Skip to main content

Environmental Fate Models

  • Chapter
  • First Online:
Global Risk-Based Management of Chemical Additives II

Abstract

The environmental fate of chemicals describes the processes by which chemicals move and are transformed into the environment. Environmental fate processes that should be addressed include: persistence in air, water and soil; reactivity and degradation; migration in groundwater; removal from effluents by standard wastewater treatment methods and bioaccumulation in aquatic or terrestrial organisms. Environmental fate models are by no means compulsory for managing priority substances. Efficient source control can be done without them, i.e. by reducing emissions gradually and monitoring the environment to track changes. However the environmental fate models are proposed for use for two main reasons: (a) because the quantitative models can improve the understanding of the managed system and (b) because the models can be used to predict long-term impacts of planned actions. Furthermore the residence times of some of the priority substances may be very long (e.g. 50 years for mercury in water column); therefore, only monitoring could be not enough to detect if the taken measures are enough to reach the good ecological status. The use of environmental fate models in decision making is not a new concept. They are routinely used in the framework of environmental risk assessment. The output of environmental fate models can be expressed as time series of predicted concentrations in different medium of both indoor and outdoor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cowan CE, Mackay D, Feijtel TCJ, van de Meent D, di Guardo A, Davies J, Mackay N (1995) The multi-media fate model: a vital tool for predicting the fate of chemicals. SETAC Press, Pensacola

    Google Scholar 

  2. Ramaswami A, Milford JB, Small MJ (2005) Integrated environmental modeling. Pollutant transport, fate, and risk in the environment. Wiley, New York

    Google Scholar 

  3. Ryan PA (1985) Multimedia modelling of environmental transport. MS Thesis, University of Californiain Los Angeles

    Google Scholar 

  4. McKone TE, Layton DW (1986) Screening the potential risks of toxic substances using a multimedia compartment model: estimation of human exposure. Regul Toxicol Pharm 6:359–380

    Article  CAS  Google Scholar 

  5. Mackay D, Diamond M (1989) Application of the QWASI (quantitative water air sediment interaction) fugacity model to the dynamics of organic and inorganic chemicals in lakes. Chemosphere 18:1343–1365

    Article  CAS  Google Scholar 

  6. Mackay D, Paterson S (1991) Evaluating the multimedia fate of organic chemicals: a level III fugacity model. Environ Sci Technol 25:427–436

    Article  CAS  Google Scholar 

  7. McKone TE (1993) CalTOX, a multimedia total exposure model for hazardous-waste sites. Part I. Executive summary. A report written for The Office of Scientific Affairs Department of Toxic Substances Control California Environmental Protection Agency Sacramento, California by the Lawrence Livermore National Laboratory, Livermore

    Google Scholar 

  8. McKone TE (1993) CalTOX, A multi-media total-exposure model for hazardous wastes sites. Part II. The dynamic multi-media transport and transformation model. A report prepared for the State of California, Department Toxic Substances Control by the Lawrence Livermore National Laboratory No. UCRL-CR_111456PtII, Livermore

    Google Scholar 

  9. van de Meent D (1993) SimpleBOX: a generic multi-media fate evaluation model. RIVM report no. 6727200001, Bilthoven

    Google Scholar 

  10. ECETOC (1994) HAZCHEM. A mathematical model for use in risk assessment of substances. Special report n. 8. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels

    Google Scholar 

  11. Devillers J, Bintein S (1995) CHEMFRANCE: a regional level III fugacity model applied to France. Chemosphere 30(3):457–476

    Article  CAS  Google Scholar 

  12. Mackay D, Di Guardo A, Paterson S, Kicsi G, Cowan D, Kane D (1996) Assessment of chemical fate in the environment using evaluative, regional and local-scale models: illustrative application to chlorobenzene and linear alkylbenzene sulfonates. Environ Toxicol Chem 15(9):1638–1648

    Article  CAS  Google Scholar 

  13. Gobas FAPC, Pasternak JP, Lien K, Duncan RK (1998) Development and field validation of a multimedia exposure assessment model for waste load allocation in aquatic ecosystems: application to 2,3,7,8-tetrachlo-rodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran in the Fraser river watershed. Environ Sci Technol 32(16):2442–2449

    Article  CAS  Google Scholar 

  14. Coulibaly L (1999) Multimedia modeling of organic contaminants in the Passaic river watershed. Dissertation, Department of Civil and Environmental Engineering, New Jersey Institute of Technology

