Advertisement

The Llobregat pp 297-325 | Cite as

Human Pressure and Its Effects on Water Quality and Biota in the Llobregat River

  • Antoni MunnéEmail author
  • Carolina Solà
  • Lluís Tirapu
  • Carlos Barata
  • Maria Rieradevall
  • Narcís Prat
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 21)

Abstract

The Llobregat River has severely been impacted by anthropogenic pressures since long time ago. The mid and lower Llobregat basin holds an important concentration of industries, agricultural activities, and urban areas, with high associated water demand and wastewater discharge. Salt mine activities, hydropower water diversion, and flow regime alteration by dams affect both the Llobregat headwaters and middle reaches. These impacts have historically caused the degradation of riparian biological communities and the loss of habitats along the river. The high amount of information available on water quality and biological community composition allows establishing a suitable monitoring program aimed to improve its ecological status. Some measures have been applied to mitigate the impacts, and Llobregat’s biological quality status has progressively improved. The biological communities, mainly diatoms and macroinvertebrates, have recovered even those inhabiting the river mouth, but mostly during wet periods. However, some anthropogenic pressures still remain and Llobregat’s biological status is not completely restored. The high amount of small weirs and hydropower water diversion along the Llobregat and Cardener Rivers, together with flow regime regulation by dams, riparian degradation, and point nutrient discharges (from water sewage plants) and salt debris due to mine activities, result in a poor biological quality status in the mid and lower Llobregat River. Fish fauna is the most altered community, with a high number of nonnative species present. The occurrence of some priority substances and emergent pollutants (e.g., endocrine disruptors, heavy metals, pesticides, flame retardants, drugs, and pharmaceuticals), even at low concentrations, further alter the biological quality. The changes in the biological community structure in the middle part of the river can be detected by using biomarkers, and these should additionally be considered as biological monitoring tools necessary for an integral ecological status diagnosis.

Keywords

Biological indices Biomarkers Chemical status Ecological status Human pressure Llobregat basin Monitoring program Water Framework Directive 

Notes

Acknowledgments

Main information on quality status, biological data, and chemical values has been obtained from the Catalan Water Agency through its monitoring program. Additional and useful historical data and biomonitoring results over time (since 1994) have been provided by the FEM research group (Department of Ecology, University of Barcelona). Historical surveillance data since 1994 were possible due to financial support provided by the Diputació de Barcelona.

