Persistent Organic Pollutants in the European Atmosphere

  • Barend L. van DroogeEmail author
  • Joan O. Grimalt
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 26)


Since the beginning of the last century, European air has received increasing amounts of organic compounds. Some of them were released as consequence of combustion processes and others were synthesised for specific applications in industry or agriculture. A group of these organic compounds are semi-volatile, resistant to degradation processes, bioaccumulative and toxic. Because of these properties, they are grouped under the general name of persistent organic pollutants (POPs). These physical–chemical properties are found in polycyclic aromatic hydrocarbons or in organic molecules with 5–12 carbon atoms and a high degree of halogen substituents. The present chapter is devoted to describe these two groups of compounds. However, in other review papers, only the organohalogen compounds are considered under the POP concept.

The properties of semi-volatility, bioaccumulation and persistent to degradation processes provide a potential for long-range atmospheric transport of these compounds. They may therefore be deleterious for the ecosystems and human health even in sites located far away from the areas of production and application. Furthermore, nearly all organohalogen POPs are man-made. In nature, there are no compounds with similar chemical structure (or these are in very low concentrations). Thus, human and animal evolution has not had the opportunities to generate specific metabolic ways for their elimination. Thus, they accumulate and remain in the body throughout all life and during all life stages (including in utero development). By the end of the twentieth century, international protocols have been established to reduce the emissions and impact of POPs into the environment and humans.

The following chapter describes the changes in concentration of POPs in ambient air in Europe through time, with a focus on current concentrations. It also describes the differences in physical–chemical properties of these pollutants and relates them with the mechanisms of atmospheric transport. Strategies to reduce the ambient air concentrations are discussed. Information is also given on future perspectives in view of “emerging” pollutants and emission sources.


Gas-to-particle-phase partitioning Long-range atmospheric transport Organochlorines Persistent organic pollutants Polycyclic aromatic hydrocarbons 


  1. 1.
    AMAP (1998) Arctic pollution issues: a state of the arctic environment report. Arctic Monitoring and Assessment Programme, OsloGoogle Scholar
  2. 2.
    Grimalt JO, Fernández P, Berdie L, Vilanova RM, Catalan J, Psenner R, Hofer R, Appleby PG, Rosseland BO, Lien L, Massabuau LC, Batterbee RW (2001) Selective trapping of organochlorine compounds in mountain lakes of temperate areas. Environ Sci Technol 35:2690–2697CrossRefGoogle Scholar
  3. 3.
    Carson RL (1962) Silent spring. Houghton Mifflin Company, NYGoogle Scholar
  4. 4.
    Jensen S (1966) Report of a new chemical hazard. New Sci 32:612Google Scholar
  5. 5.
    Kjeller L-O, Rappe C (1995) Time trends in levels, patterns, and profiles for polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a sediment core from the Baltic proper. Environ Sci Technol 29:346–355CrossRefGoogle Scholar
  6. 6.
    Sanders G, Jones KC, Hamilton-Taylor J (1995) PCB and PAH fluxes to a dated UK peat core. Environ Pollut 89:17–25CrossRefGoogle Scholar
  7. 7.
    EEA (2011) European Union emission inventory report 1990–2009 under the UNECE convention on long-range transboundary air pollution (LRTAP). European Environmental Agency, Technical Report Nº9Google Scholar
  8. 8.
    Hung H, Halsall CJ, Blanchard P, Li HH, Fellin P, Stern G, Rosenberg B (2001) Are PCBs in the Canadian Arctic atmosphere declining? Evidence from 5 years of monitoring. Environ Sci Technol 35:1303–1311CrossRefGoogle Scholar
  9. 9.
    Hung H et al (2010) Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006. Sci Total Environ 408:2854–2873CrossRefGoogle Scholar
  10. 10.
    Nizzetto L et al (2010) Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environ Sci Technol 44:6526–6531Google Scholar
  11. 11.
    Porta M, Malats N, Jariod M, Grimlat JO, Rifà J, Carrato A, Guarner L, Santiago-Silva M, Corominas JM, Andreu M, Real FX (1999) Serum levels of organochlorine compounds and K-ras mutations in exocrine pancreatic cancer. Lancet 354:2125–2129CrossRefGoogle Scholar
  12. 12.
