Road Traffic: A Major Source of Particulate Matter in Europe

  • Fulvio Amato
  • Martijn Schaap
  • Cristina Reche
  • Xavier QuerolEmail author
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 26)


Gaseous and particulate emissions from vehicles represent a major source of atmospheric pollution in cities. Recent research shows evidence of, along with the primary emissions from motor exhaust, important contributions from secondary (due to traffic-related organic/inorganic gaseous precursors) and primary particles due to wear and resuspension processes. Besides new and more effective (for NO x emissions) technologies, non-technological measures from local authorities are needed to improve urban air quality in Europe.


NOx PM Primary Resuspension Secondary Wear 


  1. 1.
    Raisanen K, Kupiainen K, Tervahattu H (2005) The effect of mineralogy, texture and mechanical properties of anti-skid and asphalt aggregates on urban dust, stages II and III. Bull Eng Geol Environ 64:247–256Google Scholar
  2. 2.
    Schauer JJ, Lough GC, Shafer MM, Christensen WF, Arndt MF, DeMinter JT, Park JS (2006) Characterization of metals emitted from motor vehicles. Health Effects InstituteGoogle Scholar
  3. 3.
    Thorpe AJ, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400:270–282Google Scholar
  4. 4.
    Ntziachristos L, Ning Z, Geller MD, Sheesley RJ, Schauer JJ, Sioutas C (2007) Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmos Environ 41:5684–5696Google Scholar
  5. 5.
    Schauer JJ, Kleeman M, Cass GR, Simoneit BT (1999) Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks. Environ Sci Technol 33:1578–1587Google Scholar
  6. 6.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 5. C-1–C-32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol 36:1169–1180Google Scholar
  7. 7.
    Künzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger P, Herry M, Horak F Jr, Puybonnieux-Texier V, Quénel P, Schneider J, Seethaler R, Vergnaud JC, Sommer H (2000) Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356(9232):795–801Google Scholar
  8. 8.
    Le Tertre A, Medina S, Samoli E, Forsberg B, Michelozzi P, Boumghar A, Vonk JM, Bellini A, Atkinson R, Ayres JG, Sunyer J, Schwartz J, Katsouyanni K (2002) Short-term effects of particulate air pollution on cardiovascular diseases in eight European cities. J Epidemiol Community Health 56:773–779Google Scholar
  9. 9.
    Kagawa J (2002) Health effects of diesel exhaust emissions—a mixture of air pollutants of worldwide concern. Toxicology 181–182:349–353Google Scholar
  10. 10.
    Cahill TA, Barnes DE, Withycombe E, Watnik M (2011) Very fine and ultrafine metals and ischemic heart disease in the California Central Valley 2: 1974–1991. Aerosol Sci Technol 45(9):1135–1142Google Scholar
  11. 11.
    Cahill TA, Barnes DE, Spada NJ, Lawton JA, Cahill TM (2011) Very fine and ultrafine metals and ischemic heart disease in the California central valley 1: 2003–2007. Aerosol Sci Technol 45(9):1123–1134Google Scholar
  12. 12.
    Meister K, Johansson C, Forsberg B (2012) Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environ Health Perspect 120(3):431–436Google Scholar
  13. 13.
    Ostro B, Tobias A, Querol X, Alastuey A, Amato F, Pey J, Perez N, Sunyer J (2011) The effects of particulate matter sources on daily mortality: a case-crossover study of Barcelona, Spain. Environ Health Perspect 119(12):1781–1787Google Scholar
  14. 14.
    Bahreini R, Middlebrook AM, De Gouw JA, Warneke C, Trainer M, Brock CA, Stark H, Brown SS, Dube WP, Gilman JB, Hall K, Holloway JS, Kuster WC, Perring AE, Prevot ASH, Schwarz JP, Spackman JR, Szidat S, Wagner NL, Weber RJ, Zotter P, Parrish DD (2012) Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. Geophys Res Lett 39(6): Art. no. L06805.Google Scholar
  15. 15.
    Verma V, Ning Z, Cho AK, Schauer JJ, Shafer MM, Sioutas C (2009) Redox activity of urban quasi-ultrafine particles from primary and secondary sources. Atmos Environ 43:6360–6368Google Scholar
  16. 16.
    Biswas S, Verma V, Schauer JJ, Cassee F, Cho AK, Sioutas C (2009) Oxidative potential of semi-volatile and non volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies. Environ Sci Technol 43:3905–3912Google Scholar
  17. 17.
    EEA (2010) Exceedance of air quality limit values in urban areas (Indicator CSI 004). European Environment Agency. Accessed 12 Mar 2012
  18. 18.
    EEA (2011) Air quality in Europe – 2011 report. EEA Technical Report No. 12/2011. EEA – European Environmental Agency. Source: Retrieved 5 Mar 2012
  19. 19.
    Weiss M, Bonnel P, Kühlwein J, Provenza A, Lambrecht U, Alessandrini S, Carriero M, Colombo R, Forni F, Lanappe G, Le Lijour P, Manfredi U, Montigny F, Sculati M (2012) Will Euro 6 reduce the NOX emissions of new diesel cars? – Insights from on-road tests with Portable Emissions Measurement Systems (PEMS). Atmos Environ. doi: 10.1016/j.atmosenv.2012.08.056
  20. 20.
    DOE (2012) Vehicles technology program. Fact #716: Diesels are more than half of new cars sold in Western Europe. DOE – US Department of Energy. Source: Retrieved 9 July 2012
  21. 21.
    Pelkmans L, Debal P (2006) Comparison of on-road emissions with emissions measured on chassis dynamometer test cycles. Transp Res Part D Transp Environ 11:233–241Google Scholar
  22. 22.