References

  1. 1.
    Llasat MC, Barriendos M, Rodriguez R, Martín-Vide J (1999) Evolución de las inundaciones en Cataluña en los últimos quinientos años. Ingeniería Agua 6(4):353–362Google Scholar
  2. 2.
    Kuster M, López de Alda MJ, Hernando MD, Petrovic M, Alonso JM, Barceló D (2008) Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat River basin (Barcelona, Spain). J Hydrol 358(1–2):112–123CrossRefGoogle Scholar
  3. 3.
    Prat N, Rieradevall M (2006) 25-Years of biomonioring in two mediterranean streams (Llobregat and Besòs basins, NE Spain). Limnetica 25(1–2):541–550Google Scholar
  4. 4.
    Prat N, Puig MA, González G (1983) Predicció i control de la qualitat de les aigües dels rius Besós i Lobregat. II. El poblament faunístic i la seva relació qualitat-aigües. Col. Monografies., vol 9. Diputació de Barcelona, Barcelona, 164 ppGoogle Scholar
  5. 5.
    Prat N, Puig MA, González G, Tort MJ, Estrada M (1984) The Llobregat: a Mediterranean river fed by the Pyrenees. In: Whitton BA (ed) Ecology of European rivers. Blackwell, Oxford, pp 527–552Google Scholar
  6. 6.
    Prat N (1991) Present trends in river studies. Oecol Aquat 10:1–12Google Scholar
  7. 7.
    Prat N, Rieredevall M, Munne A, Chacon G (1996) La qualitat ecològica de les aigües del Besòs i el Llobregat. Diputació de Barcelona. Servei de Medi Ambient. Col. Estudis de la qualitat ecològica dels rius, vol 1, 102 ppGoogle Scholar
  8. 8.
    Prat N, Vila-Escale M, Bonada M, Casanovas-Berenguer R, Punti T, Sola C, Jubany J, Miralles M, Ordeix M, Acosta R, Rios B, Andreu R, Rieradevall M (2005) La qualitat ecològica del Llobregat, el Besòs i el Foix. Informe 2003. Barcelona: Diputació de Barcelona. Servei de Medi Ambient. Col. Estudis de qualitat ecològica dels rius, vol 13. Edición CD-RomGoogle Scholar
  9. 9.
    Muñoz I, Prat N (1994) A comparison between different biological water quality indexes in the Llobregat basin (NE Spain). Verh Int Verein Limnol 1(25):1945–1949Google Scholar
  10. 10.
    Queralt R (1982) La calidad de las aguas de los ríos. Tecnol Agua 4:49–57Google Scholar
  11. 11.
    Carafa R, Fanggiano L, Real M, Munné A, Ginebreda A, Guasch H, Flo M, Tirapu L, Carsten von der Ohe P (2011) Water toxicity assessment in Catalan rivers (NE Spain) using Species Sensitivity Distribution and Artificial Neural Networks. Sci Total Environ 409:4269–4279CrossRefGoogle Scholar
  12. 12.
    Munné A, Tirapu L, Solà C, Olivella L, Vilanova M, Ginebreda A, Prat N (2012). Comparing Chemical and Ecological Status in Catalan rivers. Analysis of river quality status following the Water Framework Directive. In: The handbook of Environmental Chemistry. Emerging and Priority Pollutants in Rivers: Bringing science into River Management Plans. H. Guasch et al. (eds.), 19:243–266Google Scholar
  13. 13.
    Munné A, Prat N (2009) Use of macroinvertebrate-based multimetric indices for water quality evaluation in Spanish Mediterranean rivers: an intercalibration approach with the IBMWP index. Hydrobiologia 628:203–225CrossRefGoogle Scholar
  14. 14.
    Sabater S, Tornés E, Leira M, Trobajo R (2003) Anàlisi de viabilitat i proposta d’indicadors fitobentònics de la qualitat de l’aigua per als cursos fluvials de Catalunya (Muga, Fluvià, Ter i Daró). Documents tècnics de l’Agència Catalana de l’Aigua, 113 ppGoogle Scholar
  15. 15.
    Sostoa A, Caiola N, Casals F (2004) A new IBI (IBICAT) for local application of the E.U. Water Framework Directive. In: Fifth ecohydraulics conference, Madrid, September 2004Google Scholar
  16. 16.
    Munné A, Solà C, Prat N (2006) Estado ecológico de los ríos en Cataluña. Diagnosis del riesgo de incumplimiento de los objetivos de la Directiva Marco del Agua. Tecnol Agua 273:30–46Google Scholar
