Skip to main content

Colored Dissolved Organic Matter in Frontal Zones

  • Chapter
Chemical Oceanography of Frontal Zones

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 116))

Abstract

Dissolved organic matter (DOM) includes a broad range of organic molecules of various sizes and composition that are released by all living and dead plants and animals. Measuring the fraction of DOM that absorbs light (colored or chromophoric DOM; CDOM) and fluoresces (referred to as CDOM fluorescence or FDOM) at specific wavelengths is diagnostic of DOM source and amount. The composition and dynamics of CDOM and FDOM across estuarine and coastal mixing zones, eddies, upwelling, and nepheloid layers are discussed in relation to the anomalies in physical (e.g., salinity and temperature), chemical (e.g., nutrients, δ18O, dissolved oxygen), and biological properties (e.g., chlorophyll-a, primary production) reported in the frontal zone. In situ observations using profiling sensors and gliders, and remote sensing across coastal and oceanic fronts are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simpson JH, Bowers D (1981) Models of stratification and frontal movement in shelf seas. Deep Sea Res I 28:727–738

    Google Scholar 

  2. O’Donnell J (1993) Surface fronts in estuaries: a review. Estuar Coast Shelf Sci 16:12–39

    Google Scholar 

  3. Gan J, Li L, Wang D, Guo X (2009) Interaction of a river plume with coastal upwelling in the northeastern South China Sea. Cont Shelf Res 29:728–740

    Google Scholar 

  4. Morel A, Claustre H, Gentili B (2010) The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences 7:3139–3151

    Google Scholar 

  5. de Baar HJW, de Jong JTM, Bakker DCE, Loscher BM, Veth C, Bathmann U, Smetacek V (1995) Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373:412–415

    Google Scholar 

  6. Strass VH, Naveira Garabato ACN, Pollard RT, Fischer HI, Hense I, Allen JT, Read JF, Leach H, Smetacek V (2002) Deep Sea Res II 49:3735–3769

    CAS  Google Scholar 

  7. Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol Oceanogr 26:43–53

    CAS  Google Scholar 

  8. Müller-Karger FE, McClain CR, Fisher TR, Esaias WE, Varela R (1989) Pigment distribution in the Caribbean Sea: observation from space. Prog Oceanogr 23:23–64

    Google Scholar 

  9. Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Mar Chem 51:325–346

    CAS  Google Scholar 

  10. Blough NV, Green SA (1995) Spectroscopic characterization and remote sensing of non-living organic matter. In: Zepp RG, Sonntag C (eds) The role of non-living organic matter in the earth’s carbon cycle. Wiley, New York, pp 23–45

    Google Scholar 

  11. Mopper K, Kieber DJ (2002) Photochemistry and the cycling of carbon, sulfur, nitrogen and phosphorus. In: Hansell D, Carlson C (eds) Biogeochemistry of marine organic matter. Academic, New York, pp 455–507

    Google Scholar 

  12. Chen Z, Li Y, Pan J (2004) Distributions of colored dissolved organic matter and dissolved organic carbon in the Pearl River Estuary, China. Cont Shelf Res 24:1845–1856

    Google Scholar 

  13. Tzortziou M, Neale PJ, Megonigal JP, Pow CL, Butterworth M (2011) Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary. Mar Ecol Prog Ser 2(426):41–56

    Google Scholar 

  14. Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254

    CAS  Google Scholar 

  15. Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Method 6:572–579

    CAS  Google Scholar 

  16. Guéguen C, Granskog MA, McCullough G, Barber DG (2011) Characterization of colored dissolved organic matter in Hudson Bay and Hudson Strait using parallel factor analysis. J Mar Syst 88:423–433

    Google Scholar 

  17. Guéguen C, McLaughlin FA, Carmack EC, Itoh M, Narita H, Nishino S (2012) The nature of colored dissolved organic matter in the southern Canada Basin and East Siberian Sea. Deep Sea Res II 81–84:102–113

    Google Scholar 

  18. Bro R (1997) PARAFAC. Tutorial and applications. Chemometr Intell Lab 38:149–171

    CAS  Google Scholar 

  19. Parlanti E, Wörz K, Geoffroy L, Lamotte M (2000) Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org Geochem 31:1765–1781

    CAS  Google Scholar 

  20. Murphy KR, Stedmon CA, Waite TD, Ruiz GM (2008) Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar Chem 108:40–58

    CAS  Google Scholar 

  21. Walker SA, Amon RMW, Stedmon C, Duan S, Louchouarn P (2009) The use of PARAFAC modeling to trace terrestrial dissolved organic matter and fingerprint water masses in coastal Canadian Arctic surface waters. J Geophys Res 114:G00F06. doi:10.1029/2009JG000990

  22. Del Castillo CE, Gilbes F, Coble PG, Müller-Karger FE (2000) On the dispersal of riverine colored dissolved organic matter over the West Florida Shelf. Limnol Oceanogr 45:1425–1432

    Google Scholar 

  23. Guéguen C, Guo L, Tanaka N (2005) Distributions and characteristics of colored dissolved organic matter in the western Arctic Ocean. Cont Shelf Res 25:1195–1207

    Google Scholar 

  24. Stedmon CA, Markager S (2001) The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea: an algorithm for differentiation between marine and terrestrially derived organic matter. Limnol Oceanogr 46:2087–2093

    Google Scholar 

  25. Pope RM, Weidemann AD, Fry ES (2000) Integrating cavity absorption meter measurements of dissolved substances and suspended particles in ocean water. Dyn Atmos Oceans 31:307–320