    Google Scholar 

  15. Fenner K, Scheringer M, Hungerbuhler K (2000) Persistence of parent compounds and transformation products in a level IV multimedia model. Environ Sci Technol 34(17):3809–3817

    Article  CAS  Google Scholar 

  16. Wania F, Persson J, Di Guardo A, McLachlan MS (2000) CoZMo-POP. A fugacity-based multi-compartmental mass balance model of the fate of persistent organic pollutants in the coastal zone. WECC report 1/2000. Toronto (April)

    Google Scholar 

  17. Padovani L, Trevisan M, Capri E (2004) A calculation procedure to assess potential environmental risk of pesticides at the farm level. Ecol Indicat 4:111–123

    Article  CAS  Google Scholar 

  18. Trevisan M, Di Guardo A, Balderacchi M (2009) An environmental indicator to drive sustainable pest management practices. Environ Model Software 24(8):994–1002

    Article  Google Scholar 

  19. Balderacchi M, Trevisan M (2010) Comments on pesticide risk assessment by the revision of Directive EU 91/414. Environ Sci Pollut Res 17(3):523–528

    Article  CAS  Google Scholar 

  20. Ciffroy P, Tanaka T, Johansson E, Brochot C (2011) Linking fate model in freshwater and PBPK model to assess human internal dosimetry of B(a)P associated with drinking water. Environ Geochem Health 33:371–387

    Article  CAS  Google Scholar 

  21. Claff RE (1993) The American Petroleum Institute s (API) decision support system (DSS) for risk and exposure assessment. In: Proceedings of the 1993 petroleum hydro- carbons and organic chemicals in ground water: prevention, detection and restoration. The American Petroleum Institute and the Association of Ground Water Scientists and Engineers, Houston, November 10–12, pp 74–84

    Google Scholar 

  22. USEPA (1997) Lake Michigan mass budget/mass balance work plan. EPA-905-R-97-018, US Environmental Protection Agency and Great Lakes National Program Office

    Google Scholar 

  23. McDonald JP, Gelston GM (1998) Description of the multimedia environmental pollutant assessment system (MEPAS, version 3.2), with application to a hypothetical soil contamination scenario. J Soil Contam 7(3):283–300

    Article  CAS  Google Scholar 

  24. USEPA (1999) Documentation for the FRAMES-HWIR technology software system, vol. 6: multimedia multipathway simulation processor. US Environmental Protection Agency, Office of Research and Development (October)

    Google Scholar 

  25. Cohen Y, Tsai W, Chetty SL, Mayer GJ (1990) Dynamic partitioning of organic chemicals in regional environments: a multimedia screening-level modeling approach. Environ Sci Technol 24:1549–1558

    Article  CAS  Google Scholar 

  26. Cohen Y, Clay RE (1994) Multimedia partitioning of particle-bound organics. J Hazard Mater 37:507–526

    Article  CAS  Google Scholar 

  27. Cohen Y, Cooter EJ (2002) Multimedia environmental distribution of toxics (Mend-Tox). I. Hybrid compartmental-spatial modeling framework. Pract Periodical Hazard Toxic Radioactive Waste Manag 6(2):70–86

    Article  CAS  Google Scholar 

  28. Pratt GC, Gerbec PE, Livingston SK, Oliaei F, Bollweg GL, Paterson S, Mackay D (1993) An indexing system for comparing toxic air pollutants based upon their potential environmental impacts. Chemosphere 27(8):1359–1379

    Article  CAS  Google Scholar 

  29. Renner R (1995) Predicting chemical risks with multimedia fate models. Environ Sci Technol 29:556A–559A

    CAS  Google Scholar 

  30. Mackay D, Di Guardo A, Paterson S, Cowan CE (1996) Evaluating the environmental fate of a variety of types of chemicals using the EQC model. Environ Toxicol Chem 15:1627–1637

    Article  CAS  Google Scholar 

  31. Mackay D, Di Guardo A, Paterson S, Kicsi G, Cowan CE (1996) Assessing the fate of new and existing chemicals: a five-stage process. Environ Toxicol Chem 15:1618–1626

    Article  CAS  Google Scholar 

  32. Mackay D (1998) Multimedia mass balance models of chemical distribution and fate. In: Schuurmann G, Markert B (eds) Ecotoxicology. Wiley, New York, pp 237–257