    Vreugdenhil HJI, Slijper FME, Mulder PGH, Weisglas-Kuperus N (2002) Environ Health Perspect 110:593–598CrossRefGoogle Scholar
  13. 13.
    van Drooge BL, Grimalt JO, Torres C, Cuevas E (2001) Deposition of semi-volatile organochlorine compounds in the free troposphere of the eastern Atlantic Ocean. Mar Pollut Bull 42(8):628–634CrossRefGoogle Scholar
  14. 14.
    Mackay D, Shui WY, Ma KC (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, vol I and II. Lewis Publishers, LondonGoogle Scholar
  15. 15.
    Cotham WE, Bidleman TF (1989) Degradation of malathion, endosulphane and fenvalerate in seawater and seawater/sediment microcosms. J Agric Food Chem 37:824–828CrossRefGoogle Scholar
  16. 16.
    Ballschmiter K, Wittlinger R (1991) Interhemisphere exchange of hexachlorocyclohexanes, hexachlorobenzene, polychlorobiphenyls, and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane in the lower troposphere. Environ Sci Technol 25:1103–1111CrossRefGoogle Scholar
  17. 17.
    Fischer RC, Kramer W, Ballschmiter K (1991) Hexachlorocyclohexane isomers as markers in the water flow of the Atlantic Ocean. Chemosphere 23(7):889–900CrossRefGoogle Scholar
  18. 18.
    ten Hulscher TEM, van der Velde LE, Bruggeman WA (1992) Temperature dependence of Henry’s law constants for selected chlorobenzenes, polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Environ Toxicol Chem 11:1595–1603CrossRefGoogle Scholar
  19. 19.
    Dunnivant FM, Elzerman AW, Jurs PC, Hasan MN (1992) Quantitative structure–property relationships for aqueous solubilities and Henry’s law constants of polychlorinated biphenyls. Environ Sci Technol 26(8):1567–1573CrossRefGoogle Scholar
  20. 20.
    Hargrave BT, Barrie LA, Bidleman TF, Welch HE (1997) Seasonality in exchange of organochlorines between Arctic air and seawater. Environ Sci Technol 31:3258–3266CrossRefGoogle Scholar
  21. 21.
    Bailey RE (2001) Global hexachlorobenzene emissions. Chemosphere 43:167–182CrossRefGoogle Scholar
  22. 22.
    Grimalt JO, Sunyer J, Moreno V, Amaral O, Sala M, Rosell A, Albaiges J (1994) Risk excess of soft-tissue sarcoma and thyroid cancer in a community exposed to airborne organochlorinated compound mixtures with a high hexabenzene content. Int J Cancer 56:200–203CrossRefGoogle Scholar
  23. 23.
    Breivik K, Sweetman A, Pacyna JM, Jones KC (2002) Towards a global historical emission inventory for selected PCB congeners – a mass balance approach. 2. Emissions. Sci Total Environ 290:199–224CrossRefGoogle Scholar
  24. 24.
    Safe S (1991) Polychlorinated dibenzo-p-dioxins and related compounds: sources, environmental distribution and risk assessment. Environ Carcinog Ecotoxicol Rev 9:261–302CrossRefGoogle Scholar
  25. 25.
    de Voogd P, Wells DE, Reutergardh L, Brinkman UATh (1990) Biological activity, determination and occurrence of planar, mono-, di-ortho PCBs. Int J Anal Chem 40:1–46CrossRefGoogle Scholar
  26. 26.
    Pankow JF (1987) Review and comparative analysis of the theories on partitioning between gas and aerosol particulate phases in the atmosphere. Atmos Environ 21:2275–2283CrossRefGoogle Scholar
  27. 27.
    Howsam M, Jones KC (1998) Sources of PAHs in the environment. In: Neilson AH (ed) The handbook of environmental chemistry, vol 3, Part I, PAHs and related compounds. Springer-VerlagGoogle Scholar
  28. 28.
    Galarneau E (2008) Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmos Environ 42:8139–8149CrossRefGoogle Scholar
  29. 29.
    Wania F, Mackay D (1996) Tracking the distribution of persistent organic pollutants. Environ Sci Technol 30:390–396CrossRefGoogle Scholar
  30. 30.
    Gustafsson Ø, Bucheli TD, Kukulska Z, Andersson M, Largeau C, Rouzaud J-N, Reddy CM, Eglinton TI (2001) Global Biogeochem Cycles 15:881–890CrossRefGoogle Scholar
  31. 31.
