Residential Wood Burning: A Major Source of Fine Particulate Matter in Alpine Valleys in Central Europe

  • Hanna Herich
  • Christoph HueglinEmail author
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 26)


Residential wood burning is one of the important sources of ambient particulate matter (PM) in many European regions. Besides total PM, residential wood burning is at many locations an important source of other air pollutants such as polycyclic aromatic hydrocarbons (PAHs), benzene, particulate organic carbon (OC), and black carbon (BC), especially in regions such as the Alpine region, where wood fuel is, on one hand, traditionally used for domestic heating during the cold season in small stoves and, on the other hand, meteorological conditions during winter are often favourable for accumulation of wood smoke in a shallow boundary layer. As a consequence, wood burning in the Alpine region can be the dominating source of PM, OC, and BC during the cold season. This is true for both larger cities and small villages in rural areas. The absolute contribution of wood burning emissions to particulate air pollutants tends in rural environments to be even larger than in urban areas. This chapter gives an overview about the results of studies on ambient particulate pollutants from residential wood burning in the Alpine region.


Black carbon Organic carbon Particulate matter Residential wood burning 



We are grateful to Grisa Močnik from Aerosol d.o.o. (Slovenia) for providing currently unpublished results from sites in Slovenia that perfectly fit into this overview. Thanks are also due to Christine Piot, Jean-Luc Besombes (both Université de Savoie, Le Bourget-du-Lac, France) and Jean-Luc Jaffrezo (Université Joseph Fourier, Grenoble, France) for helpful discussions about the influence of wood burning on particulate air pollutants at French Alpine sites. Support from the Competence Center Environment and Sustainability of the ETH Domain (CCES) through the research project IMBALANCE is gratefully acknowledged.


  1. 1.
    Jerrett M, Burnett RT, Ma R, Pope CA, Krewski D, Newbold KB, Thurston G, Shi Y, Finkelstein N, Calle EE, Thun MJ (2005) Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 16(6):727–736CrossRefGoogle Scholar
  2. 2.
    Kennedy IM (2007) The health effects of combustion-generated aerosols. Proc Combust Inst 31:2757CrossRefGoogle Scholar
  3. 3.
    Nel A (2005) Air pollution-related illness: effects of particles. Science 308(5723):804–806CrossRefGoogle Scholar
  4. 4.
    Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56:709–742CrossRefGoogle Scholar
  5. 5.
    World Health Organization (WHO) (2005) WHO air quality guidelines global update 2005. Report on a working group meeting, Bonn, 18–20 October 2005Google Scholar
  6. 6.
    Borrego C, Valente J, Carvalho A, Sa E, Lopes M, Miranda AI (2010) Contribution of residential wood combustion to PM10 levels in Portugal. Atmos Environ 44(5):642–651CrossRefGoogle Scholar
  7. 7.
    Caseiro A, Bauer H, Schmidl C, Pio C, Puxbaum H (2009) Wood burning impact on PM10 in three Austrian regions. Atmos Environ 43:2186–2195CrossRefGoogle Scholar
  8. 8.
    Hellen H, Hakola H, Haaparanta S, Pietarila H, Kauhaniemi M (2008) Influence of residential wood combustion on local air quality. Sci Total Environ 393(2–3):283–290CrossRefGoogle Scholar
  9. 9.
    Lanz VA, Prévôt ASH, Alfarra MR, Weimer S, Mohr C, DeCarlo PF, Gianini MFD, Hueglin C, Schneider J, Favez O, D'Anna B, George C, Baltensperger U (2010) Characterization of aerosol chemical composition with aerosol mass spectrometry in central Europe: an overview. Atmos Chem Phys 10:10453–10471. doi: 10.5194/acp-10-10453-2010 CrossRefGoogle Scholar
  10. 10.