  17. 17.
    Ginebreda A, Muñoz I, López de Alda M, Brix R, López-Doval J, Barceló D (2010) Environmental risk assessment of pharmaceuticals in rivers. Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ Int 36:153–162CrossRefGoogle Scholar
  18. 18.
    Ricart M, Guasch H, Barcelo D, Brix R, Conceicao MH, Geiszinger A, de Alda MJL, Lopez-Doval JC, Munoz I, Postigo C, Romani AM, Villagrasa M, Sabater S (2010) Primary and complex stressors in polluted Mediterranean rivers: pesticide effects on biological communities. J Hydrol 383:52–61CrossRefGoogle Scholar
  19. 19.
    Damásio J, Fernández-Sanjuan M, Sánchez-Avila J, Lacorte S, Prat N, Rieradevall M, Soares AMVM, Barata C (2011) Multi-biochemical responses of benthic macroinvertebrate species as a complementary tool to diagnose the cause of community impairment in polluted rivers. Water Res 45:3599–3613CrossRefGoogle Scholar
  20. 20.
    Muñoz I, López-Doval JC, Ricart M, Villagrasa M, Brix R, Geszinger A, Ginebreda A, Guasch H, López de Alda M, Romaní AM, Sabater S, Barceló D (2009) Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat river basin (NE Spain). Environ Toxicol Chem 28:2706CrossRefGoogle Scholar
  21. 21.
    Damasio J, Navarro-Ortega A, Tauler R, Lacorte S, Barcelo D, Soares A, Lopez MA, Riva MC, Barata C (2010) Identifying major pesticides affecting bivalve species exposed to agricultural pollution using multi-biomarker and multivariate methods. Ecotoxicology 19:1084–1094CrossRefGoogle Scholar
  22. 22.
    ACA – Agència Catalana de l’Aigua (2005) Caracterització de les masses d’aigua i anàlisi del risc d’incompliment dels objectius de la Directiva Marc de l’Aigua (2000/60/CE) a Catalunya. Agència Catalana de l’Aigua. Departament de Medi Ambient i Habitatge de la Generalitat de Catalunya, Octubre 2005, 860 ppGoogle Scholar
  23. 23.
    Barata C, Lekumberri I, Vila-Escalé M, Prat N, Porte C (2005) Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from the Llobregat riven basin (NE Spain). Aquat Toxicol 74:3–19CrossRefGoogle Scholar
  24. 24.
    ACA – Agència Catalana de l’Aigua (2011) Estat de les Msses d’Aigua a Catalunya. Resultats del Programa de Seguiment i Control (Dades 2007-2010). Departament de Territori i Sostenibilitat, Generalitat de Catalunya, Octubre 2011, 63 ppGoogle Scholar
  25. 25.
    Prat N, Munne A (2003) Water use and quality and stream flow in a Mediterranean stream. Water Res 34(15):3876–3881CrossRefGoogle Scholar
  26. 26.
    Boix D, García-Berthou E, Gascón S, Benejam L, Tornés E, Sala J, Benito J, Munné A, Solà C, Sabater S (2010) Response of community structure to sustained drought in Mediterranean rivers. J Hydrol 383:135–146CrossRefGoogle Scholar
  27. 27.
    Benejam L, Angermeier PL, Munné A, García-Berthou E (2010) Assessing effects of water abstraction on fish assemblages in Mediterranean streams. Freshw Biol 55:628–642CrossRefGoogle Scholar
  28. 28.
    Aparicio E, Vargas MJ, Olmo JM, de Sostoa A (2000) Decline of native freshwater fishes in a Mediterranean watershed on the Iberian Peninsula: a quantitative assessment. Environ Biol Fishes 59:11–19CrossRefGoogle Scholar
  29. 29.
    Harrison IJ, Stiassny MLJ (1999) The quiet crisis: a preliminary listing of the freshwater fishes of the World that are extinct or “missing in action”. In: MacPhee (ed) Extinctions in near time. Kluwer Academic/Plenum, New York, pp 271–331Google Scholar
  30. 30.
    Andreu J, Pino J, Rodríguez-Labajos B, Munné A (2011) Avaluació de l’estat i el risc d’invasió per espècies exòtiques dels ecosistemes aquàtics de Catalunya. Agència Catalana de l’Aigua, Departament de Territori i Sostenibilitat, Generalitat de Catalunya, 97 ppGoogle Scholar
  31. 31.