    Rubino L, Bonnel P, Hummel R, Krasenbrink A, Manfredi U, De Santi G, Perotti M, Bomba G (2007) PEMS light-duty vehicles application: experiences in downtown Milan. SAE International. Technical Papers 2007-24-0113Google Scholar
  23. 23.
    Rubino L, Bonnel P, Hummel R, Krasenbrink A, Manfredi U, de Santi G (2009) On road emissions and fuel economy of light duty vehicles using PEMS: chase-testing experiment. SAE Int J Fuels Lubr 1:1454–1468Google Scholar
  24. 24.
    Vojtisek-Lom M, Fenkl M, Dufek M, Mareš J (2009) Off-cycle, real-world emissions of modern light duty diesel vehicles. SAE International. Technical Papers 2009-24-0148Google Scholar
  25. 25.
    Weiss M, Bonnel P, Hummel R, Provenza A, Manfredi U (2011) On-road emissions of light-duty vehicles in Europe. Environ Sci Technol 45:8575–8581Google Scholar
  26. 26.
    AQEG (2007) Trends in primary nitrogen dioxide in the UK. AQEG – Air Quality Expert Group. Report published by the Department for Environment, Food and Rural Affairs. London, UKGoogle Scholar
  27. 27.
    Dünnebeil F, Lambrecht U, Rehberger I (2011) Zukünftige Entwicklung der NO2- Konzentration an Straßen - Szenarien zur Einführung der neuen Grenzwertstufen. Fachgespräch Verkehrsemissionen: Emissionen und Minderungspotenziale im Verkehrsbereich - Was bringt Tempo 30 und wie stark wird Euro 6 die NO2-Emissionen im Realbetrieb senken? 21 July 2011. LUBW – Landesanstalt für Umwelt, Messungen, und Naturschutz Baden Württemberg. Stuttgart, GermanyGoogle Scholar
  28. 28.
    Hausberger S (2011) PHEM - Das Modell der TU Graz zur Berechnung von Kfz-Emissionen und seine Datenbasis bei Euro 5 und Euro 6. Fachgespräch Verkehrsemissionen: Emissionen und Minderungspotenziale im Verkehrsbereich - Was bringt Tempo 30 und wie stark wird Euro 6 die NO2-Emissionen im Realbetrieb senken? 21 July 2011. LUBW – Landesanstalt für Umwelt, Messungen, und Naturschutz Baden Württemberg. Stuttgart, GermanyGoogle Scholar
  29. 29.
    Kleinebrahm M, Steven H (2011) Vermessung des Abgasemissionsverhaltens von zwei Pkw und einem Fahrzeug der Transporterklasse im realen Straßenbetrieb in Stuttgart mittels PEMS Technologie. TÜV Nord. Report Nr. 4500116246/33 for LUBW -Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg. Karlsruhe, GermanyGoogle Scholar
  30. 30.
    Hendriks C, Kranenburg R, Kuenen J, van Gijlswijk R, Wichink Kruit R, Segers A, Denier van der Gon H, Schaap M (2013) The origin of ambient particulate matter concentrations in the Netherlands. Atmos Environ, 69:289–303Google Scholar
  31. 31.
    Harrison R, Stedman J, Derwent D (2008) New directions; why are PM10 concentrations in Europe not falling? Atmos Environ 42:603–606Google Scholar
  32. 32.
    Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J, Pérez N, Hopke PK (2009) Quantifying road dust resuspensión in urban environment by Multilinear Engine: a comparison with PMF2. Atmos Environ 43:2770–2780Google Scholar
  33. 33.
    Bukowiecki N, Lienemann P, Hill M, Furger M, Richard A, Amato F, Prevot ASH, Baltensperger U, Buchmann B, Gehrig R (2010) PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland (2010). Atmos Environ 44(19):2330–2340Google Scholar
  34. 34.
    Querol X, Alastuey A, Rodríguez S, Plana F, Ruiz CR, Cots N, Massagué G, Puig O (2001) PM10 and PM2.5 source apportionment in the Barcelona Metropolitan Area, Catalonia, Spain. Atmos Environ 35:6407–6419Google Scholar
  35. 35.
    Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévôt ASH, Hueglin C, Bloemen H, Wåhlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849Google Scholar
  36. 36.
    Thimmaiah D, Hovorka J, Hopke PK (2009) Source apportionment of winter submicron Prague aerosols from combined particle number size distribution and gaseous composition data. Aerosol Air Qual Res 9:209–236Google Scholar
  37. 37.
    Stölzel M (2003) Quellen von Feinstaubpartikeln in Erfurt sowie ihre gesundheitlichen Auswirkungen. Materialien zur Epidemiologie, herausgegeben von HE Wichmann, HE Heilmaier. S. Roderer Verlag Regensburg [in German]Google Scholar
  38. 38.
    Quass U, Kuhlbusch T, Koch M (2004) Identification of source groups for fine dust. Public report to the Environment Ministry of North Rhine Westphalia, Germany. IUTA-Report LP15/2004, p 12Google Scholar
  39. 39.
    Gerwig H (2005) Korngrößendifferenzierte Feinstaubbelastung in Straßennähe in Ballungsgebieten Sachsens, Final report for research project of Dep. 2 of Saxon State Agency for Environment and Geology.
  40. 40.
    Vallius M, Janssen NAH, Heinrich J, Hoek G, Ruuskanen J, Cyrys J, Van Grieken R, de Hartog JJ, Kreyling WG, Pekkanen J (2005) Sources and elemental composition of ambient PM2.5 in three European cities. Sci Total Environ 337:147–162Google Scholar
  41. 41.
