scholar 

  403. Xiang Q, Yu J, Jaroniec M (2011) Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 3:3670–3678

    CAS  Google Scholar 

  404. Wang Y, Shi R, Lin J, Zhu Y (2010) Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Appl Catal B 100:179–183

    CAS  Google Scholar 

  405. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    CAS  Google Scholar 

  406. Spanhel L, Weller H, Henglein A (1987) Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J Am Chem Soc 109:6632–6635

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Israel-USA BSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Rabani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rabani, J., Goldstein, S. (2013). Mechanisms of Reactions Induced by Photocatalysis of Titanium Dioxide Nanoparticles. In: Bahnemann, D., Robertson, P. (eds) Environmental Photochemistry Part III. The Handbook of Environmental Chemistry, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2013_248

Download citation

Publish with us

Policies and ethics