    Google Scholar 

  26. Woźniak B, Dera J (2007) Light absorption in sea water. Springer, Dordrecht, 456 pp

    Google Scholar 

  27. Xiao YH, Sara-Aho T, Hartikainen H, Vähätalo AV (2013) Contribution of ferric iron to light absorption by chromophoric dissolved organic matter. Limnol Oceanogr 58:653–662

    CAS  Google Scholar 

  28. Jerlov NG (1976) Marine optics. Elsevier, New York, 231 pp

    Google Scholar 

  29. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  30. Mitchell G, Bricaud A, Carder K, Cleveland J, Ferrari G, Gould R, Kahru M, Kishino M, Maske H, Moisan T, Moore L, Nelson N, Phinney D, Reynolds R, Sosik H, Stramski D, Tassan S, Trees C, Weidemann A, Wieland J, Vodacek A (2000) Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In: Fargion GS, Mueller JL (eds) Ocean optics protocols for satellite ocean colour sensor validation, revision 2. NASA Technical Memorandum 2000 209966

    Google Scholar 

  31. D’Sa EJ, Steward RG, Vodacek A, Blough NV, Phinney D (1999) Optical absorption of seawater colored dissolved organic matter determined using a liquid capillary waveguide. Limnol Oceanogr 44:1142–1148

    Google Scholar 

  32. Nelson NB, Siegel DA, Carlson CA, Swan C, Smethie WM, Khatiwala S (2007) Hydrography of chromophoric dissolved organic matter in the North Atlantic. Deep Sea Res I 54:710–731

    CAS  Google Scholar 

  33. Nelson NB, Siegel DA (2002) Chromophoric DOM in the open ocean. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic, San Diego, pp 547–578

    Google Scholar 

  34. Swan CM, Siegel DA, Nelson NB, Carlson CA, Nasir E (2009) Biogeochemical and hydrographic controls on chromophoric dissolved organic matter distribution in the Pacific Ocean. Deep Sea Res I 56:2175–2192

    CAS  Google Scholar 

  35. Röttgers R, Schönfeld W, Kipp P-R, Doerffer R (2005) Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies. Appl Optics 44:5549–5560

    Google Scholar 

  36. Röttgers R, Doerffer R (2007) Measurements of optical absorption by chromophoric dissolved organic matter using a point-sourceintegrating-cavity absorption meter. Limnol Oceanogr Method 5:126–135

    Google Scholar 

  37. Pegau WS, Gray D, Zaneveld JRV (1997) Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl Optics 36:6035–6046

    CAS  Google Scholar 

  38. Moore CM, Zaneveld JRV, Kitchen JC (1992) Preliminary results from an in situ spectral absorption meter. Proc SPIE Ocean Opt XI 1750:330–337

    CAS  Google Scholar 

  39. Moore CM (1994) In situ, biochemical, oceanic, optical meters: spectral absorption, attenuation, fluorescence meters—a new window of opportunity for ocean scientists. Sea Technol 35:10–16

    Google Scholar 

  40. Twardowski MS, Sullivan JM, Donaghay PL, Zaneveld JRV (1999) Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9. J Atmos Oceanic Tech 16:691–707

    Google Scholar 

  41. Twardowski MS, Boss E, Sullivan JM, Donaghay PL (2004) Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar Chem 89:69–88

    CAS  Google Scholar 

  42. Loos EA, Costa M (2010) Inherent optical properties and optical mass classification of the waters of the Strait of Georgia, British Columbia, Canada. Prog Oceanogr 87:144–156

    Google Scholar 

  43. Boss E, Pegau WS, Zaneveld JRV, Barnard AH (2001) Spatial and temporal variability of absorption by dissolved material at a continental shelf. J Geophys Res 106(5):9499–9507

    Google Scholar 

  44. Twardowski MS, Donaghay PL (2001) Separating in situ and terrestrial sources of absorption by dissolved materials in coastal waters. J Geophys Res 106:2545–2560

    CAS  Google Scholar 

  45. Twardowski MS, Donaghay PL (2002) Photobleaching of aquatic dissolved materials: absorption removal, spectral alteration, and their interrelationship. J Geophys Res 107(C8). doi:10.1029/1999JC000281

  46. Brown CA, Huot Y, Purcell MJ, Cullen JJ, Lewis MR (2004) Mapping coastal optical and biogeochemical variability using an autonomous underwater vehicle and a new bio optical inversion algorithm. Limnol Oceanogr Method 2:262–281

    Google Scholar 

  47. Nencioli F, Chang G, Twardowski M, Dickey TD (2010) Optical characterization of an eddy-induced diatom bloom west of the island of Hawaii. Biogeosciences 7:151–162

    Google Scholar 

  48. Antoine D, Siegel DA, Kostadinov T, Maritorena S, Nelson NB, Gentili B, Vellucci V, Guillocheau N (2011) Variability in optical particle backscaterring in contrasting bio-optical oceanic regimes. Limnol Oceanogr 56:955–973

    Google Scholar 

  49. Berthon JF, Zibordi G (2010) Optically black waters in the northern Baltic Sea. Geophys Res Lett 37. doi:10.1029/2010GL043227

  50. Blough NV, Del Vecchio R (2002) Chromophoric DOM in the coastal environment. In: Hansell D, Carlson C (eds) Biogeochemistry of marine dissolved organic matter. Academic, New York, pp 509–546

    Google Scholar 

  51. Del Vecchio R, Blough NV (2004) Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight. Mar Chem 89:169–187

    Google Scholar 

  52. Stedmon CA, Markager S, Kaas H (2000) Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuar Coast Shelf Sci 51:267–278

