Skip to main content

Threats to the Quality of Water Resources by Geological CO2 Storage: Hydrogeochemical and Other Methods of Investigation: A Review

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 40))

Abstract

In the last decades, geological storage of CO2 is under discussion, in order to reduce emissions of greenhouse gases to the atmosphere, as a contribution to the mitigation of climate change. Deep saline aquifers in sedimentary basins are being considered as the most prominent locations for CO2 storage and sequestration. This chapter provides an overview of recent research regarding CO2 storage with focus on hydrogeochemical methods of investigation, gas–water–rock interactions and monitoring methods as well as potential risks to freshwater resources. The main trapping mechanisms for CO2 in deep geological formations are: (1) hydrodynamic trapping as a supercritical fluid below the caprock, (2) residual trapping within the pores of reservoir rocks, (3) solution trapping as aqueous species dissolved in formation water, and (4) mineral trapping by precipitation of carbonate minerals. However, risks for freshwater resources can arise due to low pH values. As a consequence, the dissolution of minerals is causing high concentrations in trace elements that are potentially dangerous for human health. Another aspect is ascendant saline water which could intrude into shallower fresh water aquifers due to the displacement caused by injection pressure. Hydrogeochemical monitoring methods are recommended to detect possible CO2 leakage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BTEX:

Benzene, toluene, ethylbenzene, and xylenes

CCS:

Carbon dioxide capture and storage

DIC, DOC:

Dissolved inorganic and organic carbon

EC:

Electrical conductivity

EOR:

Enhanced oil recovery

GWB:

The geochemist’s workbench

PFT:

Perfluorocarbon tracer gases

TDS:

Total dissolved solids

U.S. EPA:

U.S. environmental protection agency

WHO:

World health organization

References

  1. Apps JA, Zhang Y, Zheng L, Xu T, Birkholzer JT (2009) Identification of thermodynamic controls defining the concentrations of hazardous elements in potable ground waters and the potential impact of increasing carbon dioxide partial pressure. Energy Procedia 1:1917–1924

    Article  CAS  Google Scholar 

  2. Apps JA, Zheng L, Zhang Y, Xu T, Birkholzer JT (2010) Evaluation of potential changes in groundwater quality in response to CO2 leakage from deep geologic storage. Trans Porous Media 82(1):215–246

    Article  CAS  Google Scholar 

  3. Audigane P, Chiaberge C, Lions J, Humez P (2009) Modeling of CO2 leakage through an abandoned well from a deep saline aquifer to fresh groundwater. In: Proceedings of TOUGH symposium 2009, Lawrence Berkeley National Laboratory, Berkeley, p 8

    Google Scholar 

  4. Bachu S, Celia MA (2009) Assessing the potential for CO2 leakage, particularly through wells, from geological storage sites. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. AGU Monograph. AGU, Washington, pp 203–216

    Chapter  Google Scholar 

  5. Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energ Convers Manage 35(4):269–279

    Article  CAS  Google Scholar 

  6. Birkholzer JT, Apps J, Zheng L, Zhang Y, Xu T, Tsang C-F (2008) Research project on CO2 geological storage and groundwater resources, quality effects caused by CO2 Intrusion into Shallow Groundwater. Technical Report. Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, p 352

    Google Scholar 

  7. Birkholzer JT, Zhou Q, Zhang K, Jordan P, Rutqvist J, Tsang C-F (2008) Research project on CO2 geological storage and groundwater resources: large-scale hydrogeological evaluation and impact on groundwater systems, Annual report October 1, 2007 to September 30, 2008. Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  8. Birkholzer JT, Zheng L, Spycher N, Varadharajan C, Nico PS (2010) Groundwater quality changes in response to CO2 leakage from deep geological storage. Geol Soc Am Abstr 42(5):45

    Google Scholar 

  9. Holloway S, Savage D (1993) The potential for aquifer disposal of carbon dioxide in the UK. Energ Convers Manage 34(9–11):925–932

    Article  CAS  Google Scholar 

  10. Jaffé PR, Wang S (2003): Potential effect of CO2 releases from deep reservoirs on the quality of fresh-water aquifers. In: Gale J, Kaya Y (eds) Proceedings of the 6th international conference on Greenhouse Gas Control Technologies, vol. 2, 1–4 October 2002, Kyoto, Japan. Greenhouse Gas Control Technologies, pp 1657–1660

