Skip to main content

Groundwater Contamination: Environmental Issues and Case Studies in Sardinia (Italy)

  • Chapter
  • First Online:
Book cover Threats to the Quality of Groundwater Resources

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 40))

Abstract

In this study, the arsenic (As), cadmium (Cd), lead (Pb), and zinc (Zn) contamination has been evaluated in the groundwater of Sardinia (Italy). Contamination by such chemical species is among the most relevant risks for many populations, thus giving general interest to the case studies presented in this chapter. A brief introduction about the European legislative framework is given, followed by a description of the analytical methods used and a discussion of the results. Two areas were selected as case studies: the Osilo area, devoted to geogenic degradation, and the Iglesiente–Fluminese mining district mainly affected by anthropogenic contamination. The geochemical controls on the natural baselines of As, Cd, Pb, and Zn are generally related to natural sources, mostly derived from water–rock interaction processes in areas of known mineral occurrences. In fact, median concentrations of the investigated elements in the mineralized areas are much higher than those of the corresponding median regional values and sometimes exceed the Italian limits for drinking water. In the Iglesiente–Fluminese mining district very high concentrations of Cd, Pb, and Zn were measured in groundwater that circulates in areas affected by past mining activities.

The results of this study clearly show that the understanding of the trace metal pollution trends, and the distinction of the anthropogenic impacts on the aquifer systems, is essential for evaluating the natural baseline of contaminants as well as for distinguishing the relevant processes that influence their chemical characteristics. Such information, together with the geological features of a region and/or subregion, should be taken into account prior to defining regulatory limits of contaminants in groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EC:

European community

EU:

European union

GURI:

Gazzetta ufficiale della Repubblica Italiana

ICP-MS:

Inductively coupled plasma mass spectrometry

ICP-OES:

Inductively coupled plasma optical emission spectrometry

RAS:

Regione autonoma della Sardegna

TDS:

Total dissolved solids

WHO:

World Health Organization

References

  1. Edmunds WM, Shand P, Hart P, Ward RS (2003) The natural (baseline) quality of groundwater: a UK pilot study. Sci Total Environ 310:25–35

    Article  CAS  Google Scholar 

  2. European Communities (EU) (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of European Communities, Luxemburg

    Google Scholar 

  3. Watts RJ, Teel AL (2003) Groundwater and air contamination: risk, toxicity, exposure assessment, policy, and regulation. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 9.01. Elsevier–Pergamon, Oxford, pp 1–16

    Chapter  Google Scholar 

  4. World Health Organization (WHO) (2006) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva, ISBN: 92 4 154696 4 (Annex 4)

    Google Scholar 

  5. World Health Organization (WHO) (2012) Agents classified by the IARC monographs. World Health Organization, International Agency for Research on Cancer. http://monographs.iarc.fr/ENG/Classification/ Accessed 6 March 2013

  6. Gazzetta Ufficiale della Repubblica Italiana (GURI) (2009) Decreto legislativo 16 marzo 2009. n. 30: Attuazione della direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall’inquinamento e dal deterioramento. Gazzetta Ufficiale della Repubblica Italiana n. 79 del 4-4-2009, Roma (in Italian)

    Google Scholar 

  7. Plumlee GS, Logsdon MJ (1998a) Reviews in economic geology. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues. Society of Economic Geologist, Inc, pp 29–64

    Google Scholar 

  8. Plumlee GS, Logsdon MJ (1998b) Reviews in economic geology. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits. Part B: case studies and research topics. Society of Economic Geologist, Inc, pp 373–581

    Google Scholar 

  9. Cidu R, Dadea C, Desogus P, Fanfani L, Manca PP, Orrù G (2012) Assessment of environmental hazards at abandoned mining sites: a case study in Sardinia, Italy. Appl Geochem 27:1795–1806. doi:10.1016/j.apgeochem.2012.02.014

    Article  CAS  Google Scholar 

  10. Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346:1–16

    Article  CAS  Google Scholar 

  11. Regione Autonoma della Sardegna (RAS) (1998) Nuovo studio dell’idrologia superficiale della Sardegna. Regione Autonoma della Sardegna, Ente Autonomo del Flumendosa (Scientific Responsible: Carlo Cao Pinna), Cagliari (in Italian)

    Google Scholar 

  12. Regione Autonoma della Sardegna (RAS) (2003) Piano di Tutela Acque (Regional plan for water protection). Regione Autonoma della Sardegna, Cagliari (in Italian)

    Google Scholar 

  13. Caboi et al (2001) Hydrogeochemistry in the Flumendosa river basin (Sardinia, Italy). In: Cidu R (ed) Proceeding of the 10th international symposium on water rock interaction – WRI-10, Villasimius, Italy, vol 1. 10–15 June 2001, A.A. Balkema, Rotterdam, pp 465–468

    Google Scholar 

  14. Biddau R, Dadea C, Fanfani L, Lorrai M, Rundeddu L (2002) Caratterizzazione delle acque nell’areale del cervo sardo di Montevecchio-Ingurtosu-Piscinas (Sardegna sud-occidentale). Dipartimenti di Scienze della Terra dell’Universita’ degli Studi di Cagliari. Internal Report, p 55