    Bucheli TD, Gustafsson Ø (2000) Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environ Sci Technol 34:5144–5151CrossRefGoogle Scholar
  32. 32.
    Dachs J, Einsenreich S (2000) Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 34:3690–3697CrossRefGoogle Scholar
  33. 33.
    Fernández P, Grimalt JO, Vilanova RM (2002) Atmospheric gas-particle partitioning of polycyclic aromatic hydrocarbons in high mountain regions of Europe. Environ Sci Technol 36:1162–1168CrossRefGoogle Scholar
  34. 34.
    van Drooge BL, Fernández P, Grimalt JO, Stuchlïk E, Torres-García CJ, Cuevas E (2010) Atmospheric polycyclic aromatic hydrocarbons in remote European and Atlantic sites located above the boundary mixing layer. Environ Sci Pollut Res 17:1207–1216CrossRefGoogle Scholar
  35. 35.
    Pankow JF, Bidleman TF (1992) Interdependence of the slopes and intercepts from log–log correlations of measured gas-particle partitioning and vapor pressure-I. Theory and analysis of available data. Atmos Environ 26A(6):1071–1080CrossRefGoogle Scholar
  36. 36.
    Rosell A, Grimalt JO, Rosell MG, Guardino X, Albaiges J (1991) The composition of volatile and particulate hydrocarbons in urban air. Fresenius J Anal Chem 339:689–698CrossRefGoogle Scholar
  37. 37.
    Brubaker WW, Hites RA (1998) OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans. J Phys Chem 102:915–921CrossRefGoogle Scholar
  38. 38.
    Esteve W, Budzinski H, Villenave E (2006) Relative rate constants for the heterogeneous reactions of NO2 and OH radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 2: PAHs adsorbed on diesel particulate exhaust SRM 1650a. Atmos Environ 40:201–211CrossRefGoogle Scholar
  39. 39.
    Ballschmiter K (1992) Transport and fate of organic compounds in the global environment. Angew Chem 31(5):487–515CrossRefGoogle Scholar
  40. 40.
    Duce RA, Liss PS et al (1991) The atmospheric input of trace species to the world ocean. Global Biogeochem Cycles 5:193–259CrossRefGoogle Scholar
  41. 41.
    Goldberg ED (1975) Synthetic organohalides in the sea. Proc R Soc Lond B 189:277–289CrossRefGoogle Scholar
  42. 42.
    Wania F, Mackay D (1993) Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 22(1):10–18Google Scholar
  43. 43.
    Argell C, Okla L, Larsson P, Backe C, Wania F (1999) Evidence of latitudinal fractionation of polychlorinated biphenyl congeners along the Baltic Sea region. Environ Sci Technol 33(8):1149–1156CrossRefGoogle Scholar
  44. 44.
    Calamari D, Bacci E, Focardi S, Gaggi C, Morosini M, Vighi M (1991) Role of plant biomass in the global environment partitioning of chlorinated hydrocarbons. Environ Sci Technol 25:1489–1495CrossRefGoogle Scholar
  45. 45.
    Ockenden WA, Sweetman AJ, Prest HF, Steinness E, Jones KC (1998) Towards an understanding of the global atmospheric distribution of persistent organic pollutants: the use of semipermeable membrane devices as time-integrated passive samplers. Environ Sci Technol 32:2795–2803CrossRefGoogle Scholar
  46. 46.
    Kalantzi OI, Alock RE, Johnston PA, Santillo D, Stringer RL, Thomas GO, Jones KC (2001) The global distribution of PCBs and organochlorine pesticides in butter. Environ Sci Technol 35:1013–1018CrossRefGoogle Scholar
  47. 47.
    Galassi S, Valsecchi S, Tartari GA (1997) The distribution of PCB’s and chlorinated pesticides in two connected Himalayan lakes. Water Air Soil Pollut 99:717–725Google Scholar
  48. 48.
    Blais JM, Schindler DW, Muir DCG, Kimpe LE, Donald DB, Rosenberg B (1998) Accumulation of persistent organochlorine compounds in mountains of western Canada. Nature 395:585–588CrossRefGoogle Scholar
  49. 49.
    Fernández P, Vilanova RM, Martinez C, Appleby P, Grimalt JO (2000) The historical record of atmospheric pyrolytic pollution over Europe registered in the sedimentary PAH from remote mountain lakes. Environ Sci Technol 34:1609–1913CrossRefGoogle Scholar
  50. 50.