    Bloch H (1999) European water policy facing the new millennium: the Water Framework Directive. In: Assessing the ecological integrity of running waters, Vienna, pp 9–11Google Scholar
  32. 32.
    Allan IJ, Vranaa B, Greenwooda R, Millsb GA, Knutssonc J, Holmbergd A, Guiguese N, Fouillace AM, Laschif S (2005) Strategic monitoring for the European Water Framework Directive. Trends Anal Chem 25(7):704–715CrossRefGoogle Scholar
  33. 33.
    Coquery M, Morin A, Bécue A, Lepot B (2005) Priority substances of the European Water Framework Directive: analytical challenges in monitoring water quality. Trends Anal Chem 24(2):117–127CrossRefGoogle Scholar
  34. 34.
    Sandin L, Hering D (2004) Comparing macroinvertebrate indices to detect organic pollution across Europe: a contribution to the EC Water Framework Directive intercalibration. Hydrobiologia 516(1–3):55–68CrossRefGoogle Scholar
  35. 35.
    Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523CrossRefGoogle Scholar
  36. 36.
    Kelly MG, Cazaubon A, Coring E, Dell'Uomo A, Ector L, Goldsmith B, Guasch H, Hürlimann J, Jarlman A, Kawecka B (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10(2):215–224CrossRefGoogle Scholar
  37. 37.
    Szoszkiewicz K, Ferreira T, Korte T, Baattrup-Pedersen A, Davy-Bowker J, O’Hare M (2006) European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 566(1):211–234CrossRefGoogle Scholar
  38. 38.
    Pont D, Hugueny B, Rogers C (2007) Development of a fish-based index for the assessment of river health in Europe: the European Fish Index. Fish Manag Ecol 14(6):427–439CrossRefGoogle Scholar
  39. 39.
    Munné A, Prat N (2011) Effects of Mediterranean climate annual variability on stream biological quality assessment using macroinvertebrate communities. Ecol Indic 11:651–662CrossRefGoogle Scholar
  40. 40.
    Margalef R (1955) Organismos indicadores en la Limnología. Instituto Forestal de Inv. Exper., 308 ppGoogle Scholar
  41. 41.
    Margalef R (1969) El concepto de polución en limnología y sus indicadores biológicos. Agua 7:105–133Google Scholar
  42. 42.
    Muñoz I, Prat N (1998) Effects of water abstraction and pollution on macroinvertebrate community in a mediterranean river. Limnetica 12(1):9–16Google Scholar
  43. 43.
    Jáimez-Cuéllar P, Vivas S, Bonada N, Robles S, Mellado A, Álvarez M, Avilés J, Casas J, Ortega M, Pardo I, Prat N, Rieradevall M, Sáinz-Cantero CE, Sánchez-Ortega A, Suárez ML, Toro M, Vidal-Albarca MR, Zamora-Muñoz C, Alba-Tercedor J (2002) Protocolo GUADALMED (PRECE). Limnetica 21(3–4):187–204Google Scholar
  44. 44.
    Alba-Tercedor J, Jáimez-Cuéllar P, Álvarez M, Avilés J, Bonada N, Casas J, Mellado A, Ortega M, Pardo I, Prat N, Rieradevall M, Robles S, Sáinz-Cantero CE, Sánchez-Ortega A, Suárez ML, Toro M, Vidal-Albarca MR, Vivas S, Zamora-Muñoz C (2002) Caracterización del estado ecológico de los ríos mediterráneos ibéricos mediante el índice IBMWP (antes BMWP’). Limnetica 21(3–4):175–185Google Scholar
  45. 45.
    Perrée I, Rieradevall M, Prat N, Martin J, Céspedes R (2010) Cambios en el estado ecológico de tres ríos producidos por el vertido de depuradoras. Tecnol Agua 320:21–29Google Scholar
  46. 46.
    Prat N, Ward JV (1994) The tamed river. In: Margalef R (ed) Lymnology now. Elsevier Science, London, pp 219–236Google Scholar
  47. 47.
    European Commission (2003) Common implementation strategy for the Water Framework Directive (2000/60/EC). Working Group REFCOND. Guidance document nº 10. Rivers and lakes – typology, reference conditions and classification systemsGoogle Scholar
  48. 48.