    Yue W, Stölzel M, Cyrys J, Pitz M, Heinrich J, Kreyling WG, Wichmann HE, Peters A, Wang S, Hopke PK (2008) Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany. Sci Total Environ 398(1–3):133–144Google Scholar
  42. 42.
    Beuck H, Quass U, Klemm O, Kuhlbusch TAJ (2011) Assessment of sea salt and mineral dust contributions to PM10 in NW Germany using tracer models and positive matrix factorization. Atmos Environ 45(32):5813–5821Google Scholar
  43. 43.
    Rodríguez S, Querol X, Alastuey A, Plana F (2002) Sources and processes affecting levels and composition of atmospheric aerosol in the Western Mediterranean. J Geophys Res 107(D24):4777Google Scholar
  44. 44.
    Querol X, Alastuey A, Viana M, Rodríguez S, Artiñano B, Salvador P, Garcia Do Santos S, Fernandez Patier R, Ruiz CR, de la Rosa J, Sanchez de la Campa A, Menendez M, Gil JI (2004) Speciation and origin of PM10 and PM2.5 in Spain. J Aerosol Sci 35:1151–1172Google Scholar
  45. 45.
    Viana M, Querol X, Götschi T, Alastuey A, Sunyer J, Forsberg B, Heinrich J, Norbäck D, Payo F, Maldonado JA, Künzli N (2007) Source apportionment of ambient PM2.5 at five Spanish centres of the European community respiratory health survey (ECRHS II). Atmos Environ 41:1395–1406Google Scholar
  46. 46.
    Nicolás J, Chiari M, Crespo J, Orellana IG, Lucarelli F, Nava S, Pastor C, Yubero E (2008) Quantification of Saharan and local dust impact in an arid Mediterranean area by the positive matrix factorization (PMF) technique. Atmos Environ 42(39):8872–8882Google Scholar
  47. 47.
    Pey J, Querol X, Alastuey A, Rodríguez S, Putaud JP, Van Dingenen R (2009) Source apportionment of urban fine and ultra-fine particle number concentration in a Western Mediterranean city. Atmos Environ 43:4407–4415Google Scholar
  48. 48.
    Gaimoz C, Sauvage S, Gros V, Herrmann F, Williams J, Locoge N, Perrussel O, Bonsang EB, D’Argouges O, Sarda-Estève R, Sciare J (2011) Volatile organic compounds sources in Paris in spring 2007. Part II: Source apportionment using positive matrix factorisation. Environ Chem 8:91–103Google Scholar
  49. 49.
    Yin J, Harrison RM, Chen Q, Rutter A, Schauer JJ (2010) Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmos Environ 44(6):841–851Google Scholar
  50. 50.
    Manoli E, Voutsa D, Samara C (2002) Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos Environ 36(6):949–961Google Scholar
  51. 51.
    Karanasiou AA, Siskos PA, Eleftheriadis K (2009) Assessment of source apportionment by Positive Matrix Factorization analysis on fine and coarse urban aerosol size fractions. Atmos Environ 43:3385–3395Google Scholar
  52. 52.
    Yin J, Allen AG, Harrison RM, Jennings SG, Wright E, Fitzpatrick M et al (2005) Major component composition of urban PM10 and PM2.5 in Ireland. Atmos Res 78:149–165Google Scholar
  53. 53.
    Contini D, Genga A, Cesari D, Siciliano M, Donateo A, Bove MC, Guascito MR (2010) Characterisation and source apportionment of PM10 in an urban background site in Lecce. Atmos Res 95:40–54Google Scholar
  54. 54.
    Bernardoni V, Vecchi R, Valli G, Piazzalunga A, Fermo P (2011) PM10 source apportionment in Milan (Italy) using time-resolved data. Sci Total Environ 409:4788–4795Google Scholar
  55. 55.
    Mooibroek D, Schaap M, Weijers EP, Hoogerbrugge R (2011) Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmos Environ 45:4180–4191Google Scholar
  56. 56.
    Raes N, Hubacz R, Hanssen JE, Maenhaut W (2005) Application of three different receptor models to long-term data sets from southern Norway and the Norwegian Arctic. In: Abstracts of the European aerosol conference (EAC2005), Ghent, Belgium, 29/08/05-02/09/05. Abstract no. 288 [ISBN: 9080915939]Google Scholar
  57. 57.
    Pio CA, Castro LM, Cerqueira MA, Santos IM, Belchior F, Salgueiro ML (1996) Source assessment of particulate air pollutants measured at the southwest European coast. Atmos Environ 30(19):3309–3320Google Scholar
  58. 58.
    Oliveira C, Pio C, Caseiro A, Santos P, Nunes T, Mao H, Luahana L, Sokhi R (2010) Road traffic impact on urban atmospheric aerosol loading at Oporto, Portugal. Atmos Environ 44:3147–3158Google Scholar
  59. 59.
    Swietlicki E, Puri S, Hansson H-C, Edner H (1996) Urban air pollution source apportionment using a combination of aerosol and gas monitoring techniques. Atmos Environ 30:2795–2809Google Scholar
  60. 60.
    Lanz VA, Prévôt ASH, Alfarra MR, Weimer S, Mohr C, DeCarlo PF, Gianini MFD, Hueglin C, Schneider J, Favez O, D’Anna B, George C, Baltensperger U (2010) Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: an overview. Atmos Chem Phys 10:10453–10471Google Scholar
  61. 61.
    Mohr C, Richter R, DeCarlo FF, Prévôt ASH, Baltensperger U (2011) Spatial variation of chemical composition and sources of submicron aerosol in Zurich during wintertime using mobile aerosol mass spectrometer data. Atmos Chem Phys 11:7465–7482Google Scholar
  62. 62.