    CAS  Google Scholar 

  53. Matsuoka A, Hill V, Huot Y, Babin M, Bricaud A (2011) Seasonal variability in the light absorption properties of western Arctic waters: parameterization of the individual components of absorption for ocean color applications. J Geophys Res 116, C02007. doi:10.1029/2009JC005594

    Article  Google Scholar 

  54. Kitidis V, Stubbins AP, Uher G, Upsill Goddard RC, Law CS, Woodward EMS (2006) Variability of chromophoric organic matter in surface waters of the Atlantic Ocean. Deep Sea Res II 53:1666–1684

    Google Scholar 

  55. Blough NV, Zafiriou OC, Bonilla J (1993) Optical absorption spectra of waters from the Orinoco river outflow: terrestrial input of coloured organic matter to the Caribbean. J Geophys Res 98:2271–2278

    CAS  Google Scholar 

  56. Del Castillo CE, Coble PG, Morell JM, Lopez JM, Corredor JE (1999) Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Mar Chem 66:35–51

    Google Scholar 

  57. Kowalczuk P, Stedmon CA, Markager S (2006) Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll. Mar Chem 101:1–11

    CAS  Google Scholar 

  58. Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969

    Google Scholar 

  59. Guéguen C, Cuss CW (2011) Characterisation of aquatic dissolved organic matter by asymmetrical flow field-flow fractionation coupled to UV–Visible diode array and excitation emission matrix fluorescence. J Chromatogr A 1218:4188–4198

    Google Scholar 

  60. Carder KL, Steward RG, Harvey GR, Ortner PB (1989) Marine humic and fulvic acids. Their effect on remote sensing of ocean chlorophyll. Limnol Oceanogr 34:68–81

    CAS  Google Scholar 

  61. Moran AM, Sheldon WM, Zepp RG (2000) Carbon loss and optical changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol Oceanogr 45:1254–1264

    CAS  Google Scholar 

  62. Grzybowski W (2000) Effect of short-term sunlight irradiation on absorbance spectra of chromophoric organic matter dissolved in coastal and riverine water. Chemosphere 40:1313–1318

    CAS  Google Scholar 

  63. Vähätalo AV, Wetzel RG (2008) Long-term photochemical and microbial decomposition of wetland-derived dissolved organic matter with alteration of 13C:12C mass ratio. Limnol Oceanogr 53(4):1387–1392

    Google Scholar 

  64. Stedmon CA, Markager S (2003) Behaviour of the optical properties of coloured dissolved organic matter under conservative mixing. Estuar Coast Shelf Sci 57:973–979

    CAS  Google Scholar 

  65. Xie H, Aubry C, Bélanger S, Song G (2012) The dynamics of absorption coefficients of CDOM and particles in the St. Lawrence estuarine system: biogeochemical and physical implications. Mar Chem 128–129:44–56

    Google Scholar 

  66. Stedmon CA, Osburn CL, Kragh T (2010) Tracing water mass mixing in the Baltic–North Sea transition zone using the optical properties of coloured dissolved organic matter. Estuar Coast Shelf Sci 87:156–162

    CAS  Google Scholar 

  67. Astoreca R, Rousseau V, Lancelot C (2009) Coloured dissolved organic matter (CDOM) in Southern North Sea waters: optical characterization and possible origin. Estuar Coast Shelf Sci 85:633–640

    CAS  Google Scholar 

  68. Vodacek A, Blough NV, DeGrandpre MD, Peltzer ET, Nelson RK (1997) Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation. Limnol Oceanogr 42(2):674–686

    CAS  Google Scholar 

  69. Nelson JR, Guarda S (1995) Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States. J Geophys Res 100(C5):8715–8732

    CAS  Google Scholar 

  70. Kowalczuk P, Cooper WJ, Whitehead RJ, Durako MJ, Sheldon W (2003) Characterization of CDOM in organic rich river and surrounding coastal ocean in the South Atlantic Bight. Aquat Sci 65:384–401

    CAS  Google Scholar 

  71. Kowalczuk P, Olszewski J, Darecki M, Kaczmarek S (2005) Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters. Int J Remote Sens 26:345–370

    Google Scholar 

  72. Peuravouri J, Pihlaja K (1997) Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal Chim Acta 337:133–149

    Google Scholar 

  73. Lawaetz AJ, Stedmon CA (2009) Fluorescence intensity calibration using the Raman scatter peak of water. Appl Spectrosc 63:936–940

    CAS  Google Scholar 

  74. Murphy KR, Butler KD, Spencer RGM, Stedmon CA, Boehme JR, Aiken GR (2010) The measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ Sci Tech 44:9405–9412

    CAS  Google Scholar 

  75. Kalle K (1949) Fluoreszenz und Gelbstoff im Botnischen und Finnischen Meerbusen. Dt Hydrogr Zeitung 2:117–124

    Google Scholar 

  76. Duursma EK (1965) The dissolved organic constituents of seawater. In: Riley JP, Skirrow G (eds) Chemical oceanography, vol 1. Academic, London, pp 433–475

    Google Scholar 

  77. Højerslev NK (1989) Bio-optical properties of Louisiana shelf waters off the Mississippi River Delta. Science Application International Corp, Raleigh, p 40

    Google Scholar 

  78. Ferrari GM, Tassan S (1991) On the accuracy of determining light absorption by “yellow substance” through measurements of induced fluorescence. Limnol Oceanogr 36(4):777–786