    Google Scholar 

  33. Berding V, Schwartz S, Matthies M (2000) Scenario analysis of a level III multimedia model using generic and regional data. Environ Sci Pollut Res 7(3):147–158

    Article  CAS  Google Scholar 

  34. Mackay D, Joy M, Paterson S (1983) A quantitative water, air, sediment interaction (Qwasi) fugacity model for describing the fate of chemicals in lakes. Chemosphere 12(7/8):981–997

    Article  CAS  Google Scholar 

  35. Paterson S, Mackay D (1994) A model of organic chemical uptake by plants from soil and the atmosphere. Environ Sci Technol 28:2259–2266

    Article  CAS  Google Scholar 

  36. Bennett DH, Mckone TE, Matthies M, Kastenberg WE (1998) General formulation of characteristic travel distance for semivolative organic chemicals in a multimedia environment. Environ Sci Technol 32:4023–4030

    Article  CAS  Google Scholar 

  37. Wania F, McLachlan MS (2001) Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model. Environ Sci Technol 35(3):582–590

    Article  CAS  Google Scholar 

  38. Zhang Q, Crittenden JC, Shonnard D, Mihelcic JR (2003) Development and evaluation of an environmental multimedia fate model CHEMGL for the Great Lakes region. Chemosphere 50:1377–1397

    Article  CAS  Google Scholar 

  39. Rabta B, Aïssani D (2008) Strong stability and perturbation bounds for discrete Markov chains. Lin Algebra Appl 428:1921–1927

    Article  Google Scholar 

  40. Xue JG (2001) Blockwise perturbation theory for nearly uncoupled Markov chains and its application. Lin Algebra Appl 326:173–191

    Article  Google Scholar 

  41. Hudson G, Bienie RV (2000) A method of land evaluation including year to year weather variability. Agr Forest Meteorol 101:203–216

    Article  Google Scholar 

  42. Meza FJ, Wilks DS (2004) Use of seasonal forecasts of sea surface temperature anomalies for potato fertilization management. Theoretical study considering EPIC model results at Valdivia. Chile Agr Syst 82:161–180

    Article  Google Scholar 

  43. Schlicht R, Iwasa Y (2004) Forest gap dynamics and the Ising model. J Theor Biol 230:65–75

    Article  Google Scholar 

  44. Yakowitz S (1995) Computational methods for Markov series with large state spaces, with application to AIDS modelling. Math Biosci 127:99–121

    Article  CAS  Google Scholar 

  45. Johnson GE, Hedgebeth JB, Skalski JR et al (2004) A Markov chain analysis of fish movements to determine entrainment zones. Fish Res 69:349–358

    Article  Google Scholar 

  46. Singer ME, Younossi ZM (2001) Cost effectiveness of screening for hepatitis C virus in asymptomatic, average-risk adults. Am J Med 111:614–621

    Article  CAS  Google Scholar 

  47. Hlavacek WS, Percus JK, Percus OE et al (2002) Retention of antigen on follicular dendritic cells and Blymphocytes through complement-mediated multivalent ligand–receptor interactions: theory and application to HIV treatment. Math Biosci 176:185–202

    Article  CAS  Google Scholar 

  48. Wei JZ (2003) A multi-factor, credit migration model for sovereign and corporate debts. J Int Money Finance 22:709–735

    Article  Google Scholar 

  49. Wu C (2005) Inherent delays and operational reliability of airline schedules. J Air Transport Manag 11:273–282

    Article  Google Scholar 

  50. Duran CL (2004) Logistics for world-wide crude oil transportation using discrete event simulation and optimal control. Comput Chem Eng 28:897–911

    Article  Google Scholar 

  51. Berthiaux H, Mizonov V, Zhukov V (2005) Application of the theory of Markov chains to model different processes in particle technology. Powder Technol 157:128–137

    Article  CAS  Google Scholar 

  52. Zhang Q (1997) The course of Markov in estimating status of environmental facility. Manag Tech Environ Monitor 9:4–35

    CAS  Google Scholar 

  53. Harmon R, Challenor P (1997) A Markov chain Monte Carlo method for estimation and assimilation into models. Ecol Model 101:41–49

    Article  CAS  Google Scholar 

  54. Zhang L, Dai S (2007) Application of Markov Model to environmental fate of phenanthrene in Lanzhou Reach of Yellow River. Chemosphere 67:1296–1299