    IARC (1989) IARC monographs on the evaluation of carcinogenic risks to humans, vol 45, Occupational exposures in petroleum refining; Crude Oil and Major Petroleum Fuels, Lyon, 159–201, 219–237Google Scholar
  63. 63.
    Harris SJ, Maricq MM (2001) Signature size distributions for diesel and gasoline engine exhaust particulate matter. J Aerosol Sci 32(6):749–764Google Scholar
  64. 64.
    Ban-Weiss GA, Luden MM, Kirchstetter TW, Harley RA (2009) Size-resolved particle number and volume emission factors for on-road gasoline and diesel motor vehicles. Downloaded at
  65. 65.
    Reche C, Querol X, Alastuey A, Viana M, Pey J, Moreno T, Rodríguez S, Gonzáliz Y, Fernández-Camacho R, de La Rosa J, Dall’Osto M, Pret ASH, Hueglin C, Harrison RM, Quincey P (2011) New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. Atmos Chem Phys 11:6207–6227Google Scholar
  66. 66.
    Kulmala M, Kerminen V-M (2008) On the growth of atmospheric nanoparticles. Atmos Res 90:132–150Google Scholar
  67. 67.
    Jo W-K, Song K-B (2001) Exposure to volatile organic compounds for individuals with occupations associated with potential exposure to motor vehicle exhaust and/or gasoline vapor emissions. Sci Total Environ 269(1–3):25–37Google Scholar
  68. 68.
    Hartle RW, Young RJ (1977) Occupational benzene exposure at retail automotive service stations. Draft report, Division of Surveillance, Hazard Evaluations and Field Studies. National Institute for Occupational Safety and Health, Cincinnati, OhioGoogle Scholar
  69. 69.
    Kearney CA, Dunham DB (1986) Gasoline vapor exposures at a high volume service station. Am Ind Hyg Assoc J 47:535–539Google Scholar
  70. 70.
    Song Y, Shao M, Liu Y, Lu S, Kuster W, Goldan P, Xie S (2007) Source apportionment of ambient volatile organic compounds in Beijing. Environ Sci Technol 41(12):4348–4353Google Scholar
  71. 71.
    Cachier H (1995) Combustion carbonaceous aerosols in the atmosphere: implications for ice core studies. Ice Core Studies of Global Biogeochemical Cycles, NATO ASI Series, Springer, Berlin, pp 313–346Google Scholar
  72. 72.
    Lyamani H, Olmo FJ, Foyo I, Alados-Arboledas L (2011) Black carbon aerosols over an urban area in south-eastern Spain: changes detected after the 2008 economic crisis. Atmos Environ 45:6423–6432Google Scholar
  73. 73.
    Pakkanen TA, Kerminen VM, Ojanena CH, Hillamo RE, Aarnio P, Koskentalo T (2000) Atmospheric black carbon in Helsinki. Atmos Environ 34:1497–1506Google Scholar
  74. 74.
    Pérez N, Pey J, Cusack M, Reche C, Querol X, Alastuey A, Viana M (2010) Variability of particle number, black carbon, and PM10, PM2.5, and PM1 levels and speciation: influence of road traffic emissions on urban air quality. Aerosol Sci Technol 44:487–499Google Scholar
  75. 75.
    Rodríguez S, Cuevas E, González Y, Ramos R, Romero PM, Pérez N, Querol X, Alastuey A (2008) Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5–10 concentrations in a coastal city. Atmos Environ 42:6523–6534Google Scholar
  76. 76.
    Saha A, Despiau S (2009) Seasonal and diurnal variations of black carbon aerosols over a Mediterranean coastal zone. Atmos Res 92:27–41Google Scholar
  77. 77.
    Hamilton RS, Mansfield TA (1990) Airborne particulate elemental carbon: its sources, transport and contribution to dark smoke and soiling. Atmos Environ 25:715–723Google Scholar
  78. 78.
    Fruin SA, Winer AM, Rodes CE (2004) Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures. Atmos Environ 38:4121–4133Google Scholar
  79. 79.
    Kerminen VM, Mäkelä TE, Ojanen CH, Hillamo RM, Vilhunen JK, Rantanen L, Havers N, von Bohlen A, Klockow D (1997) Characterization of particulate phase in the exhaust from a diesel car. Environ Sci Technol 31:1883–1889Google Scholar
  80. 80.
    Berner A, Sidla S, Galambos Z, Kruisz C, Hitzenberger R, ten Brink HM, Kos GAP (1996) Modal character of atmospheric black carbon size distributions. J Geophys Res 101:19559–19565Google Scholar
  81. 81.
    Harrison RM, Yin J (2008) Sources and processes affecting carbonaceous aerosols in central England. Atmos Environ 42:1413–1423Google Scholar
  82. 82.
    Schneider J, Kirchner U, Borrmann S, Vogt R, Scheer V (2008) In situ measurements of particle number concentration, chemically resolved size distributions and black carbon content of traffic-related emissions on German motorways, rural roads and in city traffic. Atmos Environ 42:4257–4268Google Scholar
  83. 83.
    Charron A, Harrison J (2005) Fine (PM2.5) and coarse (PM2.5–10) particulate matter on a heavily trafficked London highway: sources and processes. Environ Sci Technol 39:7768–7776Google Scholar
  84. 84.
    Harrison J, Yin J, Mark D, Stedman J, Appleby RS, Booker J, Moorcroft S (2001) Studies of the coarse particle (2.5–10um) component in UK urban atmospheres. Atmos Environ 35:3667–3679Google Scholar
  85. 85.
