Number Size Distributions of Submicron Particles in Europe

  • Ari AsmiEmail author
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 26)


The aerosol particle number size distribution is a key component in aerosol indirect climate effects, and is also a key factor on potential nanoparticle health effects. This chapter will give background on particle number size distributions, their monitoring and on potential climate and health effects of submicron aerosol particles. The main interest is on the current variability and concentration levels in European background air.

The submicron particle number size distribution controls many of the main climate effects of submicron aerosol populations. The data from harmonized particle number size distribution measurements from European field monitoring stations are presented and discussed. The results give a comprehensive overview of the European near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm of dry particle diameter. Spatial and temporal distributions of aerosols in the particle sizes most important for climate applications are presented. Annual, weekly, and diurnal cycles of the aerosol number concentrations are shown and discussed. Emphasis is placed on the usability of results within the aerosol modeling community and several key points of model-measurement comparison of submicron aerosol particles are discussed along with typical concentration levels around European background.


Aerosol number concentration Aerosol number size distribution Atmospheric aerosols CCN 



The author wishes to thank Dr. A. Wiedensohler for the useful comments in the review. The extensive work of all scientists and technical staff maintaining and operating the stations and the instruments is gratefully acknowledged.


  1. 1.
    Dockery DW, Pope C (1994) Acute respiratory effects of particulate air pollution. Annu Rev Public Health 15:107–132CrossRefGoogle Scholar
  2. 2.
    Wittmaack K (2007) In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ Health Perspect 115:187–194CrossRefGoogle Scholar
  3. 3.
    Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:829–839CrossRefGoogle Scholar
  4. 4.
    Beddows DCS, Dall’osto M, Harrison RM (2009) Cluster analysis of rural, urban, and curbside atmospheric particle size data. Environ Sci Technol 43:4694–4700CrossRefGoogle Scholar
  5. 5.
    Commission regulation (EC) No 682/2008 of 18 July 2008 (2008) Off J Eur Union: Legis, L199, 1–136Google Scholar
  6. 6.
    Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics - from air pollution to climate change. Wiley, New Jersey, USAGoogle Scholar
  7. 7.
    Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152CrossRefGoogle Scholar
  8. 8.
    Albrecht BA (1989) Aerosol, cloud microphysics, and fractional cloudiness. Science 245:1227–1230CrossRefGoogle Scholar
  9. 9.
    Andreae M, Rosenfeld D (2008) Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci Rev 89:13–41CrossRefGoogle Scholar
  10. 10.
    McFiggans G et al (2006) The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos Chem Phys 6:2593–2649CrossRefGoogle Scholar
  11. 11.
    Asmi A (2012) Weakness of the weekend effect in aerosol number concentrations. Atmos Environ 51:100–107. doi: 10.1016/j.atmosenv.2012.01.060 CrossRefGoogle Scholar
  12. 12.
    van Dingenen R et al (2004) European aerosol phenomenology – I: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:2561–2577CrossRefGoogle Scholar
  13. 13.
    Heintzenberg J et al (1998) Mass-related aerosol properties over the Leipzig basin. J Geophys Res D 103:13125–13135CrossRefGoogle Scholar
  14. 14.
    Laj P et al (2009) Measuring atmospheric composition change. Atmos Environ 4:5351–5414CrossRefGoogle Scholar
  15. 15.
    Wiedensohler A et al (2012) Particle mobility size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos Meas Tech 5:657–685CrossRefGoogle Scholar
  16. 16.
    Philippin S et al (2009) EUSAAR an unprecedented network of aerosol observation in Europe. Earozoru Kenkyu 24:78–83Google Scholar
  17. 17.
    Birmili W et al (2009) Atmospheric aerosol measurements in the German Ultrafine Aerosol Network (GUAN), – Part 1: soot and particle number distributions. Gefahrstoffe Reinhalt Luft 69:137–145Google Scholar
  18. 18.
    Asmi A et al (2011) Number size distributions and seasonality of submicron particles in Europe 2008–2009. Atmos Chem Phys 11:5505–5538CrossRefGoogle Scholar
  19. 19.
    Henne S et al (2010) Assessment of parameters describing representativeness of air quality in-situ measurement sites. Atmos Chem Phys 10:3561–3581CrossRefGoogle Scholar
  20. 20.
    Grönholm T, Annila A (2007) Natural distribution. Math Biosci 210:659–667CrossRefGoogle Scholar
  21. 21.
    Yoon YJ et al (2007) Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols. J Geophys Res, Vol. 112, 14 p., doi: 10.1029/2005JD007044
  22. 22.
    McGovern FM et al (1996) Aerosol and trace gas measurements during the Mace Head experiment. Atmos Environ 30:3891–3902CrossRefGoogle Scholar
  23. 23.
    Charron A, Birmili W, Harrison RM (2008) Fingerprinting particle origins according to their size distribution at a UK rural site. J Geophys Res 113:07202CrossRefGoogle Scholar
  24. 24.
    Weingartner E, Nyeki S, Baltensberger U (2000) Seasonal and diurnal variation of aerosol size distributions (10 < D < 750 nm) at high-alpine site. J Geophys Res 104:26809–26820CrossRefGoogle Scholar
  25. 25.
    Forster PM, Solomon S (2003) Observations of a “weekend effect” in diurnal temperature range. Proc Natl Acad Sci USA 100:11225–11230CrossRefGoogle Scholar
  26. 26.
    Bäumer D, Vogel B (2007) An unexpected pattern of distinct weekly periodicities in climatological variables in Germany. Geophys Res Lett, Vol. 34, 4 p., doi: 10.1029/2006GL028559
  27. 27.
    European Environmental Agency (2007) Land-use scenarios for Europe: qualitative and quantitative analysis on a European scale (PRELUDE), EAA Technical report No 9/2007, ISBN: 987-92-9167-927-0,

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of HelsinkiHelsinkiFinland

Personalised recommendations