    Google Scholar 

  11. Keating EH, Fessenden J, Kanjorski N, Koning DJ, Pawar R (2010) The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration. Environ Earth Sci 60(3):521–536

    Article  CAS  Google Scholar 

  12. Kharaka YK, Thordsen JJ, Hovorka SD, Nance HS, Cole DR, Phelps TJ, Knauss KG (2009) Potential environmental issues of CO2 storage in deep saline aquifers: geochemical results from the Frio-I brine pilot test, Texas, USA. Appl Geochem 24:1106–1112

    Article  CAS  Google Scholar 

  13. Kharaka YK, Thordsen JJ, Kakouros E, Ambats G, Herkelrath WN, Beers SR, Birkholzer JT, Apps JA, Spycher NF, Zheng L, Trautz RC, Rauch HW, Gullickson KS (2010) Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana. Environ Earth Sci 60:273–284

    Article  CAS  Google Scholar 

  14. Kolak JJ, Burruss RC (2006) Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds. Energy Fuel 20:566–574

    Article  CAS  Google Scholar 

  15. Labus K, Bujok P (2011) CO2 Mineral sequestration mechanisms and capacity of saline aquifers of the upper Silesian coal basin (Central Europe) – modeling and experimental verification. Energy 36:4974–4982

    Article  CAS  Google Scholar 

  16. Lewicki JL, Birkholzer JT, Tsang C-F (2007) Natural and industrial analogues for leakage of CO2 from storage reservoirs: identification of features, events, and processes and lessons learned. Environ Geol 52:457–467

    Article  CAS  Google Scholar 

  17. Nicot J-P, Hovorka SD, Choi J-W (2009) Investigation of water displacement following large CO2 sequestration operations. Energy Procedia 1:4411–4418

    Article  CAS  Google Scholar 

  18. Person M, Banerjee A, Rupp J, Medina C, Lichtner P, Gable C, Pawar R, Celia M, McIntosh J, Bense V (2010) Assessment of basin-scale hydrologic impacts of CO2 sequestration, Illinois basin. Int J Greenhouse Gas Contrl 4:840–854

    Article  CAS  Google Scholar 

  19. Pruess K (2008) On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir. Environ Geol 54:1677–1686

    Article  CAS  Google Scholar 

  20. Smyth RC, Hovorka SD, Lu J, Romanak KD, Partin JW, Wong C, Yang C (2009) Assessing risk to fresh water resources from long term CO2 injection: laboratory and field studies. Energy Procedia 1:1957–1964

    Article  CAS  Google Scholar 

  21. Van der Meer LGH (1992) Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands. Energ Convers Manage 33(5–8):611–618

    Article  Google Scholar 

  22. Würdemann H, Möller F, Kühn M, Heidug W, Christensen NP, Borm G, Schilling FR, CO2SINK Group (2010) CO2SINK – From site characterisation and risk assessment to monitoring and verification: One year of operational experience with the field laboratory for CO2 storage at Ketzin, Germany. Int J Greenhouse Gas Contrl 4:938–951

    Article  Google Scholar 

  23. Yamamoto H, Zhang K, Karasaki K, Marui A, Uehara H, Nishikawa N (2009) Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow. Int J Greenhouse Gas Contrl 3:586–599

    Article  CAS  Google Scholar 

  24. Zheng L, Apps JA, Zhang Y, Xu T, Birkholzer JT (2009) On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage. Chem Geol 268:281–297

    Article  CAS  Google Scholar 

  25. Zheng L, Apps JA, Zhang Y, Xu T, Birkholzer JT (2009) Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage. Energy Procedia 1:1887–1894

    Article  CAS  Google Scholar 

  26. Zheng L, Apps JA, Spycher N, Birkholzer JT, Kharaka Y, Thordsen J, Kakouros E, Trautz R (2009) Geochemical modeling of changes in shallow groundwater chemistry observed during the MSU-ZERT CO2 injection experiment. In: Proceeding of the TOUGH Symposium, Lawrence Berkeley National Laboratory, Berkeley, p 10

    Google Scholar 

  27. Lemieux J-M (2011) Review: the potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeol J 19:757–778

    Article  Google Scholar 

  28. IPCC (2005): IPCC special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 442

    Google Scholar 

  29. Arnórsson S, Bjarnason JÖ, Giroud N, Gunnarsson I, Stefánsson A (2006) Sampling and analysis of geothermal fluids. Geofluids 6:203–216