    Querol X, Alastuey A, Viana MM, Rodriguez S, Artiñano B, Salvador P, Garcia Do Santos S, Fernandez Patier R, De La Rosa J, Sanchez De La Campa A, Menendez M (2005) Contaminación atmosférica por partículas en suspensión. In Ministerio de Educación y Ciencia, I. S. d. F. d. P. C. A. d. V. d. L. U. C. d. M. C. d. E., ISBN: 84-369-3924-7., Ed. 2005; pp 133–172Google Scholar
  86. 86.
    Bukowiecki N, Dommen J, Prévǒt ASH, Weingartner E, Baltensperger U (2003) Fine and ultrafine particles in the Zürich (Switzerland) area measured with a mobile laboratory. An assessment of the seasonal and regional variation throughout a year. Atmos Chem Phys 3:1477–1494Google Scholar
  87. 87.
    Hueglin C, Buchmann B, Weber RO (2006) Long-term observation of real-world road traffic emission factors on a motorway in Switzerland. Atmos Environ 40:3696–3709Google Scholar
  88. 88.
    Morawska L, Jayaratne ER, Mengersen K, Jamriska M, Thomas S (2002) Differences in airborne particle and gaseous concentrations in urban areas between weekdays and weekends. Atmos Environ 36:4375–4383Google Scholar
  89. 89.
    Rodríguez S, Van Dingenen R, Putaud JP, Dell'Acqua A, Pey J, Querol X, Alastuey A, Chenery S, Kin-Fai H, Harrison RM, Tardivo R, Scarnato B, Gianelle V (2007) A study on the relationship between mass concentration, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London. Atmos Chem Phys 7:2217–2232Google Scholar
  90. 90.
    Rodríguez S, Cuevas E (2007) The contributions of “minimum primary emissions” and “new particle number formation enhancements” to the particle number concentration in urban air. J Aerosol Sci 38:1207–1219Google Scholar
  91. 91.
    Casati R, Scheer V, Vogt R, Benter T (2007) Measurements of nucleation and soot mode particle emission from a diesel passenger car in real world and laboratory in situ dilution. Atmos Environ 41:2125–2135Google Scholar
  92. 92.
    Zhu Y, Hinds W, Kim S, Shen S, Sioutas C (2002) Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Environ 36:4323–4335Google Scholar
  93. 93.
    Fischer PH, Hoek G, van Reeuwijk H, Briggs DJ, Lebret E, van Wijnen JH, Kingham S, Elliott PE (2000) Traffic-related differences in outdoor and indoor concentrations of particles and volatile organic compounds in Amsterdam. Atmos Environ 34:3713–3722Google Scholar
  94. 94.
    Harrison RM, Jones AM, Lawrence RG (2004) Major component composition of PM10 and PM2.5 from roadside and urban background sites. Atmos Environ 38:4531–4538Google Scholar
  95. 95.
    Janssen NAH, Van Mansom DFM, Van Der Jagt K, Harssema H, Hoek G (1997) Mass concentration and elemental composition of airborne particulate matter at street and background locations. Atmos Environ 31:1185–1193Google Scholar
  96. 96.
    Smargiassi A, Baldwin M, Pilger C, Dugandzic R, Brauer M (2005) Small-scale spatial variability of particle concentration and traffic levels in Montreal: a pilot study. Sci Total Environ 338:243–251Google Scholar
  97. 97.
    Fernández-Camacho R, Rodríguez S, de la Rosa J, Sánchez de la Campa AM, Viana M, Alastuey A, Querol X (2011) Ultrafine particle formation in the island sea breeze airflow in Southwest Europe. Atmos Chem Phys 10:9615–9630Google Scholar
  98. 98.
    Cheung HC, Morawska L, Ristovski ZD (2011) Observation of new particle formation in subtropical urban environment. Atmos Chem Phys 11(8):3823–3833Google Scholar
  99. 99.
    Fine PM, Sioutas C, Solomon PA (2008) Secondary particulate matter in the United States: insights from the particulate matter supersites program and related studies. J Air Waste Manage Assoc 58(2):234–253Google Scholar
  100. 100.
    Mejia JF, Morawska L (2009) An investigation of nucleation events in a coastal urban environment in the Southern hemisphere. Atmos Chem Phys 9(20):7877–7888Google Scholar
  101. 101.
    Gomišček B, Hauck H, Stopper S, Preining O (2004) Spatial and temporal variations of PM1, PM2.5, PM10 and particle number concentration during the AUPHEP—project. Atmos Environ 38:3917–3934Google Scholar
  102. 102.
    Laakso L, Hussein T, Aarnio P, Komppula M, Hiltunen V, Viisanen Y, Kulmala M (2003) Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland. Atmos Environ 37:2629–2641Google Scholar
  103. 103.
    Pérez L, Medina-Ramón M, Künzli N, Alastuey A, Pey J, Pérez N, Garcia A, Tobias A, Querol X, Sunyer J (2009) Size fractionated particulate matter, vehicle traffic, and case specific daily mortality in Barcelona (Spain). Environ Sci Technol 43(13):4707–4714. doi: 10.1021/es8031488,2009 Google Scholar
  104. 104.
    Pengchai P, Furumai H, Nakajima F (2004) Source apportionment of polycyclic aromatic hydrocarbons in road dust in Tokyo. Polycycl Aromat Compd 24(4–5):773–789Google Scholar
  105. 105.
    Gustafsson M, Blomqvist G, Gudmundsson A, Dahl A, Swietlicki E, Bohgard M, Lindbom J, Ljungman A (2008) Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material. Sci Total Environ 393(2–3):226–240Google Scholar
  106. 106.
    Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, de la Rosa J, Sánchez de la Campa A, Artíñano B, Salvador P, García Dos Santos S, Fernández-Patier R, Moreno-Grau S, Negral L, Minguillón MC, Monfort E, Gil JI, Inza A, Ortega LA, Santamaría JM, Zabalza J (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219–7231Google Scholar
  107. 107.
    Etyemezian V, Nikolich G, Ahonen S, Pitchford M, Sweeney M, Purcell R, Gillies J, Kuhns H (2007) The Portable In Situ Wind Erosion Laboratory (PI-SWERL): a new method to measure PM10 windblown dust properties and potential for emissions. Atmos Environ 41(18):3789–3796Google Scholar
  108. 108.
    Kuhns H, Gillies J, Etyemezian V, Nikolich G, King J, Zhu D, Uppapalli S, Engelbrecht J, Kohl S (2010) Effect of soil type and momentum on unpaved road particulate matter emissions from wheeled and tracked vehicles. Aerosol Sci Technol 44(3):187–196Google Scholar
  109. 109.
    Amato F, Pandolfi M, Moreno T, Furger M, Pey J, Alastuey A, Bukowiecki N, Prévôt ASH, Baltensperger U, Querol X (2011) Sources and variability of inhalable road dust particles in three European cities. Atmos Environ 45(37):6777–6787Google Scholar
  110. 110.
    Richard A, Gianini MFD, Mohr C, Furger M, Bukowiecki N, Minguillón MC, Lienemann P, Flechsig U, Appel K, Decarlo PF, Heringa MF, Chirico R, Baltensperger U, Prévôt ASH (2011) Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland. Atmos Chem Phys 11(17):8945–8963Google Scholar
  111. 111.
    Mijić Z, Stojić A, Perišić M, Rajšić S, Tasić M, Radenković M, Joksić J (2010) Seasonal variability and source apportionment of metals in the atmospheric deposition in Belgrade. Atmos Environ 44(30):3630–3637Google Scholar
  112. 112.
    Masiol M, Rampazzo G, Ceccato D, Squizzato S, Pavoni B (2010) Characterization of PM10 sources in a coastal area near Venice (Italy): an application of factor-cluster analysis. Chemosphere 80(7):771–778Google Scholar
  113. 113.
    Rodríguez S, Querol X, Alastuey A, Viana M, Alarcón M, Mantilla E, Ruiz CR (2004) Comparative PM10-PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Sci Total Environ 328:95–113Google Scholar
  114. 114.
    Ingenieurbüro Lohmeyer, 2004: Maßnahmebetrachtungen zu PM10 im Zusammenhang mit Luftreinhalteplänen. Anhang 2 of Regierungspräsidium Stuttgart (2005)Google Scholar
  115. 115.
    Astel AM (2010) Air contaminants modelling by use of several receptor-oriented models. Int J Environ Pollut 42(1–3):32–57Google Scholar
  116. 116.
    Thorpe A, Harrison RM, Boulter PG, McCrae IS (2007) Estimation of particle resuspension source strength on a major London Road. Atmos Environ 41:8007–8020Google Scholar
  117. 117.
    Gu J, Pitz M, Schnelle-Kreis J, Diemer J, Reller A, Zimmermann R, Soentgen J, Stoelzel M, Wichmann H-E, Peters A, Cyrys J (2011) Source apportionment of ambient particles: comparison of positive matrix factorization analysis applied to particle size distribution and chemical composition data. Atmos Environ 45(10):1849–1857Google Scholar
  118. 118.
    Amato F, Querol X, Johansson C, Nagl C, Alastuey A (2010) A review on the effectiveness of street sweeping, washing and dust suppressants as urban PM control methods. Sci Total Environ 408(16):3070–3084Google Scholar
  119. 119.
    Putaud JP, Van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyrys J, Flentje H, Fuzzi S, Gehrig R, Hansson HC, Harrison RM, Herrmann H, Hitzenberger R, Hüglin C, Jones AM, Kasper-Giebl A, Kiss G, Kousa A, Kuhlbusch TAJ, Löschau G, Maenhaut W, Molnar A, Moreno T, Pekkanen J, Perrino C, Pitz M, Puxbaum H, Querol X, Rodriguez S, Salma I, Schwarz J, Smolik J, Schneider J, Spindler G, ten Brink H, Tursic J, Viana M, Wiedensohler A, Raes F (2010) A European aerosol phenomenology – 3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ 44(10):1308–1320Google Scholar
  120. 120.
    Putaud JP, Raes F, Van Dingenen R, Bruggemann E, Facchini MC, Decesari S, Fuzzi S, Gehrig R, Hüglin C, Laj P, Lorbeer G, Maenhaut W, Mihalopoulos N, Müller K, Querol X, Rodriguez S, Schneider J, Spindler G, ten Brink H, Tørseth K, Wiedensohler A, Wiedensohler A (2004) A European aerosol phenomenology-2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38(16):2579–2595Google Scholar
  121. 121.
    Perez N, Pey J, Querol X, Alastuey A, Lopez JM, Viana M (2008) Partitioning of major and trace components in PM10, PM2.5 and PM1 at an urban site in Southern Europe. Atmos Environ 42:1677–1691Google Scholar
  122. 122.
    Ariola V, D’Alessandro A, Lucarelli F, Marcazzan G, Mazzei F, Nava S, Garcia-Orellana I, Prati P, Valli G, Vecchi R, Zucchiatti A (2006) Elemental characterization of PM10, PM2.5 and PM1 in the town of Genoa (Italy). Chemosphere 62(2):226–232Google Scholar
  123. 123.
