Skip to main content

The Importance of Reduced-Scale Experiments for the Characterization of Porous Media

  • Chapter
  • First Online:
Threats to the Quality of Groundwater Resources

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 40))

Abstract

In order to reduce threats to the quality of groundwater resources, prevention and control are the most important activities to carry out. In general, these activities require the ability to model the flow and solute transport phenomena in the aquifer. Thus, it is essential to collect information about potential contamination sources, boundary conditions, hydrological forcing, and the magnitudes and spatial distributions of the hydrodynamic and hydrodispersive parameters of the porous media. Measurements of such parameters, available only at a finite number of locations, are often obtained by means of different techniques and can be representative of various measurement scales.

The use of available data, necessarily distributed on different scales, for characterizing porous media at a defined scale is a key question of great interest. With the aim to investigate on the hydraulic conductivity scale effect on a homogeneous porous medium, several experiments were carried out at the Hydrogeosite Laboratory (Marsico Nuovo, Italy). This laboratory is a large scale model sized 10 × 7 × 3 m3, filled with a homogeneous medium made up of quartz-rich sand. The results are described by separating the two important scale-ambits under consideration, obtaining two scale power laws. Moreover, the scale effect of the hydraulic conductivity has been detected by considering the water flow type (uniform or radial) into the porous medium. However, the results, either considering the only scale law or multi-scale laws, confirm what was proved by several authors for heterogeneous porous media, that is the trend of hydraulic conductivity to reach a higher limit when the measurement scale increases and, in our opinion, regardless of the heterogeneity of the porous medium. Finally, a hydrogeophysical approach is described in this chapter, in order to show how a passive geophysical method as self-potential can estimate the hydraulic conductivity. It is an important step when large site should be characterized and few direct borehole data are available. These aspects are important because the hydraulic conductivity estimation is the first step for the characterization of a site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PET:

Polyethylene teraphthalate

SP:

Self potential

References

  1. Renard P, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Res 20(5–6):253–278

    Article  Google Scholar 

  2. Sanchez-Vila X, Guadagnini A, Carrera J (2006) Representative hydraulic conductivities in saturated groundwater flow. Rev Geophys 44:RG3002. doi:10.1029/2005RG000169

    Article  Google Scholar 

  3. Rubin Y (2003) Applied stochastic hydrogeology. Oxford University Press, Oxford. ISBN 019513804X, 9780195138047

    Google Scholar 

  4. Zhu J, Yeh T-CJ (2006) Analysis of hydraulic tomography using temporal moments of drawdown recovery data. Water Resour Res 42:W02403. doi:10.1029/2005WR004309

    Article  Google Scholar 

  5. Hernandez F, Neuman SP, Guadagnini A, Carrera J (2006) Inverse stochastic moment analysis of steady state flow in randomly heterogeneous media. Water Resour Res 42:5. doi:10.1029/2005WR004449

    Article  Google Scholar 

  6. Neuman SP, Blattstein A, Riva M, Tartakovsky DM, Guadagnini A, Ptak T (2007) Type curve interpretation of late-time pumping test data in randomly heterogeneous aquifers. Water Resour Res 43(10):W10421. doi:10.1029/2007WR005871

    Article  Google Scholar 

  7. Neuman SP, di Federico V (2003) Multifaceted nature of hydrogeologic scaling and its interpretation. Rev Geophys 41(3):1014. doi:10.1029/2003RG000130

    Article  Google Scholar 

  8. Neuman SP, Riva M, Guadagnini A (2008) On the geostatistical characterization of hierarchical media. Water Resour Res 44(2):W02403. doi:10.1029/2007WR006228

    Article  Google Scholar 

  9. Molz FJ, Rajaram H, Lu S (2004) Stochastic fractal-based models of heterogeneity in subsurface hydrology: origins, applications, limitations, and future research questions. Rev Geophys 42:RG1002. doi:10.1029/ 2003RG000126

    Article  Google Scholar 

  10. Glimm W, Lindquist B, Pereira F, Zhang Q (1993) A theory of macrodispersion for the scale-up problem. Transp Porous Media 13(1):97–122

    Article  CAS  Google Scholar 

  11. Dagan G (1994) Significance of heterogeneity of evolving scales to transport in porous formations. Water Resour Res 30(12):3327–3336

    Article  CAS  Google Scholar 

  12. Liu HH, Molz FJ (1997) Multifractal analysis of hydraulic conductivity distributions. Water Resour Res 33(11):2483–2488

    Article  Google Scholar 

  13. Neuman SP (1994) Generalized scaling of permeabilities: validation and effect of support scale. Geophys Res Lett 21:349–352

    Article  Google Scholar 

  14. di Federico V, Neuman SP (1997) Scaling of random fields by means of truncated power variograms and associated spectra. Water Resor Res 33(5):1075–1085

    Article  Google Scholar 

  15. Neuman SP (2003) Relationship between juxtaposed, overlapping and fractal representations of multimodal spatial variability. Water Resour Res 9(8):1205–1352. doi:10.1029/2002WR001755

    Google Scholar 

  16. Butler JJ (1998) The design, performance, and analysis of slug tests. Lewis Publisher CRC Press, University of Kansas, New York. ISBN 1566702305

    Google Scholar 

  17. Boast W, Kirkham D (1971) Auger hole, seepage theory. Soil Sci Soc Am Proc 35(3):365

    Article  Google Scholar 

  18. Dagan G (1978) A note on packer, slug, and recovery tests in un unconfined aquifers. Water Resour Res 14(5):929

    Article  Google Scholar 

  19. Straface S (2009) Estimation of transmissivity and storage coefficient by means of a derivative method using the early-time drawdown. Hydrogeol J 17(7):1679–1687