    Grimalt JO, van Drooge BL, Ribes A, Fernández P, Appleby P (2004) Polycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes. Environ Pollut 131:13–24CrossRefGoogle Scholar
  51. 51.
    Gimalt JO, van Drooge BL, Ribes A, Vilanova RM, Fernández P, Appleby P (2004) Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes. Chemosphere 54:1549–1561CrossRefGoogle Scholar
  52. 52.
    Ribes S, Van Drooge B, Dachs J, Gustafsson Ø, Grimalt JO (2003) Influence of soot carbon on the soil–air partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 37:2675–2680CrossRefGoogle Scholar
  53. 53.
    Meijer SN, Ockenden WA, Sweetman A, Breivik K, Grimalt JO, Jones KC (2003) Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ Sci Technol 37:667–672CrossRefGoogle Scholar
  54. 54.
    Kömp P, McLachlan MS (1997) Interspecies variability of the plant/air partitioning of polychlorinated biphenyls. Environ Sci Technol 31:2944–2948CrossRefGoogle Scholar
  55. 55.
    Kömp P, McLachlan MS (1997) Octanol/air partitioning of polychlorinated biphenyls. Environ Toxicol Chem 16(12):2433–2437CrossRefGoogle Scholar
  56. 56.
    Simonich SL, Hites RA (1995) Organic pollutant accumulation in vegetation. Environ Sci Technol 29:2905–2914CrossRefGoogle Scholar
  57. 57.
    Grimalt JO, van Drooge BL (2006) Polychlorinated biphenyls in mountain pine (Pinus uncinata) needles from Central Pyrenean high mountains (Catalonia, Spain). Ecotoxicol Environ Saf 63:61–67CrossRefGoogle Scholar
  58. 58.
    Lohmann R, Lammel G (2004) Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: state of knowledge and recommended parametrization for modelling. Environ Sci Technol 38:3793–3803CrossRefGoogle Scholar
  59. 59.
    Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics – from air pollution to climate change. John Wiley & SonGoogle Scholar
  60. 60.
    Macleod M, Mackay D (2004) Modeling transport and deposition of contaminants to ecosystems of concern: a case study for the Laurentian Great Lakes. Environ Pollut 128:241–250CrossRefGoogle Scholar
  61. 61.
    Cotham WE, Bidleman TF (1991) Estimating the atmospheric deposition of organochlorine contaminants to the arctic. Chemosphere 22(1–2):165–188CrossRefGoogle Scholar
  62. 62.
    Carrera G, Fernandez P, Vilanova R, Grimalt JO (2001) Persistent organic pollutants in snow from European high mountain areas. Atmos Environ 35:245–254CrossRefGoogle Scholar
  63. 63.
    Carrera G, Fernandez P, Grimalt JO, Ventura M, Camarero L, Catalan J, Nickus U, Thies H, Psenner R (2002) Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe. Environ Sci Technol 36:2581–2588CrossRefGoogle Scholar
  64. 64.
    Lei YD, Wania F (2004) Is rain or snow a more efficient scavenger of organic chemicals? Atmos Environ 38:3557–3571CrossRefGoogle Scholar
  65. 65.
    Fernández P, Grimalt JO (2003) On the global distribution of persistent organic pollutants. Chimia 57:514–521CrossRefGoogle Scholar
  66. 66.
    van Drooge BL, López J, Fernández P, Grimalt JO, Stuchlïk E (2011) Polycyclic aromatic hydrocarbons in lake sediments from the High Tatras. Environ Pollut 159:1234–1240CrossRefGoogle Scholar
  67. 67.
    Karickhof SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248CrossRefGoogle Scholar
  68. 68.
    Chiou CT, Porter PE, Schmedding DW (1983) Partitioning equilibria of nonionic organic compounds between soil organic matter and water. Environ Sci Technol 17:227–231CrossRefGoogle Scholar
  69. 69.
    Mackay D, Powers B (1987) Sorption of hydrophobic chemicals from water: a hypothesis for the mechanism of the particle concentration effect. Chemosphere 16:745–757CrossRefGoogle Scholar
  70. 70.
    Baker JE, Eisenreich SJ, Eadie BJ (1991) Sediment trap fluxes and benthic recycling of organic carbon, polycyclic aromatic hydrocarbons, and polychlorobiphenyls in Lake Superior. Environ Sci Technol 25:500–509CrossRefGoogle Scholar
  71. 71.