    Google Scholar 

  30. Davis SN, de Wiest RJM (1967) Hydrogeology. Wiley, New York, p 463

    Google Scholar 

  31. Wurl J (1995) Die geologischen, hydraulischen und hydrochemischen Verhältnisse in den südwestlichen Stadtbezirken von Berlin. Berliner Geowiss Abh, A 172:164S

    Google Scholar 

  32. Tabachnick BG, Fidell LS (2006) Using multivariate statistics, 5th edn. Addison-Wesley, New York

    Google Scholar 

  33. Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Trans Am Geophys Union 25(6):914–928

    Article  Google Scholar 

  34. Durov SA (1948) Natural waters and graphic representation of their composition. Dokl Akad Nauk SSSR 59:87–90

    CAS  Google Scholar 

  35. Thomas L (1994) Hydrogeochemische Untersuchungen an Ölfeldwässern aus NW-Deutschland und dem Oberrheingraben und ihre Modellierung unter dem Aspekt der Entwicklung eines Expertensystems für Fluid-Rock-Interactions (XPS FROCKI). Diss. FU Berlin, 166 S. (1993); Berliner Geowiss Abh, A, 165 (1994): 167 S

    Google Scholar 

  36. Rittenhouse G (1967) Bromine in oilfield waters and its use in determining possibilities of origin of these waters. Am Assoc Petrol Geol Bull 51(12):2430–2440, Houston, Texas

    Google Scholar 

  37. Fritz P, Fontes JC (1980) Handbook of environmental isotope geochemistry, vol 1. Elsevier, Amsterdam, p 545

    Google Scholar 

  38. Fritz P, Fontes JC (1986) Handbook of environmental isotope geochemistry, vol 2. Elsevier, Amsterdam

    Google Scholar 

  39. Hoefs J (2009) Stable isotope geochemistry, 6th edn. Springer, Berlin, p 285

    Google Scholar 

  40. Pearson FJ, Balderer W, Loosli HH, Lehmann BE, Matter A, Peters TJ, Schmassmann H, Gautschi A (1991) Applied isotope hydrogeology – a case study in Northern Switzerland. Technical Report 88-01, Nagra, p 439, Baden/Switzerland

    Google Scholar 

  41. Parkhurst DL, Appelo CAJ (1999) User’s guide to PhreeqC (version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water Res Invest Rep 99(4259):4312

    Google Scholar 

  42. Truesdell AH, Jones BF (1974) WATEQ, a computer program for calculating chemical equilibria of natural waters. J Res USGS 2:233–248

    CAS  Google Scholar 

  43. Ball JW, Nordstrom DK (2001) User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. USGS, open-File Report 91-183 (1991, revised 2001), p 188

    Google Scholar 

  44. Wolery TJ (1992) EQ3/6, a software package for geochemical modeling of aqueous systems: Package overview and installation guide (Version 7.0). UCRL-MA-110662 PT I, Lawrence Livermore National Laboratory, p 66

    Google Scholar 

  45. Kharaka YK, Gunter WD, Aggarwal PK, Perkins EH, DeBraal JD (1988) SOLMINEQ.88: a computer program for geochemical modeling of water-rock interactions. U.S. Geological Survey, Water-Resources Investigations Report, 88-4227, p 420

    Google Scholar 

  46. Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH Version 2.0.- U.S. Geol. Survey, Water Resources Investigations Report 94-4169, p 130

    Google Scholar 

  47. Bethke CM (2010) Geochemical and biogeochemical reaction modeling, 2nd edn. Cambridge University Press, Cambridge, p 564

    Google Scholar 

  48. Bethke CM, Yeakel S (2012) The geochemist’s workbench – release 9.0. Reference manual – aqueous solutions. LLC, Champaign, p 409

    Google Scholar 

  49. Pham VTH, Lu P, Aagaard P, Zhu C, Hellevang H (2011) On the potential of CO2-water-rock-interactions for CO2 storage using a modified kinetic model. Int J Greenhouse Gas Contrl 5:1002–1015

    Article  CAS  Google Scholar 

  50. Wang S, Jaffe PR (2004) Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations; effect of dissolution kinetics. Energ Convers Manage 45:2833–2848

    Article  CAS  Google Scholar 

  51. King MB, Mubarak A, Kim JD, Bott TR (1992) The mutual solubilities of water with supercritical and liquid carbon dioxide. J Supercritical Fluid 5:296–302