    Article  CAS  Google Scholar 

  55. Dazhi S, Xuqian L (2010) Application of Markov chain model on environmental fate of phenanthrene in soil and groundwater. Procedia Environ Sci 2:814–823

    Article  Google Scholar 

  56. Mackay D (1991) Multimedia environmental models: the fugacity approach. Lewis Publishers, Chelsea

    Google Scholar 

  57. Webster E, Mackay D, Di Guardo A, Kane D, Woodfine D (2004) Regional differences in chemical fate model outcome. Chemosphere 55:1361–1376

    Article  CAS  Google Scholar 

  58. Shonnard DR, Hiew DS (2000) Comparative environmental assessments of VOC recovery and recycle design alternatives for a gaseous waste stream. Environ Sci Technol 34(24):5222–5228

    Article  CAS  Google Scholar 

  59. Schowanek D, Webb S (2002) Exposure simulation for pharmaceuticals in Europa surface water with GREAT-ER. Toxicol Lett 131:39–50

    Article  CAS  Google Scholar 

  60. Feijtel T, Boeije G, Matthies M, Young A, Morris G, Gandolfi C, Hansen B, Fox K, Holt M, Koch V, Schroder R, Cassani G, Schowanek D, Rosenblom J, Niessen H (1997) Development of a geography-referenced regional exposure assessment tool for European Rivers-GREAT-ER Contribution to GRAT-ER #1. Chemosphere 34(11):2351–2373

    Article  CAS  Google Scholar 

  61. Wagner, J-O, Koorman F, Matthies M (1998) GREAT-ER analysis tools and connectivity-exposure at a regional scale. In: Proceeding of 8th annual meeting of SETAC Europe, Bordeaux

    Google Scholar 

  62. Boeije GM, Vanrolleghem P, Matthies M (1997) A georeferenced aquatic exposure prediction methodology for ‘down-the-drain’ chemicals. Contribution to GREAT-ER # 3. Water Sci Technol 36:251–258

    CAS  Google Scholar 

  63. Brandes LJ, den Hollander H, van de Meent D (1996) SimpleBox 2.0: a nested multimedia model for evaluating the environmental fate of chemicals. RIVM report no. 719101029, Bilthoven

    Google Scholar 

  64. MacLeod M, Woodfine DG, Mackay D, Mckone T, Bennett D, Randy M (2001) BERTNorth America: a regionally segmented multimedia contaminant fate model for North America. Environ Sci Pollut Res 8(3):156–163

    Article  CAS  Google Scholar 

  65. Hertwich EG (1999) Toxic equivalency: addressing human health effects in life cycle impact assessment. PhD Thesis, University of California, Berkeley

    Google Scholar 

  66. Hertwich EG, McKone TE, Pease WS (1999) Parameter uncertainty and variability in evaluative fate and exposure models. Risk Anal 19:1193–1204

    CAS  Google Scholar 

  67. Hertwich EG, Mateles SF, Pease WS, McKone TE (2001) Human toxicity potentials for life cycle assessment and toxics release inventory risk screening. Environ Toxicol Chem 20:928–939

    Article  CAS  Google Scholar 

  68. de Koning A, Guinée JB, Pennington DW, Sleeswijk A, Hauschild MZ, Molander S, Nyström B, Pant R, Schowanek D (2002)Methods and typology report. Part A. Inventory and classification of LCA characterisation methods for assessing toxic releases. OMNIITOX Deliverable D11A

    Google Scholar 

  69. Seuntjens P, Steurbaut W, Vangronsveld J (2006) Chain model for the impact analysis of contaminants in primary food products. Study report of the Belgian Science Policy

    Google Scholar 

  70. Tanaka T, Capri E, Ciffroy P (2011) Probabilistic and full-chain risk assessment of the chemical accumulation on human body using an integrated modeling tool. La Goliardica Pavese, Pavia

    Google Scholar 

  71. Tanaka T, Ciffroy P, Stenberg K, Capri E (2010) Regression approaches to derive generic and fish group-specific probability density functions of bioconcentration factors for metals. Environ Toxicol Chem 29(11):2417–2425

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Suciu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suciu, N. et al. (2012). Environmental Fate Models. In: Bilitewski, B., Darbra, R., Barceló, D. (eds) Global Risk-Based Management of Chemical Additives II. The Handbook of Environmental Chemistry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2012_177

Download citation

Publish with us

Policies and ethics