    Marelli L, Lagler F, Borowiak A, Drossinos Y, Gerboles M, Buzica D, Szafraniec K, Niedzialek J, Jimenez J, De Santi G (2006) PM measurements in Krakow during a winter campaign. In: JRC enlargement and integration workshop, “Outcome of the Krakow Integrated Project”: particulate matter: from emissions to health effects, Krakow Municipal Office, 15–16 May 2006Google Scholar
  124. 124.
    Querol X, Alastuey A, Puicercus JA, Mantilla E, Miró JV, López-Soler A, Plana F, Artíñano B (1998) Seasonal evolution of suspended particles around a large coal-fired power station: particle levels and sources. Atmos Environ 32:1963–1978Google Scholar
  125. 125.
    Karanasiou A, Moreno T, Amato F, Lumbreras J, Narros A, Borge R, Tobías A, Boldo E, Linares C, Pey J, Reche C, Alastuey A, Querol X (2011) Road dust contribution to PM levels – evaluation of the effectiveness of street washing activities by means of positive matrix factorization. Atmos Environ 45(13):2193–2201Google Scholar
  126. 126.
    Norman M, Johansson C (2006) Studies of some measures to reduce road dust emissions from paved roads in Scandinavia. Atmos Environ 40:6154–6164Google Scholar
  127. 127.
    Tervahattu H, Kupiainen KJ, Räisänen M, Mäkelä T, Hillamo R (2006) Generation of urban road dust from anti-skid and asphalt concrete aggregates. J Hazard Mater 132:39–46Google Scholar
  128. 128.
    Areskoug H, Johansson C, Alesand T, Hedberg E, Ekengren T, Vesely V, Wideqvist U, Hansson HC (2004) Concentrations and sources of PM10 and PM2.5 in Sweden. ITM Report no. 110, StockholmGoogle Scholar
  129. 129.
    Kupiainen K, Tervahattu H, Raisanen M, Makela T, Aurela M, Hillamo R (2005) Size and composition of airborne particles from pavement wear, tires, and traction sanding. Environ Sci Technol 39:699–706Google Scholar
  130. 130.
    Kupiainen K, Tervahattu H, Raisanen M (2003) Experimental studies about the impact of traction sand on urban road dust composition. Sci Total Environ 308:175–184Google Scholar
  131. 131.
    Kuhns H, Etyemezian V, Green M, Hendrickson K, McGown M, Barton K, Pitchford M (2003) Vehicle-based road dust emission measurement – part II: effect of precipitation, wintertime road sanding and street sweepers on inferred PM10 emission potentials from paved and unpaved roads. Atmos Environ 37:4573–4582Google Scholar
  132. 132.
    Hussein T, Johansson C, Karlsson H, Hansson HC (2008) Factors affecting non tailpipe aerosol particle emissions from paved roads: on-road measurements in Stockholm, Sweden. Atmos Environ 42(4):688–702Google Scholar
  133. 133.
    Kantamaneni R, Adams G, Bamesberger L, Allwine E, Westberg H, Lamb B, Claiborn C (1996) The measurement of roadway PM10 emission rates using atmospheric tracer ratio techniques. Atmos Environ 30(24):4209–4223Google Scholar
  134. 134.
    Wåhlin P, Berkowicz R, Palmgren F (2006) Characterization of traffic-generated particulate matter in Copenhagen. Atmos Environ 40:2151–2159Google Scholar
  135. 135.
    Forsberg B, Hansson HC, Johansson C, Areskoug H, Persson K, Jarvholm B (2005) Comparative health impact assessment of local and regional particulate air pollutants in Scandinavia. Ambio 34:11–19Google Scholar
  136. 136.
    Omstedt G, Bringfelt B, Johansson C (2005) A model for vehicle-induced non-tailpipe emissions of particles along Swedish roads. Atmos Environ 39(33):6088–6097Google Scholar
  137. 137.
    EPA (2006) AP-42. Compilation of air pollutant emission factors, 5th edn. U.S. Environmental Protection Agency, Research Triangle Park. (Chapter 13.2) fugitive dust sources
  138. 138.
    Gámez AJ, Düring I, Bösinger R, Rabl P, Lohmeyer A (2001) Determination of the 99.8-percentile of NO2 concentrations and PM10 emissions for EIA studies. In: Third international conference on urban air quality (measurement, modelling, management), Loutraki, 19–23 March 2001Google Scholar
  139. 139.
    Düring I, Jacob J, Lohmeyer A, Lutz M, Reichenbacher W (2002) Estimation of the ‘nonexhaust pipe’ PM10 emissions of streets for practical traffic air pollution modelling. In: 11th international conference ‘transport and air pollution’, Graz, June 2002Google Scholar
  140. 140.
    Amato F, Nava S, Lucarelli F, Querol X, Alastuey A, Baldasano JM, Pandolfi M (2010) A comprehensive assessment of PM emissions from paved roads: real-world emission factors and intense street cleaning trials. Sci Total Environ 408(20):4309–4318Google Scholar
  141. 141.
    Gertler A, Kuhns H, Abu-Allaban M, Damm CR, Gillies J, Etyemezian V, Clayton R, Proffitt D (2006) A case study of the impact of winter road sand/salt and street sweeping on road dust re-entrainment. Atmos Environ 40:5976–5985Google Scholar
  142. 142.
    Johansson C, Norman M, Burman L (2009) Road traffic emission factors for heavy metals. Atmos Environ 43(31):4681–4688Google Scholar
  143. 143.
    Bukowiecki N, Lienemann P, Hill M, Figi R, Richard A, Furger M, Rickers K, Falkenberg G, Zhao Y, Cliff SS, Prevot ASH, Baltensperger U, Buchmann B, Gehrig R (2009) Real-world emission factors for antimony and other brake wear related trace elements: size-segregated values for light and heavy duty vehicles. Environ Sci Technol 43(21):8072–8078Google Scholar
  144. 144.