    CAS  Google Scholar 

  79. Hoge FE, Vodacek A, Blough NV (1993) Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements. Limnol Oceanogr 38:1394–1402

    CAS  Google Scholar 

  80. Nieke B, Reuter R, Heuermann R, Wang H, Babin M, Therriault JC (1997) Light absorption and fluorescence of chromophoric dissolved organic matter (CDOM) in the St. Lawrence Estuary (Case 2 waters). Cont Shelf Res 17(3):235–252

    Google Scholar 

  81. Ferrari GM, Dowell MD (1998) CDOM absorption characteristics with relation to fluorescence and salinity in coastal areas of the southern Baltic Sea. Estuar Coast Shelf Sci 47:91–105

    CAS  Google Scholar 

  82. Ferrari GM (2000) The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of Lions). Mar Chem 70:339–357

    CAS  Google Scholar 

  83. Chen RF, Zhang Y, Vlahos P, Rudnick SM (2002) The fluorescence of dissolved organic matter in the Mid-Atlantic Bight. Deep Sea Res II 49:4439–4459

    CAS  Google Scholar 

  84. Green SA, Blough NV (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr 39:1903–1916

    CAS  Google Scholar 

  85. Conmy RN, Coble PG, Del Castillo CE (2004) Calibration and performance of a new in situ multi-channel fluorometer for measurement of colored dissolved organic matter in the ocean. Cont Shelf Res 24:431–442

    Google Scholar 

  86. Belzile C, Roesler CS, Christensen JP, Shakhova N, Semiletov I (2006) Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption. Estuar Coast Shelf Sci 67:441–449

    Google Scholar 

  87. Kowalczuk P, Zabłocka M, Sagan S, Kuliński K (2010) Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea. Oceanol 52:431–471

    Google Scholar 

  88. Traganza ED (1969) Fluorescence excitation and emission spectra of dissolved organic matter in sea water. B Mar Sci 19:897–904

    CAS  Google Scholar 

  89. Coble PG, Green S, Gagosian RB, Blough N (1990) Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 348:432–435

    CAS  Google Scholar 

  90. Coble PG, Del Castillo CE, Avril B (1998) Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Res II 45:2195–2223

    CAS  Google Scholar 

  91. Stedmon CA, Markager SS (2005) Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–697

    CAS  Google Scholar 

  92. Yamashita Y, Jaffé R, Maie N, Tanoue E (2008) Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnol Oceanogr 53:1900–1908

    CAS  Google Scholar 

  93. Kowalczuk P, Durako MJ, Young H, Kahn AE, Cooper WJ, Gonsior M (2009) Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: interannual variability. Mar Chem 113:182–196

    CAS  Google Scholar 

  94. Nelson NB, Siegel DA, Carlson CA, Swan C (2010) Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter. Geophys Res Lett 37, L03610. doi:10.1029/2009GL042325

    Article  CAS  Google Scholar 

  95. Yamashita Y, Tanoue E (2009) Basin scale distribution of chromophoric dissolved organic matter in the Pacific Ocean. Limnol Oceanogr 54:598–609

    CAS  Google Scholar 

  96. Stedmon CA, Amon RMW, Rinehart AJ, Walker SA (2011) The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Mar Chem 124:108–118

    CAS  Google Scholar 

  97. Fichot CG, Kaiser K, Hooker SB, Amon RMW, Babin M, Bélanger S, Walker SA, Benner R (2013) Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci Rep 3:1053. doi:10-1038-srep01053

    Google Scholar 

  98. Nelson NB, Siegel DA, Michaels AF (1998) Seasonal dynamics of colored dissolved material in the Sargasso Sea. Deep Sea Res I 45:931–957

    CAS  Google Scholar 

  99. Rochelle-Newall EJ, Fisher TR (2002) Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton. Mar Chem 77:7–21

    CAS  Google Scholar 

  100. Romera-Castillo C, Sarmento H, Álvarez-Salgado AX, Gasol JM, Marrasé C (2010) Production of chromophoric dissolved organic matter by marine phytoplankton. Limnol Oceanogr 55:446–454

    CAS  Google Scholar 

  101. McIntyre AM, Guéguen C (2012) Binding interactions of algal-derived dissolved organic matter with metal ions. Chemosphere 90:620–626

    Google Scholar 

  102. Guéguen C, Guo L, Yamamoto-Kawai M, Tanaka N (2007) Colored dissolved organic matter dynamics across the shelf-basin interface in the western Arctic Ocean. J Geophys Res 112, C05038. doi:10.1029/2006JC003584

    Article  CAS  Google Scholar 

  103. Granskog MA, Macdonald RW, Mundy CJ, Barber DG (2007) Distribution, characteristics and potential impacts of chromophoric dissolved organic matter (CDOM) in the Hudson Strait and Hudson Bay, Canada. Cont Shelf Res 27:2032–2050

    Google Scholar 

  104. Hill VJ (2008) Impacts of chromophoric dissolved organic material on surface ocean heating in the Chukchi Sea. J Geophys Res 113, C07024. doi:10.1029/2007JC004119

    Article  CAS  Google Scholar 

  105. Matsuoka A, Bricaud A, Benner R, Para J, Sempéré R, Prieur L, Bélanger S, Babin M (2012) Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: a relationship with hydrographic characteristics. Biogeosciences 9:929–940

    Google Scholar 

  106. Aagaard K, Carmack EC (1989) The role of sea ice and other freshwater in the Arctic circulation. J Geophys Res 94:14485–14498

    Google Scholar 

  107. Winsor P, Chapman DC (1989) Distribution and interannual variability of dense water production from coastal polynyas on the Chukchi Shelf. J Geophy Res 107:3079. doi:10.1029/2001JC000984, 2002