    Article  CAS  Google Scholar 

  52. Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int J Greenhouse Gas Contrl 4:73–89

    Article  CAS  Google Scholar 

  53. Birkholzer JT, Zhou Q, Tsang C-F (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenhouse Gas Contrl 3:181–194

    Article  CAS  Google Scholar 

  54. Pruess K, Oldenburg CM, Moridis G (1999) TOUGH2 user’s guide, version 2.0.-Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  55. Pruess K (2005) ECO2N: a TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. Technical report. LBNL-57952, Lawrence Berkeley National Laboratory, Berkeley, p 76

    Google Scholar 

  56. Benezeth P, Palmer DA, Anovitz LM, Horita J (2007) Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: implications for mineral trapping of CO2. Geochim Cosmochim Acta 71:4438–4455

    Article  CAS  Google Scholar 

  57. Xu T, Apps JA, Pruess K (2005) Mineral sequestration of carbon dioxide in a sandstone-shale system. Chem Geol 217:295–318

    Article  CAS  Google Scholar 

  58. Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu T (2007) Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, North Sea. Am J Sci 307(7):974–1008

    Article  CAS  Google Scholar 

  59. Baines SJ, Worden RH (eds) (2004) Geological storage of carbon dioxide. Geol Soc London, Special Publications 233:1–6

    Google Scholar 

  60. Bergmann P, Yang C, Lüth S, Juhlin C, Cosma C (2011) Time-lapse processing of 2D seismic profiles with testing of static correction methods at the CO2 injection site Ketzin (Germany). J Appl Geophys 75:124–139

    Article  Google Scholar 

  61. Cantucci B, Montegrossi G, Vaselli O, Tassi F, Quattrocchi F, Perkins EH (2009) Geochemical modeling of CO2 storage in deep reservoirs: the Weyburn project (Canada) case study. Chem Geol 265:181–197

    Article  CAS  Google Scholar 

  62. Carroll S, Hao Y, Aines R (2009) Transport and detection of carbon dioxide in dilute aquifers. Energy Procedia 1:2111–2118

    Article  CAS  Google Scholar 

  63. Dong Y, Li G, Li M, Wu R (2009) Impact of large-scale CO2 geologic storage in deep saline aquifers: an example from the Songliao Basin, China. In: Proceeding of the TOUGH symposium 2009. Lawrence Berkeley National Laboratory, Berkeley, p 6

    Google Scholar 

  64. Gasda SE, Bachu S, Celia MA (2004) Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ Geol 46:707–720

    Article  CAS  Google Scholar 

  65. Ivandic M, Yang C, Lüth S, Cosma C, Julin C (2012) Time-lapse analysis of sparse 3D seismic data from the CO2 storage pilot site at ketzin, Germany. J Appl Geophys 84:14–28

    Article  Google Scholar 

  66. Johnson JW, Nitao JJ (2003) Reactive transport modeling of geologic CO2 sequestration at Sleipner. In: Gale J, Kaya Y (eds) Proceedings of the 6th international conference on Greenhouse Gas Control Technologies, vol. 1, 1–4 October 2002, Kyoto, Japan. Greenhouse Gas Control Technologies, pp 327–332

    Google Scholar 

  67. Kharaka YK, Cole DR, Hovorka SD, Gunter WD, Knauss KG, Freifeld BM (2006) Gas-water-rock interactions in Frio formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geology 34(7):577–580

    Article  CAS  Google Scholar 

  68. Michael K, Golab A, Shulakova V, Ennis-King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers – a review of the experience from existing storage operations. Int J Greenhouse Gas Contrl 4:659–667

    Article  CAS  Google Scholar 

  69. Nicot J-P (2008) Evaluation of large-scale CO2 storage on freshwater sections of aquifers: an example from the Texas gulf coast basin. Int J Greenhouse Gas Contrl 2:582–593

    Article  CAS  Google Scholar 

  70. Schilling F, Borm G, Würdemann H, Möller F, Kühn M, CO2SINK Group (2009) Status report on the first European on-shore CO2 storage site at Ketzin (Germany). Energy Procedia 1:2029–2035