    Simpson D, Yttri KE, Klimont Z, Kupiainen K, Caseiro A, Gelencser A, Pio C, Puxbaum H, Legrand M (2007) Modeling carbonaceous aerosol over Europe: analysis of the CARBOSOL and EMEP EC/OC campaigns. J Geophys Res Atmos 112:D23CrossRefGoogle Scholar
  11. 11.
    Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19(1):67–106CrossRefGoogle Scholar
  12. 12.
    Favez O, El Haddad I, Piot C, Boréave A, Abidi E, Marchand N, Jaffrezo J-L, Besombes J-L, Personnaz M-B, Sciare J, Wortham H, George C, D'Anna B (2010) Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmos Chem Phys 10:5295–5314CrossRefGoogle Scholar
  13. 13.
    Gianini MFD, Fischer A, Gehrig R, Ulrich A, Wichser A, Piot C, Besombes J-L, Hueglin C (2012) Sources of PM10 in Switzerland: an analysis for 2008/2009 and changes since 1998/1999. Atmos Environ 54:149–158CrossRefGoogle Scholar
  14. 14.
    Gilardoni S, Vignati E, Cavalli F, Putaud JP, Larsen BR, Karl M, Stenström K, Genberg J, Henne S, Dentener F (2011) Better constraints on sources of carbonaceous aerosols using a combined 14C – macro tracer analysis in a European rural background site. Atmos Chem Phys 11:5685–5700. doi: 10.5194/acp-11-5685-2011 CrossRefGoogle Scholar
  15. 15.
    Szidat S, Prevot ASH, Sandradewi J, Alfarra MR, Synal H-A, Wacker L, Baltensperger U (2007) Dominant impact of residential wood burning on particulate matter in Alpine valleys during winter. Geophys Res Lett 34:L05820. doi: 10.1029/2006GL028325 CrossRefGoogle Scholar
  16. 16.
    Nussbaumer T (2005) Dieselruss und Holzfeinstaub grundverschieden. Holz-Zentralblatt 131(70):932–933Google Scholar
  17. 17.
    Kelz J, Brunner T, Obernberger I, Jalava P, Hirvonen M-R(2010) PM emissions from old and modern biomass combustion systems and their health effects. In: 18th European biomass conference, 3–7 May 2010, Lyon (F), ETA Florence & WIP MunichGoogle Scholar
  18. 18.
    Klippel N, Nussbaumer T (2007) Health relevance of particles from wood combustion in comparison to Diesel soot. In: 15th European biomass conference, Berlin 7–11 May 2007Google Scholar
  19. 19.
    Heringa MF, DeCarlo PF, Chirico R, Tritscher T, Dommen J, Weingartner E, Richter R, Wehrle G, Prévôt ASH, Baltensperger U (2011) Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer. Atmos Chem Phys 11:5945–5957. doi: 10.5194/acp-11-5945-2011 CrossRefGoogle Scholar
  20. 20.
    Steierer et al (2007) Wood energy in Europe and North America: a new estimate of volumes and flows. UNECE timber committee and the FAO European forestry commission.
  21. 21.
    Bundesamt für Energie BFE (2012) Schweizerische Holzenergiestatistik, Erhebung für das Jahr 2011.
  22. 22.
    Schmidl C, Marr IL, Ae C, Kotianová P, Berner A, Bauer H, Kasper-Giebl A, Puxbaum H (2008) Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos Environ 42:126–141CrossRefGoogle Scholar
  23. 23.
    Schmidl C, Luisser M, Padouvas E, Lasselsberger L, Rzaca M, Cruz C, Handler M, Peng G, Bauer H, Puxbaum H (2011) Particulate and gaseous emission from manually and automatically fired small scale combustion systems. Atmos Environ 45:7443–7454CrossRefGoogle Scholar
  24. 24.
    Kistler M, Schmidl C, Padouvas E, Giebl H, Lohninger J, Ellinger R, Bauer H, Puxbaum H (2012) 1 Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central 2 Europe. Atmos Environ 2012(51):86–93CrossRefGoogle Scholar
  25. 25.