    Swackhamer DL, Skoglund RS (1993) Bioaccumulation of PCBs by Algae: kinetics versus equilibrium. Environ Toxicol Chem 12:831–838CrossRefGoogle Scholar
  72. 72.
    Vilanova RM, Fernandez P, Grimalt JO (2001) Polychlorinated biphenyls partitioning in the waters of a remote mountain lake. Sci Total Environ 279:51–62CrossRefGoogle Scholar
  73. 73.
    Vilanova RM, Fernandez P, Martinez C, Grimalt JO (2001) Polycyclic aromatic hydrocarbons in remote mountain lake waters. Water Res 35:3916–3926CrossRefGoogle Scholar
  74. 74.
    Vilanova R, Fernandez P, Martinez C, Grimalt JO (2001) Organochlorine pollutants in remote mountain lake waters. J Environ Qual 30:1286–1295CrossRefGoogle Scholar
  75. 75.
    Barron M (1990) Bioconcentration. Environ Sci Technol 24:1612–1618CrossRefGoogle Scholar
  76. 76.
    Clark KE, Gobas FAPC, Mackay D (1990) Model of organic chemical uptake and clearance by fish from food and water. Environ Sci Technol 24:1203–1213CrossRefGoogle Scholar
  77. 77.
    Vives I, Grimalt JO, Catalan J, Rosseland BO, Batterbee RW (2004) Influence of altitude and age in the accumulation of organochlorine compounds in fish from high mountain lakes. Environ Sci Technol 38:690–698CrossRefGoogle Scholar
  78. 78.
    Breivik K, Vestreng V, Rozovskaya O, Payna JM (2006) Atmospheric emissions of some POPs in Europe: a discussion of existing inventories and data records. Environ Sci Policy 41:9245–9261Google Scholar
  79. 79.
    Denier van der Gon H, van het Bolscher M, Visschedijk A, Zandveld P (2007) Emissions of persistent organic pollutants and eight candidate POPs from UNECE-Europe in 2000, 2010 and 2020 and the emission reduction resulting from the implementation of the UNECE POP protocol. Atmos Environ 41:9245–9261Google Scholar
  80. 80.
    Castro-Jiménez J, Dueri S, Eisenreich SJ, Mariani G, Skejo H, Umlauf G, Zaldívar JM (2009) Polychlorinated biphenyls (PCBs) in the atmosphere of sub-alpine northern Italy. Environ Pollut 157:1024–1032CrossRefGoogle Scholar
  81. 81.
    van Drooge BL, Pérez-Ballesta P (2009) Seasonal and daily source apportionment of polycyclic aromatic hydrocarbon concentrations in PM10 in a semirural European area. Environ Sci Technol 43:7310–7316CrossRefGoogle Scholar
  82. 82.
    Umlauf G, Cristoph EH, Eisenrreich SJ, Mariani G, Paradiž B, Vives I (2009) Seasonality of PCDD/Fs in the ambient air of Malopolska Region, southern Poland. Environ Sci Pollut Res. doi: 10.1007/s11356-009-0215-4
  83. 83.
    Grimalt JO, Catalan J, Fernandez P, Piña B, Munthe J (2010) Distribution of persistent organic pollutants and mercury in freshwater ecosystems under changing climate conditions. In: Kernan M, Battarbee RW, Moss B (eds) Climate change impacts on freshwater ecosystems. Wiley-Blackwell, Chichester, pp 180–202 (Chapter 8)CrossRefGoogle Scholar
  84. 84.
    Ma J, Hung H, Tian C, Kallenborn R (2011) Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nat Clim Chang 1:255–260Google Scholar
  85. 85.
    Bogdal C, Schmid P, Zennegg M, Anselmetti F, Schreringer M, Hungerbühler K (2009) Blast from the past: melting glaciers as a relevant source for persistent organic pollutants. Environ Sci Technol 43:8173–8177Google Scholar
  86. 86.
    Gusev A, Mantseva E, Rozovskaya O, Shatalov V, Vulykh N, Aas W, Breivik K (2007) Persistent Organic Pollutants in the Environment. EMEP Status Report 3/2007Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Environmental Assessment and Water Research, IDÆA-CSICBarcelonaSpain

Personalised recommendations