    Google Scholar 

  15. Biddau R, Cidu R, Frau F (2002) Rare earth elements in waters from the albitite-bearing granodiorites of central Sardinia, Italy. Chem Geol 182:1–14

    Article  CAS  Google Scholar 

  16. Cidu R, Mulas AD (2003) Geochemical features of thermal waters at Benetutti (Sardinia). Rend Sem Fac Scienze Università di Cagliari 73(1):39–53

    Google Scholar 

  17. Lorrai M (2004) Geochimica dell’uranio nelle acque sotterranee della zona di Sarrala (Sardegna). Tesi di Dottorato inedita, Università degli Studi di Cagliari, Dipartimento di Scienze della Terra (in Italian)

    Google Scholar 

  18. Biddau R, Cidu R (2005) Hydrogeochemical baseline studies prior to gold mining: a case study in Sardinia (Italy). J Geoch Explor 86:61–85

    Article  CAS  Google Scholar 

  19. Cidu R, Caboi R, Biddau R, Petrini R, Slejko F, Flora O, Stenni B, Aiuppa A, Parello F, Valenza M (2008) Caratterizzazione idrogeochimica ed isotopica e valutazione della qualità delle acque superficiali e sotterranee campionate nel foglio 549 Muravera. In: Ottonello G (ed) GEOBASI – Il foglio IGMI No. 549 Muravera. Pacini Ricerca Editore, pp 149–183 (in Italian)

    Google Scholar 

  20. Cidu R, Biddau R, Fanfani L (2009) Impact of past mining activity on the quality of groundwater in SW Sardinia (Italy). J Geochem Explor 100:125–132

    Article  CAS  Google Scholar 

  21. Pichiri F (2007) Valutazione della qualità delle acque nell’area di Nurri-Orroli. Unpublished Master Thesis, Università degli Studi di Cagliari, Dipartimento di Scienze della Terra, AA 2006–2007 (in Italian)

    Google Scholar 

  22. Melis F (2010) Valutazione della qualità di acque di sorgente in Gallura. Unpublished Master Thesis, Università degli Studi di Cagliari, Dipartimento di Scienze della Terra, AA 2009–2010 (in Italian)

    Google Scholar 

  23. Ibba MF (2011) Studio per la valutazione del potenziale geotermico dell’ Anglona (Sardegna Settentrionale). Unpublished Master Thesis, Università degli Studi di Cagliari, Dipartimento di Scienze della Terra, AA 2010–2011 (in Italian)

    Google Scholar 

  24. Regione Autonoma della Sardegna (RAS) (2010) Caratterizzazione, obiettivi e monitoraggio dei corpi idrici sotterranei della Sardegna, p 133 (in Italian)

    Google Scholar 

  25. Cidu R (1996) Comparison of ICP-MS and ICP-OES in the determination of trace elements in water. Atom Spectrosc 17:155–162

    CAS  Google Scholar 

  26. De Vivo B, Boni M, Marcello A, Di Bonito M, Russo A (1997) Baseline geochemical mapping of Sardinia, Italy. J Geochem Explor 60:77–90

    Article  Google Scholar 

  27. De Vivo B, Boni M, Costabile S (1998) Formational anomalies versus mining pollution: geochemical risk maps of Sardinia, Italy. J Geochem Explor 64:321–337

    Article  Google Scholar 

  28. Rayner J, Manis D (2001) Gold in Sardinia: recent developments in exploration and exploitation. In: Cidu J (ed) Proceedings of the 10th international symposium on water–rock interaction. Villasimius, Italy, pp 741–744

    Google Scholar 

  29. Cidu R, Da Pelo S, Frau F (2011) Impact of gold mining on the aquatic system: a case study at Furtei (Sardinia, Italy). In: Proceedings of the IMWA congress, 4–11 September 2011, Aachen, pp 575–579

    Google Scholar 

  30. Cidu R, Da Pelo S, Frau F (2013) Legacy of cyanide and ARD at a low-scale gold mine (Furtei, Italy). Mine Water Environ 32:74–83

    Article  CAS  Google Scholar 

  31. Biddau R (2012) Approccio geochimico-statistico per la valutazione del background geochimico nelle acque sotterranee. Applicazioni agli acquiferi della Sardegna. FSE 2007–2013, L.R.7/2007, p 123 (in Italian). Regione Autonoma della Sardegna, Cagliari (in Italian)

    Google Scholar 

  32. GURI, Gazzetta Ufficiale della Repubblica Italiana (2006) Decreto legislativo 3 aprile 2006. n. 152 Norme in materia ambientale. Gazzetta Ufficiale della Repubblica Italiana n. 88 del 14-4-2006, suppl. ord. n. 96, Roma (in Italian)

    Google Scholar 

  33. Soriga A (1993) Aspetti minerogenetici del sistema idrotermale di Osilo-S. Martino. Universita’ degli Studi di Cagliari, corso di laurea in scienze geologiche. Unpublished Thesis, Department of Earth Sciences University of Cagliari, Italy (in Italian)