    Alfarra MR, Prévôt ASH, Szidat S, Sandradewi J, Weimer S, Lanz VA, Schreiber D, Mohr M, Baltensperger U (2007) Identification of the mass spectral signature of organic aerosols from wood burning emissions. Environ Sci Technol 41:5770–5777CrossRefGoogle Scholar
  26. 26.
    Weimer S, Alfarra MR, Schreiber D, Mohr M, Prévôt ASH, Baltensperger U (2008) Organic aerosol mass spectral signatures from wood-burning emissions: influence of burning conditions and wood type. J Geophys Res 113:D10304. doi: 10.1029/2007JD009309 CrossRefGoogle Scholar
  27. 27.
    Heringa MF, DeCarlo PF, Chirico R, Tritscher T, Clairotte M, Mohr C, Crippa M, Slowik JG, Pfaffenberger L, Dommen J, Weingartner E, Prévôt ASH, Baltensperger U (2012) A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra. Atmos Chem Phys 12:2189–2203,2205. doi: 10.5194/acp-12-2189-2012 CrossRefGoogle Scholar
  28. 28.
    Spitzer J, Enzinger P, Fankhauser G, Fritz W, Golja F, Stiglbrunner R (1998) Emissionsfaktoren für feste Brennstoffe. Project report. Institut für Energieforschung and Institut für Angewandte Statistik und Systemforschung, Graz.
  29. 29.
    Struschka M, Kilgus D, Springmann M, Baumbach G (2008) Effiziente Bereitstellung aktueller Emissionsdaten für die Luftreinhaltung. Project Report. Forschungsbericht 205 42 322, UBA-FB 001217, Umweltbundesamt, Dessau-Rosslau.
  30. 30.
    Nussbaumer T (2010) (Hrsg.): 11. Holzenergie-Symposium: Potenzial und Technik zur Holzenergie-Nutzung. Tagung an der ETH Zürich am 17. September 2010, Verenum Zürich, ISBN 3-908705-21-5Google Scholar
  31. 31.
    Hopke PK (2003) Recent developments in receptor modeling. J Chemom 17:255–265CrossRefGoogle Scholar
  32. 32.
    Viana M, Pandolfi M, Minguillon MC, Querol X, Alastuey A, Monfort E, Celades I (2008) Inter-comparison of receptor models for PM source apportionment: case study in an industrial area. Atmos Environ 42:3820–3832CrossRefGoogle Scholar
  33. 33.
    El Haddad I, Marchand N, Wortham H et al (2011) Primary sources of PM(2.5) organic aerosol in an industrial Mediterranean city, Marseille. Atmos Chem Phys 11:2039–2058CrossRefGoogle Scholar
  34. 34.
    Ke L, Zheng M, Tanner RL, Schauer JJ (2007) Source contributions to carbonaceous aerosols in the Tennessee valley. Atmos Environ 41:8898–8923CrossRefGoogle Scholar
  35. 35.
    Paatero P (1997) Least square formulation of robuste non-negative factor analysis. Chemometr Intell Lab Syst 3:23–35CrossRefGoogle Scholar
  36. 36.
    Paatero P, Tapper U (1994) Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126CrossRefGoogle Scholar
  37. 37.
    Lee E, Chan CK, Paatero P (1999) Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos Environ 33:3201–3212CrossRefGoogle Scholar
  38. 38.
    Pandolfi M, Gonzalez-Catanedo Y, Alastuey A, de la Rosa JD, Mantilla E, Querol X, Pey J, Amato F, Moreno T (2011) Source apportionment of PM10 and PM2.5 at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. Env Sci Poll Res 18:260–269CrossRefGoogle Scholar
  39. 39.
    Lanz VA, Alfarra MR, Baltensperger U, Buchmann B, Hueglin C, Prévôt ASH (2007) Source apportionment of sub- micron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra. Atmos Chem Phys 7:1503–1522, CrossRefGoogle Scholar
  40. 40.