  108. Shimada K, Itoh M, Nishino S, McLaughlin F, Carmack E, Proshutinsky A (2005) Halocline structure in the Canada Basin of the Arctic Ocean. Geophys Res Lett 32, L03605. doi:10.1029/2004GL021358

    Article  Google Scholar 

  109. Granskog MA, Stedmon CA, Dodd PA, Amon RMW, Pavlov AK, de Steur L, Hansen E (2012) Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: assessing the changes and fate of terrigenous CDOM in the Arctic Ocean. J Geophys Res 11, C12021. doi:10.1029/2012JC008075

    Article  Google Scholar 

  110. Granskog MA, Macdonald RW, Kuzyk ZA, Senneville S, Mundy CJ, Barber DG, Stern GA, Saucier F (2009) Coastal conduit in southwestern Hudson Bay (Canada) in summer: rapid transit of freshwater and significant loss of colored dissolved organic matter. J Geophys Res 114, C08012. doi:10.1029/2009JC005270

    Article  Google Scholar 

  111. Mopper K, Sarpal RS, Kieber DJ (1995) Protein and humic substance fluorescence of dissolved organic matter in Antarctic sea water. Antarct J 30:137–139

    Google Scholar 

  112. Wedborg M, Hoppema M, Skoog A (1998) On the relation between organic and inorganic carbon in the Weddell Sea. J Mar Syst 17:59–76

    Google Scholar 

  113. Chen RF, Bata JL (1992) The fluorescence of dissolved organic matter in seawater. Mar Chem 37:191–221

    CAS  Google Scholar 

  114. Hayase K, Shinozuoka N (1995) Vertical distribution of fluorescent organic matter along with AOU and nutrients in the equatorial Central Pacific. Mar Chem 48:283–290

    CAS  Google Scholar 

  115. Hayase K, Yamamoto M, Nakazawa I, Tsubota H (1987) Behavior of natural fluorescence in Sagami Bay and Tokyo Bay, Japan: vertical and lateral distribution. Mar Chem 48:283–290

    Google Scholar 

  116. Tani H, Nishioka J, Kuma K, Takata H, Yamashita Y, Tanoue E, Midorikawa T (2003) Iron(III) hydroxide solubility and humic-type fluorescent organic matter in the deep water column of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep Sea Res I 50:1063–1078

    CAS  Google Scholar 

  117. Mopper K, Zhou XL, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD (1991) Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353:60–62

    CAS  Google Scholar 

  118. Mopper K, Schultz CA (1993) Fluorescence as a possible tool for studying the nature and water column distribution of DOC components. Mar Chem 41:229–238

    CAS  Google Scholar 

  119. Determann S, Reuter R, Willkomm R (1996) Fluorescence matter in the eastern Atlantic Ocean: part 2. Vertical profiles and relation to water masses. Deep Sea Res 43:345–360

    Google Scholar 

  120. Jørgensen L, Stedmon CA, Kragh T, Markager S, Middelboe M, Søndergaard M (2011) Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar Chem 126:139–148

    Google Scholar 

  121. Stedmon CA, Álvarez-Salgado XA (2011) Shedding light on a black box: UV–Visible spectroscopic characterization of marine dissolved organic matter. In: Jiao N, Azam F, Sanders S (eds) Microbial carbon pump in the ocean. American Association for the Advancement of Science, Washington, DC, pp 62–63

    Google Scholar 

  122. Schlitzer R (2012) Ocean data view. http://odv.awi.de

  123. Yamashita Y, Tanoue E (2008) Production of bio-refractory fluorescent dissolved organic matter in the ocean interior. Nat Geosci 1:579–582

    CAS  Google Scholar 

  124. Yamashita Y, Cory RM, Nishioka J, Kuma K, Tanoue E, Jaffé R (2010) Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep Sea Res II 57:1478–1485

    CAS  Google Scholar 

  125. Omori YT, Hama MI, Saito S (2010) Relationship between the seasonal change in fluorescent dissolved organic matter and mixed layer depth in the subtropical western North Pacific. J Geophys Res 115, C06001. doi:10.1029/2009JC005526

    Article  CAS  Google Scholar 

  126. Omori Y, Hama T, Ishii M, Saito S (2011) Vertical change in the composition of marine humic-like fluorescent dissolved organic matter in the subtropical western North Pacific and its relation to photoreactivity. Mar Chem 124:38–47

    CAS  Google Scholar 

  127. Cooper LW, Benner R, McClelland JW, Peterson BJ, Holmes RM, Raymond PA, Hansell DA, Grebmeier JM, Codispoti LA (2005) Linkages among runoff, dissolved organic carbon, and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean. J Geophys Res 110, G02013. doi:10.1029/2005JG000031

    Article  CAS  Google Scholar 

  128. Guay CK, Klinkhammer GP, Falkner KK, Benner R, Coble PG, Whitledge TE, Black B, Bussell FJ, Wagner TA (1999) High-resolution measurements of dissolved organic carbon in the Arctic Ocean by in situfiber-optic spectrometry. Geophys Res Lett 26(8):1007–1010

    CAS  Google Scholar 

  129. Yamashita Y, Tsukasaki A, Nishida T, Tanoue E (2007) Vertical and horizontal distribution of fluorescent dissolved organic matter in the Southern Ocean. Mar Chem 106:498–509