    Claiborn C, Mitra A, Adams G, Bamesberger L, Allwine G, Kantamaneni R, Lamb B, Westberg H (1995) Evaluation of PM10 emission rates from paved and unpaved roads using tracer techniques. Atmos Environ 29(10):1075–1089Google Scholar
  145. 145.
    Schaap M, Manders AMM, Hendriks ECJ, Cnossen JM, Segers AJS, Denier van der Gon HAC, Jozwicka M, Sauter FJ, Velders GJM, Matthijsen J, Builtjes PJH (2009) Regional modelling of particulate matter for the Netherlands.
  146. 146.
    Gehrig R, Hill M, Buchmann B, Imhof D, Weingartner E, Baltensperger U (2004) Separate determination of PM10 emission factors of road traffic for tailpipe emissions and emissions from abrasion and resuspension processes. Int J Environ Pollut 22(3):312–325Google Scholar
  147. 147.
    Ketzel M, Omstedt G, Johansson C, During I, Pohjola M, Oettl D, Gidhagen L, Gidhagen L, Wåhlin P, Lohmeyer A, Haakana M, Berkowicz R (2007) Estimation and validation of PM2.5/PM10 exhaust and nonexhaust emission factors for practical street pollution modeling. Atmos Environ 41(40):9370–9385Google Scholar
  148. 148.
    Amato F, Karanasiou A, Moreno T, Alastuey A, Orza JAG, Lumbreras J, Borge R, Boldo E, Linares C, Querol X (2012) Emission factors from road dust resuspension in a Mediterranean freeway. Atmos Environ 61:580–587Google Scholar
  149. 149.
    INFRAS, HBEFA Handbuch Emissionsfaktoren des Strassenverkehrs. Version 2.1. INFRAS, UBA Berlin, UBA Wien, BUWALGoogle Scholar
  150. 150.
    Schaap M, Timmermans RMA, Roemer M, Boersen GAC, Builtjes PJH, Sauter FJ, Velders GJM, Beck JP (2008) The LOTOS-EUROS model: description, validation and latest developments. Int J Environ Pollut 32(2):270–290Google Scholar
  151. 151.
    Kousoulidou M, Ntziachristos L, Mellios G, Samaras Z (2008) Road-transport emission projections to 2020 in European urban environments. Atmos Environ 42(32):7465–7475Google Scholar
  152. 152.
    Gehrig R, Zeyer K, Bukowiecki N, Lienemann P, Poulikakos LD, Furger M, Buchmann B (2010) Mobile load simulators – a tool to distinguish between the emissions due to abrasion and resuspension of PM10 from road surfaces. Atmos Environ 44(38):4937–4943Google Scholar
  153. 153.
    Denier van der Gon HAC, Hulskotte JHJ, Visschedijk AJH, Schaap M (2007) A revised estimate of copper emissions from road transport in UNECE-Europe and its impact on predicted copper concentrations. Atmos Environ 41(38):8697–8710Google Scholar
  154. 154.
    Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30:1009–1017Google Scholar
  155. 155.
    Iijima A, Sato K, Yano K, Tago H, Kato M, Kimura H, Furuta N (2007) Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos Environ 41(23):4908–4919Google Scholar
  156. 156.
    Von Uexküll O, Skerfving S, Doyle R, Braungart M (2005) Antimony in brake pads – a carcinogenic component? J Clean Prod 13(1):19–31Google Scholar
  157. 157.
    Zereini F, Alt F, Messerschmidt J, Wiseman C, Feldmann I, Von Bohlen A, Müller J, Liebl K, Püttmann W (2005) Concentration distribution of heavy metals in urban airborne particulate matter in Frankfurt am Main, Germany. Environ Sci Technol 39(9):2983–2989Google Scholar
  158. 158.
    Weckwerth G (2001) Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmos Environ 35:5525–5536Google Scholar
  159. 159.
    Sternbeck J, Sjödin A, Andreasson K (2002) Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos Environ 36:4735–4744Google Scholar
  160. 160.
    Gietl JK, Lawrence R, Thorpe AJ, Harrison RM (2010) Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos Environ 44(2):141–146Google Scholar
  161. 161.
    Pey J, Querol X, Alastuey A (2010) Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. Atmos Environ 44(13):1587–1596Google Scholar
  162. 162.
    Fujiwara FG, Gómez DR, Dawidowski L, Perelman P, Faggi A (2011) Metals associated with airborne particulate matter in road dust and tree bark collected in a megacity (Buenos Aires, Argentina). Ecol Indic 11(2):240–247.Google Scholar
  163. 163.
    Arditsoglou A, Samara C (2005) Levels of total suspended particulate matter and major trace elements in Kosovo: a source identification and apportionment study. Chemosphere 59(5):669–678 (Original Research Article)Google Scholar
  164. 164.
    Glaser B, Dreyer A, Bock M, Fiedler S, Mehring M, Heitmann T (2005) Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures. Environ Sci Technol 39(11):3911–3917Google Scholar
  165. 165.
    IARC (1989) International Agency for Research on Cancer Antimony trioxide and antimony trisulfide. In: IARC (ed) IARC monographs. IARC, Lyon, p 291Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fulvio Amato
    • 1
    • 2
  • Martijn Schaap
    • 1
  • Cristina Reche
    • 2
  • Xavier Querol
    • 2
    Email author
  1. 1.TNO, Built Environment and Geosciences, Department of Climate, Air and SustainabilityUtrechtThe Netherlands
  2. 2.Institute of Environmental Assessment and Water Research, IDAEA, Spanish Research Council CSICBarcelonaSpain

Personalised recommendations