    Puxbaum H, Caseiro A, Sánchez-Ochoa A, Kasper-Giebl A, Claeys M, Gelencsér A, Legrand M, Preunkert S, Pio C (2007) Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J Geophys Res 112:D23S05. doi: 10.1029/2006JD008114 Google Scholar
  41. 41.
    Heal MR, Naysmith P, Cook GT, Xu S, Raventos Duran T, Harrison RM (2011) Application of 14C analyses to source apportionment of carbonaceous PM2.5 in the UK. Atmos Environ 45:2341–2348CrossRefGoogle Scholar
  42. 42.
    Szidat S, Jenk TM, Synal H-A, Kalberer M, Wacker L, Hajdas I, Kasper-Giebl A, Baltensperger U (2006) Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. J Geophys Res 111:D07206. doi: 10.1029/2005JD006590 Google Scholar
  43. 43.
    Gelencsér A, May B, Simpson D, Sánchez-Ochoa A, Kasper-Giebl A, Puxbaum H, Caseiro A, Pio C, Legrand M (2007) Source apportionment of PM2.5 organic aerosol over Europe: primary/secondary, natural/anthropogenic, and fossil/biogenic origin. J Geophys Res 112:D23S04. doi: 10.1029/2006JD008094 Google Scholar
  44. 44.
    Szidat S, Ruff M, Perron N, Wacker L, Synal H-A, Hallquist M, Shannigrahi AS, Yttri KE, Dye C, Simpson D (2009) Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Göteborg, Sweden. Atmos Chem Phys 9:1521–1535CrossRefGoogle Scholar
  45. 45.
    Herich H, Hueglin C, Buchmann B (2011) A 2.5 year’s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmos Measure Techn 4:1409–1420CrossRefGoogle Scholar
  46. 46.
    Sandradewi J, Prevot ASH, Szidat S, Perron N, Alfarra MR, Lanz VA, Weingartner E, Baltensperger U (2008) Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ Sci Technol 42:3316–3323CrossRefGoogle Scholar
  47. 47.
    Sandradewi J, Prévôt ASH, Alfarra MR, Szidat S, Wehrli MN, Ruff M, Weimer S, Lanz VA, Weingartner E, Perron N, Caseiro A, Kasper-Giebl A, Puxbaum H, Wacker L, Baltensperger U (2008) Comparison of several wood smoke markers and source apportionment methods for wood burning particulate mass. Atmos Chem Phys Discus 8:8091–8118CrossRefGoogle Scholar
  48. 48.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (1999) Measurement of emission from air pollution sources. 1. C1 through C29 organic compounds from meat charboiling. Environ Sci Tecnol 33:1566–1577CrossRefGoogle Scholar
  49. 49.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2001) Measurement of emission from air pollution sources. 3. C1–C29 organic compounds from fireplace combustion of wood. Environ Sci Tecnol 35:1716–1728CrossRefGoogle Scholar
  50. 50.
    Jordan TB, Seen AJ, Jacobsen GE (2006) Levoglucosan as an atmospheric tracer for woodsmoke. Atmos Environ 40:5316–5321CrossRefGoogle Scholar
  51. 51.
    Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182CrossRefGoogle Scholar
  52. 52.
    Piazzalunga A, Bernardoni V, Fermo P, Valli G, Vecchi R (2011) Technical note: on the effect of water-soluble compounds removal on EC quantification by TOT analysis in urban aerosol samples. Atmos Chem Phys 11:10193–10203CrossRefGoogle Scholar
  53. 53.
    Piot C (2011) Polluants atmosphériques organiques particulaires en Rhône Alpes - caractérisation chimique et sources d’émission. Ph.D. Thesis, Joseph Fourier University, Grenoble, 294 pp.
  54. 54.