    CAS  Google Scholar 

  130. Hansell DA, Carlson CA (2002) Biogeochemistry of marine dissolved organic matter. Academic, New York, 774 pp

    Google Scholar 

  131. Santinelli C, Nannicini L, Seritti A (2010) DOC dynamics in the meso and bathypelagic layers of the Mediterranean Sea. Deep Sea Res II 57:1446–1459

    CAS  Google Scholar 

  132. Nieto-Cid M, Álvarez-Salgado XA, Pérez FF (2006) Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnol Oceanogr 51:1391–1400

    CAS  Google Scholar 

  133. Smethie WM, Fine RA (2001) Rates of North Atlantic deep water formation calculated from chlorofluorocarbon inventories. Deep Sea Res I 48:189–215

    CAS  Google Scholar 

  134. Zhang Y, Sintes E, Chen J, Zhang Y, Dai M, Jiao N, Herndl GJ (2009) Role of mesoscale cyclonic eddies in the distribution and activity of Archaea and Bacteria in the South China Sea. Aquat Microb Ecol 56:65–79

    Google Scholar 

  135. Bricaud A, Babin M, Claustre H, Ras J, Tièche F (2010) Light absorption properties and absorption budget of Southeast Pacific waters. J Geophys Res 115, C08009. doi:10.1029/2009JC005517

    Article  CAS  Google Scholar 

  136. Nieto-Cid M, Alvarez-Salgado XA, Gago J, Perez FF (2005) DOM fluorescence, a tracer for biogeochemical processes in a coastal upwelling system (NW Iberian Peninsula). Mar Ecol Prog Ser 297:33–50

    CAS  Google Scholar 

  137. Baird ME, Suthers IM, Griffin DA, Hollings B, Pattiaratchi C, Everett JD, Roughan M, Oubelkheir K, Doblin M (2011) The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia. Deep Sea Res II 58:592–605

    CAS  Google Scholar 

  138. Romera-Castillo C, Nieto-Cid M, Castro CG, Marrasé C, Largier J, Barton ED, Alvarez-Salgado XA (2011) Fluorescence: absorption coefficient ratio – tracing photochemical and microbial degradation processes affecting coloured dissolved organic matter in a coastal system. Mar Chem 125:26–38

    CAS  Google Scholar 

  139. Retamal L, Vincent WF, Martineau C, Osburn CL (2007) Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic. Estuar Coast Shelf Sci 72:261–272

    Google Scholar 

  140. Guo W, Stedmon CA, Han Y, Wu F, Yu X, Hu M (2007) The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. Mar Chem 107:357–366

    CAS  Google Scholar 

  141. Foden J, Sivyer DB, Mills DK, Devlin MJ (2008) Spatial and temporal distribution of chromophoric dissolved organic matter (CDOM) fluorescence and its contribution to light attenuation in UK waterbodies. Estuar Coast Shelf Sci 79:707–717

    Google Scholar 

  142. Del Vecchio R, Subramaniam A (2004) Influence of the Amazon River on the surface optical properties of the western tropical North Atlantic Ocean. J Geophys Res 109:C11. doi:10.1029/2004JC002503

    Article  CAS  Google Scholar 

  143. Hitchcock GL, Chen RF, Gardner GB, Wiseman WJ Jr (2004) A Lagrangian view of fluorescent chromophoric dissolved organic matter distributions in the Mississippi River plume. Mar Chem 89:225–239

    CAS  Google Scholar 

  144. Pettigrew NR, Roesler CS, Neville F, Deese HE (2008) An operational real-time ocean sensor network in the Gulf of Maine. In: Nittel S, Labrinidis A, Stefanidis A (eds) Geosensor networks, vol 4540, Lecture notes in Computer Science. Springer, Berlin, pp 213–238

    Google Scholar 

  145. Smyth TJ, Fishwick JR, Gallienne CP, StephensJA BAJ (2010) Technology, design and operation of an autonomous buoy system in the western English Channel. J Atmos Ocean Tech 27:2056–2064

    Google Scholar 

  146. Uher G, Hughes C, Henry G, Upstill-Goddard RC (2001) Non-conservative mixing behaviour of colored dissolved organic matter in a humic-rich turbid estuary. Geophys Res Lett 28:3309–3312

    CAS  Google Scholar 

  147. Jaffé R, Boyer JN, Lu X, Maie N, Yang C, Scully NM, Mock S (2004) Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Mar Chem 84:195–210

    Google Scholar 

  148. Bowers D, Evans DW, Thomas DN, Ellis K, Le PJ, Williams B (2004) Interpreting the colour of an estuary. Estuar Coast Shelf Sci 59:13–20

    CAS  Google Scholar 

  149. Chen RF, Bada JL, Suzuki Y (1993) The relationship between dissolved organic carbon (DOC) and fluorescence in anoxic porewaters: implications for estimating benthic DOC fluxes. Geochim Cosmochim Acta 57:2149–2153

    CAS  Google Scholar 

  150. Skoog A, Hall POJ, Hulth S, Paxeus N, Van Der Hoeff MR, Westerlund S (1996) Early diagenetic production and sediment-water exchange of fluorescent dissolved organic carbon in a coastal environment. Geochim Cosmochim Acta 60:3619–3629

    CAS  Google Scholar 

  151. Burdige DJ, Kline SW, Chen W (2004) Fluorescent dissolved organic matter in marine sediment pore waters. Mar Chem 89:289–311

    CAS  Google Scholar 

  152. Kim TH, Waska H, Kwon E, Suryaputa IGN, Kim G (2012) Production, degradation, and flux of dissolved organic matter in the subterranean estuary of a large tidal flat. Mar Chem 142–144:1–10