    Google Scholar 

  34. Simeone R, Simmons SF (1999) Mineralogical and fluid inclusion studies of low-sulfidation epithermal veins at Osilo (Sardinia). Italy Miner Depos 34:705–717

    Article  CAS  Google Scholar 

  35. Dettori B, Zanzari AR, Zuddas P (1982) Le acque termali della Sardegna. Ricerche Geotermiche in Sardegna, CNR-PFE-RF 10 Pisa, pp 56–86 (in Italian)

    Google Scholar 

  36. Caboi R, Cidu R, Fanfani L, Zuddas P, Zanzari AR (1993) Geochemistry of the high-pCO2 waters in Logudoro, Sardinia. Italy Appl Geochem 8:153–160

    Article  CAS  Google Scholar 

  37. Cidu R, Fanfani L, Shand P, Edmunds WM, Van’t Dack E, Gijbels R (1995) Hydrogeochemical exploration for gold in the Osilo area, Sardinia. Italy Appl Geochem 10:517–530

    Article  CAS  Google Scholar 

  38. Drits VA, Sakharov BA, Al S, Manceau A (1993) Structural model for ferrihydrite. Clay Miner 28:185–207

    Article  CAS  Google Scholar 

  39. Sparks DL (2000) New frontiers in elucidating the kinetics and mechanisms of metal and oxyanion sorption at the soil mineral/water interface. J Plant Nutr Soil Sci 163:563–570

    Article  CAS  Google Scholar 

  40. Carmignani L, Oggiano G, Barca S, Conti P, Eltrudis A, Funedda A, Pasci S, Salvatori I (1997) Memorie descrittive della Carta Geologica D’Italia. Geologia della Sardegna (Note illustrative della Carta Geologica della Sardegna a scala 1:200.000). Istituto Poligrafico e Zecca dello Stato, Roma, p 272 (in Italian)

    Google Scholar 

  41. Pillola GL, Leone F, Loi A (1998) The Cambrian and Early Ordovician of SW Sardinia. Giornale Geologia 60:25–38

    Google Scholar 

  42. Boni M, Costabile S, De Vivo B, Gasparrini M (1999) Potential environmental hazard in the mining district of southern Iglesiente (SW Sardinia, Italy). J Geochem Explor 67:417–430

    Article  CAS  Google Scholar 

  43. Boni M (1994) Ores in southwestern Sardinia. In: Bechstädt T, Boni M (eds) Sedimentological, stratigraphical and ore deposits field guide of the autochthonous Cambro–Ordovician of southwestern Sardinia. Mem Descr Carta Geol Ital Serv Geol Naz 48:155–184

    Google Scholar 

  44. Cidu R, Biagini C, Fanfani L, La Ruffa G, Marras I (2001) Mine closure at Monteponi (Italy): effects of the cessation of dewatering on the quality of shallow groundwater. Appl Geochem 16:489–502

    Article  CAS  Google Scholar 

  45. Cidu R, Di Palma M, Medas D (2007) The Fluminese mining district (SW Sardinia): impact of the past lead–zinc exploitation on aquatic environment. In: Cidu R, Frau F (eds) Proceedings of IMWA symposium 2007: water in mining environments, 27–31 May 2007, Mako Edizioni, Cagliari, pp 47–51

    Google Scholar 

  46. Kabata-Pendias A, Pendias H (2000) Trace elements in soils and plant, 3rd edn. CRC, London

    Book  Google Scholar 

  47. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  48. Cidu R (2011) Mobility of aqueous contaminants at abandoned mining sites: insights from case studies in Sardinia with implications for remediation. Environ Earth Sci 64:503–512. doi:10.1007/s12665-010-0874

    Article  CAS  Google Scholar 

  49. Monteiro LVS, Bettencourt JS, Bello RMS, Juliani C, Tassinari CCG, Oliveira TF, Pérez-Aguillar A (2003) Sulfur, carbon, oxygen and strontium isotopic evidences for the genesis of the hydrothermal zinc non-sulfide and sulfide mineralizations in the Vazante, Ambrosia and Fagundes deposits, MG, Brazil. Short Papers IV South American symposium on isotope geology, 24–27 August 2003, Salvador, pp 748–751

    Google Scholar 

  50. Brookins DG (1988) Eh–pH diagrams for geochemistry. Springer, Berlin

    Book  Google Scholar 

  51. Regione Autonoma della Sardegna (RAS) (2013) Carta geologica di base della Sardegna in scala 1:25000. http://www.sardegnageoportale.it/argomenti/cartageologica.html

Download references

Acknowledgements

This work was supported by the Italian MIUR (PRIN 2002 responsible L. Fanfani; PRIN 2004 and 2009 responsible R. Cidu), the Regione Autonoma della Sardegna (project KNOW L.R.7/2010 R. Cidu and L.R.7/2007 R. Biddau), and the Fondazione Banco di Sardegna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Cidu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biddau, R., Cidu, R. (2013). Groundwater Contamination: Environmental Issues and Case Studies in Sardinia (Italy). In: Scozzari, A., Dotsika, E. (eds) Threats to the Quality of Groundwater Resources. The Handbook of Environmental Chemistry, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2013_242

Download citation

Publish with us

Policies and ethics