    Perron N, Sandradewi J, Alfarra MR, Lienemann P, Gehrig R, Kasper-Giebl A, Lanz VA, Szidat S, Ruff M, Fahrni S, Wacker L, Baltensperger U, Prévôt ASH (2010) Composition and sources of particulate matter in an industrialised Alpine valley. Atmos Chem Phys Discuss 10:9391–9430. doi: 10.5194/acpd-10-9391-2010 CrossRefGoogle Scholar
  55. 55.
    Weimer S, Mohr C, Richter R, Keller J, Mohr M, Prevot ASH, Baltensperger U (2009) Mobile measurements of aerosol number and volume size distributions in an Alpine valley: influence of traffic versus wood burning. Atmos Environ 43:624–630CrossRefGoogle Scholar
  56. 56.
    Larsen BR, Gilardoni S, Stenström K, Niedzialek J, Jimenez J, Belis CA (2012) Sources for PM air pollution in the Po plain, Italy: II. Probabilistic uncertainty characterization and sensitivity analysis of secondary and primary sources. Atmos Environ 50:203–213CrossRefGoogle Scholar
  57. 57.
    Perrone MG, Larsen BR, Ferrero L, Sangiorgi G, De Gennaro G, Udisti R, Zangrando R, Gambaro A, Bolzacchini E (2012) Sources of high PM2.5 concentrations in Milan, Northern Italy: molecular marker data and CMB modeling. Sci Total Environ 414:343–355CrossRefGoogle Scholar
  58. 58.
    Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H (2005) Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39:637–651CrossRefGoogle Scholar
  59. 59.
    Jaffrezo JL, Aymoz G, Cozic J (2005) Size distribution of EC and OC in the aerosol of Alpine valleys during summer and winter. Atmos Chem Phys 5:2915–2925CrossRefGoogle Scholar
  60. 60.
    Harrison RM, Stedman J, Derwent D (2008) New directions: why are PM10 concentrations in Europe not falling? Atmos Environ 42(3):603–606CrossRefGoogle Scholar
  61. 61.
    Barmpadimos I, Hueglin C, Keller J, Henne S, Prevot ASH (2011) Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008. Atmos Chem Phys 11(4):1813–1835CrossRefGoogle Scholar
  62. 62.
    Heckmann M, Friedl G, Schwarz M, Rossmann P, Hartmann H, Baumgartner H, Lasselsberger L, Themessl A (2010) Bestimmung von Jahresnutzungsgrad und Emissionsfaktoren von Biomasse-Kleinfeuerungen am Prüfstand. Project report. Bundesministeriums für Verkehr, Innovation und Technologie, Austria.
  63. 63.
    BAFU (2005) Arbeitsblatt Emissionsfaktoren Feuerungen, Stand September 2005. Bundesamt für Umwelt, BernGoogle Scholar
  64. 64.
    Putaud JP, Van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyrys J, Flentje H, Fuzzi S, Gehrig R, Hansson HC, Harrison RM, Herrmann H, Hitzenberger R, Huglin C, Jones AM, Kasper-Giebl A, Kiss G, Kousa A, Kuhlbusch TAJ, Loschau G, Maenhaut W, Molnar A, Moreno T, Pekkanen J, Perrino C, Pitz M, Puxbaum H, Querol X, Rodriguez S, Salma I, Schwarz J, Smolik J, Schneider J, Spindler G, ten Brink H, Tursic J, Viana M, Wiedensohler A, Raes F (2010) A European aerosol phenomenology-3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ 44(10):1308–1320CrossRefGoogle Scholar
  65. 65.
    Močnik G, Turšič J, Muri G, Bolte T, Ježek I, Drinovec L, Sciare J (2011) Influence of biomass combustion on air quality in two pre-Alpine towns with different geographical settings. In: 10th international conference on carbonaceous particles in the atmosphere, Vienna (Austria), 26–29 June 2011Google Scholar
  66. 66.
    Močnik G (2012) Private communicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory for Air Pollution and Environmental TechnologyEMPA, Swiss Federal Laboratories for Materials Science and TechnologyUeberlandstrasseSwitzerland

Personalised recommendations