    Google Scholar 

  153. Sierra MMD, Donard OFX, Etcheber H, Soriano-Sierra EJ, Ewald M (2001) Fluorescence and DOC contents of pore waters from coastal and deep-sea sediments in the Gulf of Biscay. Org Geochem 32:1319–1328

    CAS  Google Scholar 

  154. Macdonald RW, Naidu AS, Yunker MB, Gobeil C (2004) The Beaufort Sea: distribution, sources, fluxes and burial of organic carbon. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, New York, pp 177–193

    Google Scholar 

  155. Moore RM, Lowings MG, Tan TC (1983) Geochemical profiles in the central Arctic Ocean: their relation to freezing and shallow circulation. J Geophys Res 88:2667–2674

    CAS  Google Scholar 

  156. Guo L, Santschi PH (2000) Sedimentary source of old high molecular weight dissolved organic carbon from the ocean margin benthic nepheloid layer. Geochim Cosmochim Acta 64:651–660

    CAS  Google Scholar 

  157. Hamilton P, Lugo-Fernandez A (2001) Observations of high speed deep currents in the northern Gulf of Mexico. Geophys Res Lett 28:2867–2870

    Google Scholar 

  158. Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22:709–722

    Google Scholar 

  159. Gordon HR, Brown OB, Jacobs MM (1975) Computed relationships between the inherent and apparent optical properties of a flat Homogeneous Ocean. Appl Optics 14(2):417–427

    CAS  Google Scholar 

  160. Gordon HR, Clark DK, Mueller JL, Hovis WA (1980) Phytoplankton pigments from Nimbus-7 coastal zone color scanner: comparison with surface measurements. Science 210:63–66

    CAS  Google Scholar 

  161. Gordon HR, Clark DK, Brown JW, Brown OB, Evans RH, Brinks WW (1983) Phytoplankton pigment concentration in the Middle Atlantic Bight; comparison of ship determination and CZCS estimates. Appl Optics 22:20–35

    CAS  Google Scholar 

  162. Smith RC, Baker KS (1982) Oceanic chlorophyll concentration as determined by satellite (Nimbus-7 coastal zone color scanner). Mar Biol 66:269–279

    Google Scholar 

  163. IOCCG (2000) Remote sensing of the ocean colour in the coastal and other optically complex waters. In: Sathyendranath S (ed) Reports of the international ocean-colour coordinating group, No. 3. IOCCG, Dartmouth, 140 pp

    Google Scholar 

  164. Garver SA, Siegel DA (1997) Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation, 1. Time series from the Sargasso Sea. J Geophys Res 102:18607–18625

    CAS  Google Scholar 

  165. Carder KL, Chen FR, Lee ZP, Hawes SK, Kamykowski D (1999) Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate depletion temperatures. J Geophys Res 104:5403–5421

    Google Scholar 

  166. Maritorena S, Siegel DA, Peterson AR (2002) Optimization of a semi- analytical ocean color model for global-scale applications. Appl Optics 41:2705–2714

    Google Scholar 

  167. Siegel DA, Maritorena S, Nelson NB, Hansell DA, Lorenzi-Kayser M (2002) Global distribution and dynamics of colored dissolved and detrital organic materials. J Geophys Res 107:3228. doi:10.1029/2001JC000965

    Article  CAS  Google Scholar 

  168. Siegel DA, Maritorena S, Nelson NB, Behrenfeld MJ, McClain CR (2005) Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere. Geophys Res Lett 32, L20605. doi:10.1029/2005GL024310

    Article  CAS  Google Scholar 

  169. Siegel DA, Maritorena S, Nelson NB, Behrenfeld MJ (2005) Independence and interdependencies among global ocean color properties: reassessing the bio-optical assumption. J Geophys Res 110, C07011. doi:10.1029/2004JC002527

    Article  Google Scholar 

  170. Kahru M, Mitchell BG (1999) Empirical chlorophyll algorithm and preliminary SeaWiFS validation for the California Current. Int J Remote Sens 20:3421–3429

    Google Scholar 

  171. Kahru M, Mitchell BG (2001) Seasonal and non-seasonal variability of satellite derived chlorophyll and colored dissolved organic matter concentration in the California Current. J Geophys Res 106:2517–2529

    CAS  Google Scholar 

  172. D’Sa EJ, Miller RL (2003) Bio-optical properties in waters influenced by the Mississippi River during low flow conditions. Remote Sens Environ 84:538–549

    Google Scholar 

  173. Johannessen SC, Miller WL, Cullen JJ (2003) Calculation of UV attenuation and colored dissolved organic matter absorption spectra from measurements of ocean color. J Geophys Res 108:3301. doi:10.1029/2000JC000514

    Article  Google Scholar 

  174. Fichot CG, Sathyendranath S, Miller WL (2008) SeaUV and SeaUV(C): algorithms for the retrieval of UV/visible diffuse attenuation coefficients from ocean color. Remote Sens Environ 112(4):1584–1602

    Google Scholar 

  175. Mannino A, Russ ME, Hooker SB (2008) Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight. J Geophys Res 113, C07051. doi:10.1029/2007JC004493

  176. Doerffer R, Schiller H (2007) The MERIS case 2 water algorithm. Int J Remote Sens 28:517–535

    Google Scholar 

  177. Kowalczuk P (1999) Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea. J Geophys Res 104:30047–30058

    Google Scholar 

  178. Warnock RE, Gieskes WWC, van Laar S (1999) Regional and seasonal differences in light absorption by yellow substance in the Southern Bight of the North Sea. J Sea Res 42:169–178