    Article  CAS  Google Scholar 

  71. Spangler LH, Dobeck LM, Repasky KS, Nehrir AR, Humphries SD, Barr JL, Keith CJ, Shaw JA, Rouse JH, Cunningham AB, Benson SM, Oldenburg CM, Lewicki JL, Wells AW, Diehl JR, Strazisar BR, Fessenden JE, Rahn TA, Amonette JE, Barr JL, Pickles WL, Jacobson JD, Silver EA, Male EJ, Rauch HW, Gullickson KS, Trautz R, Kharaka Y, Birkholzer J, Wielopolski L (2009) A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models. Environ Earth Sci 60:227–239

    Article  Google Scholar 

  72. Vong CQ, Jacquemet N, Picot-Colbeaux G, Lions J, Rohmer J, Bouc O (2011) Reactive transport modeling for impact assessment of a CO2 intrusion on trace elements mobility within fresh groundwater and its natural attenuation for potential remediation. Energy Procedia 4:3171–3178

    Article  CAS  Google Scholar 

  73. Xu T, Kharaka YK, Doughty C, Freifeld BM, Daley TM (2010) Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I brine pilot. Chem Geol 271:153–164

    Article  CAS  Google Scholar 

  74. Henninges J, Liebscher A, Bannach A, Brandt W, Hurter S, Köhler S, Möller F, CO2SINK Group (2011) P-T-ρ and two-phase fluid conditions with inverted density profile in observation wells at the CO2 storage site at ketzin (Germany). Energy Procedia 4:6085–6090

    Article  CAS  Google Scholar 

  75. Bielinski A, Kopp A, Schütt H, Class H (2008) Monitoring of CO2 plumes during storage in geological formations using temperature signals: numerical investigation. Int J Greenhouse Gas Contrl 2:319–328

    Article  CAS  Google Scholar 

  76. Kiessling D, Schmidt-Hattenberger C, Schuett H, Schilling F, Krueger K, Schoebel B, Danckwardt E, Kummerow J, CO2SINK Group (2010) Geoelectrical methods for monitoring geological CO2 storage: first results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). Int J Greenhouse Gas Contrl 4:816–826

    Article  CAS  Google Scholar 

  77. White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline HW (2003) Separation and capture of CO2 from large stationary sources and sequestration in geological fomations–coalbeds and deep saline aquifers. J Air Waste Manag Assoc 53(6):645–715

    Article  CAS  Google Scholar 

  78. Newmark RL, Ramirez AL, Daily WD (2001) Monitoring carbon dioxide sequestration using electrical resistance tomography (ERT): sensitivity studies. Natl Energy Technol Lab, Pittsburgh, PA, pp 1–18

    Google Scholar 

  79. Myrttinen A, Becker V, van Geldern R, Würdemann H, Morozova D, Zimmer M, Taubald H, Blum P, Barth JAC (2010) Carbon and oxygen isotope indications for CO2 behaviour after injection: first results from the Ketzin site (Germany). Int J Greenhouse Gas Contrl 4:1000–1006

    Article  CAS  Google Scholar 

  80. Sass BM, Gupta N, Chattopadhyay S, Ickes J, Byrer CW (2003) Evaluation of CO2 sequestration in saline formations based on geochemical experiments and modeling. In: Gale J, Kaya Y (eds) Proceedings of the 6th international conference on Greenhouse Gas Control Technologies, vol. 2, 1–4 October 2002, Kyoto, Japan. Greenhouse Gas Control Technologies, pp 1641–1644

    Google Scholar 

  81. Lu J, Partin JW, Hovorka SD, Wong C (2010) Potential risks to freshwater resources as a result of leakage from CO2 geological storage: a batch-reaction experiment. Environ Earth Sci 60:335–348

    Article  CAS  Google Scholar 

  82. Fischer S, Liebscher A, Wandrey M, CO2SINK Group (2010) CO2-Brine-rock interaction – first results of long-term exposure experiments at in situ P-T conditions of the ketzin CO2 reservoir. Chem Erde-Geochem 70(3):155–164

    Article  CAS  Google Scholar 

  83. Xu T, Zheng L, Tian H (2011) Reactive transport modeling for CO2 geological sequestration. J Petrol Sci and Eng 78:765–777

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomas, L., Schneider, M., Winkler, A. (2013). Threats to the Quality of Water Resources by Geological CO2 Storage: Hydrogeochemical and Other Methods of Investigation: A Review. In: Scozzari, A., Dotsika, E. (eds) Threats to the Quality of Groundwater Resources. The Handbook of Environmental Chemistry, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2013_232

Download citation

Publish with us

Policies and ethics