    Article  Google Scholar 

  20. Straface S, Rizzo E, Chidichimo F (2010) Estimation of hydraulic conductivity and water table map in a large scale laboratory model by means of the self-potential method. J Geophys Res 115(B06105):1–16. doi: 10.1029/2009JB007053

    Google Scholar 

  21. Tartakovsky GD, Neuman SP (2006) Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined acquifer. Water Resour Res 43:W01410. doi:10.1029/2006WR005153

    Google Scholar 

  22. Barker JA, Black JH (1983) Slug tests in fissured aquifers. Water Resour Res 19(6):1558

    Article  Google Scholar 

  23. Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field hystory. Eos Trans Am Geophys Union 27(4):526

    Article  Google Scholar 

  24. Oliver DS (1990) The averaging process in permeability estimation from well-test data. SPE Form Eval pp 319–324

    Google Scholar 

  25. Fallico C, De Bartolo S, Troisi S, Veltri M (2010) Scaling analysis of hydraulic conductivity and porosity on a sandy medium of an unconfined aquifer reproduced in the laboratory. Geoderma 160:3–12

    Article  Google Scholar 

  26. Fallico C, Vita MC, De Bartolo S, Straface S (2012) Scaling effect of the hydraulic conductivity in a confined aquifer. Soil Sci. doi:10.1097/SS.0b013e31824f179c

  27. Schulze-Makuch D, Cherkauer DS (1998) Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks. Hydrogeol J 6:204–215

    Article  Google Scholar 

  28. Clauser C (1992) Permeability of crystalline rocks. EOS, Trans Am Geophys Union 73:233–238

    Article  Google Scholar 

  29. Carrera J (1993) An overview of uncertainties in modeling groundwater solute transport. J Contam Hydrol 13(1–4):23–48

    Article  CAS  Google Scholar 

  30. Guimer`a, Vives L, Carrera J (1995) A discussion of scale effects on hydraulic conductivity at a granitic site,el berrocal, spain. Geophys Res Lett 22:1449–1452

    Google Scholar 

  31. Schulze-Makuch D, Carlson DA, Cherkauer DS, Malik P (1999) Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37:904–919

    Article  CAS  Google Scholar 

  32. Bartoli F, Genevois-Gomendy V, Royer JJ, Niquet S, Vivier H, Grayson R (2005) A multiscale study of silty soil structure. Eur J Soil Sci 56:207–223

    Article  Google Scholar 

  33. Bird NRA, Perrier E (2010) Multiscale percolation properties of fractal pore network. Geoderma 160:105–110

    Article  Google Scholar 

  34. Ewing RP, Hu Q, Liu C (2010) Scale dependence of intragranular porosity, tortuosity, and diffusivity. Water Resour Res 46:W06513. doi:10.1029/2009WR008183

    Article  Google Scholar 

  35. de Marsily G (1986) Quantitative hydrogeology: groundwater hydrology for engineers. Academic, Orlando. ISBN 0-12-208915-4

    Google Scholar 

  36. Bouwer H, Rice RC (1976) A slug test determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423

    Article  Google Scholar 

  37. Bourdet D (2002) Well test analysis: the use of advanced interpretation models. Elsevier Science NV, Amsterdam. ISBN 0-444-5D968-2

    Google Scholar 

  38. Neuman SP (1975) Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response. Water Resour Res 11(2):329–342

    Article  Google Scholar 

  39. Rizzo E, Suski B, Revil A, Straface S, Troisi S (2004) Self-potential signals associated with pumping-tests experiments. J Geophys Res 109(B10203). doi:10.1029/2004JB003049

    Google Scholar 

  40. Cassiani G, Böhm G, Vesnaver A, Nicolich R (1998) A geostatistical framework for incorporating seismic tomography auxiliary data into hydraulic conductivity estimation. J Hydrol 206:58–74

    Article  Google Scholar 

  41. Cassiani G, Medina MA (1997) Incorporating auxiliary geophysical data into ground-water flow parameter estimation. Ground Water 35:79–91

    Article  CAS  Google Scholar 

  42. Bernabé Y (1998) Streaming potential in heterogeneous networks. J Geophys Res 103:20827–20841

    Article  Google Scholar 

  43. Lorne B, Perrier F, Avouac JP (1999) Streaming potential measurements: 1. Properties of the electrical double layer from crushed rock samples. J Geophys Res 104:17857–17877

    Article  CAS  Google Scholar 

  44. Revil A, Naudet V, Nouzaret J, Pessel M (2003) Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour Res 39(5):1114. doi:10.1029/2001WR000916

    Article  Google Scholar 

  45. Titov K, Revil A, Konasovsky P, Straface S, Troisi S (2005) Numerical modeling of selfpotential signals associated with a pumping test experiment. Geophys J Int 162:641–650

    Article  Google Scholar 

  46. Straface S, Fallico C, Troisi S, Rizzo E, Revil A (2007) An inverse procedure to estimate transmissivity from heads and self-potential signals. Ground Water 45(4):420–428

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Straface .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Straface, S., Rizzo, E. (2013). The Importance of Reduced-Scale Experiments for the Characterization of Porous Media. In: Scozzari, A., Dotsika, E. (eds) Threats to the Quality of Groundwater Resources. The Handbook of Environmental Chemistry, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2013_231

Download citation

Publish with us

Policies and ethics