    Google Scholar 

  179. Ioannou I, Gilerson A, Gross B, Moshary F, Ahmed S (2013) Deriving ocean color products using neural networks. Remote Sens Environ 134:78–91

    Google Scholar 

  180. D’Alimonte D, Zibordi G, Berthon J-F, Canuti E, Kajiyama T (2012) Performance and applicability of bio-optical algorithms in different European seas. Remote Sens Environ 124:402–412

    Google Scholar 

  181. Hessen DO, Carroll JL, Kjeldstad B, Korosov AA, Pettersson LH, Pozdnyakov D, Sorensen K (2010) Input of organic carbon as determinant of nutrient fluxes, light climate and productivity in the Ob and Yenisey estuaries. Estuar Coast Shelf Sci 88:53–62

    CAS  Google Scholar 

  182. Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ, Shiklomanov IA, Shiklomanov AI, Lammers RB, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    CAS  Google Scholar 

  183. Kowalczuk P, Darecki M, Zabłocka M, Górecka I (2010) Validation of empirical and semi-analytical remote sensing algorithms for estimating absorption by coloured dissolved organic matter in the Baltic Sea from SeaWiFS and MODIS imagery. Oceanol 52:171–196

    Google Scholar 

  184. D’Sa EJ, Miller RL, Del Castillo C (2006) Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front. Appl Optics 45(28):7410–7428

    Google Scholar 

  185. Odriozola AL, Varela R, Hu C, Astor Y, Lorenzoni L, Muller-Karger FE (2007) On the absorption of light in the Orinoco River plume. Cont Shelf Res 27:1447–1464

    Google Scholar 

  186. Morel A, Gentili B (2009) A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sens Environ 113:998–1011

    Google Scholar 

  187. Zhu W, Yu Q, Tian YQ, Chen RF, Gardner GB (2011) Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above surface hyperspectral remote sensing. J Geophys Res 116, C02011. doi:10.1029/2010JC006523

    Article  CAS  Google Scholar 

  188. Matsuoka A, Hooker SB, Bricaud A, Gentili B, Babin M (2013) Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space. Biogeosciences 10:917–927

    Google Scholar 

  189. Shimada K, Carmack EC, Hatakeyama K, Takizawa T (2001) Varieties of shallow temperature maximum waters in the western Canadian Basin of the Arctic Ocean. Geophys Res Lett 28:3441–3444. doi:10.1029/2001GL013168

    Article  Google Scholar 

  190. Belkin IM, Gordon AL (1996) Southern Ocean fronts from the Greenwich meridian to Tasmania. J Geophys Res 101:3675–3696

    Google Scholar 

  191. Rintoul SR, Trull TW (2001) Seasonal evolution of the mixed layer in the Subantarctic Zone south of Australia. J Geophys Res 106:31447–31462

    Google Scholar 

  192. Sokolov S, Rintoul SR (2002) Structure of Southern Ocean fronts at 140° E. J Mar Syst 37:151–184

    Google Scholar 

  193. Arrigo KR, Robinson DH, Worthen DL, Schieber B, Lizotte MP (1998) Bio-optical properties of the southwestern Ross Sea. J Geophys Res 193:21683–21695

    Google Scholar 

  194. Balch WM, Gordon HR, Bowler BC, Drapeau DT, Booth ES (2005) Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data. J Geophys Res. doi:10.1029/2004JC-002560

    Article  Google Scholar 

  195. Bricaud A, Morel A (1983) Optical efficiency factors of some phytoplankters. Limnol Oceanogr 28:816–832

    Google Scholar 

  196. Johnsen G, Samset O, Granskog L, Sakshaug E (1994) In vivo absorption characteristics in 10 classes of bloom forming phytoplankton Taxonomic characteristics and response to photoadaptation by means of discriminant and HPLC analysis. Mar Ecol Prog Ser 105:149–157

    Google Scholar 

  197. Diersen HM (2010) Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. PNAS 107:17073–17078

    Google Scholar 

  198. Clementson LA, Parslow JS, Turnbull AR, McKenzie DC, Rathbone CE (2001) Optical properties of waters in the Australian sector of the Southern Ocean. J Geophys Res 106:31611–31625

    Google Scholar 

Download references

Acknowledgements

We thank the book editor, I. Belkin, for the invitation to prepare this chapter on CDOM in frontal zones. Céline Guéguen was supported by the Canada Research Chair program and by the Natural Sciences and Engineering Research Council of Canada. Piotr Kowalczuk was supported by the research grant no 546/N-AMT-CDOM/2009/0 entitled: “Sources and transformation of the Chromophoric Dissolved Organic Matter along the Atlantic Meridional Transect”. The assessment with use of the measurements of the fluorescence Excitation–Emission Matrix spectra. AMT-CDOM. Partial support for PK was also provided by the project Satellite Monitoring of the Baltic Sea Environment – SatBałtyk, co-founded by the European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09. Comments by three anonymous reviewers have greatly helped in improving the manuscript. We thank Paul Dainard and Tyler Jamieson for comments on earlier drafts of this chapter. This study is a contribution to the international IMBER project and was supported by the UK Natural Environment Research Council National Capability funding to Plymouth Marine Laboratory and the National Oceanography Centre, Southampton. This is contribution number 241 of the AMT program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Guéguen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guéguen, C., Kowalczuk, P. (2013). Colored Dissolved Organic Matter in Frontal Zones. In: Belkin, I.M. (eds) Chemical Oceanography of Frontal Zones. The Handbook of Environmental Chemistry, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2013_244

Download citation

Publish with us

Policies and ethics