    Haury J, Peltre MC, Trémolières M, Barbe J, Thiébaut G, Bernez I, Daniel H, Chatenet P, Haan-Archipof G, Muller S (2006) A new method to assess water trophy and organic pollution – the Macrophyte Biological Index for Rivers (IBMR): its application to different types of river and pollution. Macrophytes in aquatic ecosystems: from biology to management. Dev Hydrobiol 190(2):153–158CrossRefGoogle Scholar
  49. 49.
    Buffagni A, Erba S, Cazzola M, Murria-Bligh J, Soszka H, Genomi P (2006) The Star common metrics approach to the WFD intercalibration process: full application for small, lowland rivers in three European countries. Hydrobiologia 566:379–399CrossRefGoogle Scholar
  50. 50.
    Hering D, Johnson R, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshw Biol 51(9):1757–1785CrossRefGoogle Scholar
  51. 51.
    Thiébaut G (2006) Aquatic macrophyte approach to assess the impact of disturbances on the diversity of the ecosystem and on river quality. Int Rev Hydrobiol 91(5):483–497CrossRefGoogle Scholar
  52. 52.
    Moreno JL, De las Heras J, Prat N, Rieradevall M (2008) Evaluación del estado trófico de tres cuencas interiores de Cataluña (Foix, Besòs y Llobregat) mediante la vegetación acuática: aplicación de un índice trófico (IVAM-FBL). Limnetica 27(1):107–118Google Scholar
  53. 53.
    Segurado P, Santos JM, Pont D, Melcher AH, Jalon DG, Hughes RM, Ferreira MT (2011) Estimating species tolerance to human perturbation: expert judgment versus empirical approaches. Ecol Indic 11:1623–1635CrossRefGoogle Scholar
  54. 54.
    Claudi R, Leach JH (eds) (1999) Nonindigenous freshwater organisms: vectors, biology, and impacts. Lewis, Boca Raton, 464 ppGoogle Scholar
  55. 55.
    UNE-EN ISO 10301 (1997) Water quality. Determination of highly volatile halogenated hydrocarbons. Gas-chromatographic methodsGoogle Scholar
  56. 56.
    Lee H, Weng L, Chau AS (1984) Chemical derivatization analysis of pesticides residues. VIII. Analysis of 15 chlorophenols in natural water by in situ acetylation. J Assoc Off Anal Chem 67(4):789–794Google Scholar
  57. 57.
    León VM, Llorca-Pórcel J, Álvarez B, Cobollo MA, Muñoz S, Valor I (2006) Analysis of 35 semivolatile compounds in water by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. Part II: method validation. Anal Chim Acta 558:261–266CrossRefGoogle Scholar
  58. 58.
    Barceló D, Petrovic M (2007) Under the analytical spotlight, contaminants emerge: report on the 2nd EMCO Workshop. Emerging contaminants in wastewaters: monitoring tools and treatment technologies. Belgrade (Serbia), 26 and 27 April 2007. Trends Anal Chem 26:647–649CrossRefGoogle Scholar
  59. 59.
    Damasio J, Tauler R, Teixido E, Rieradevall M, Prat N, Riva MC, Soares A, Barataa C (2008) Combined use of Daphnia magna in situ bioassays, biomarkers and biological indices to diagnose and identify environmental pressures on invertebrate communities in two Mediterranean urbanized and industrialized rivers (NE Spain). Aquat Toxicol 87:310–320CrossRefGoogle Scholar
  60. 60.
    Puertolas L, Damasio J, Barata C, Soares A, Prat N (2011) Evaluation of side-effects of glyphosate mediated control of giant reed (Arundo donax) on the structure and function of a nearby Mediterranean river ecosystem. Environ Res 110:556–564CrossRefGoogle Scholar
  61. 61.
    Prat N, Rieradeval M, Barata C, Munné A (2012) The combined use of metrics of biological quality and biomarkers as a tool to detect the effects of tertiary treated water on macroinvertebrate assemblages in the lower part of a polluted Mediterranean river (Llobregat, NE Spain) (submitted)Google Scholar
  62. 62.
    Forbes VE, Palmqvist A, Bach L (2006) The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25:272–280CrossRefGoogle Scholar
  63. 63.
    Damásio JB, Barata C, Munne A, Ginebreda A, Guasch H, Sabater S, Caixach J, Porte C (2007) Comparing the response of biochemical indicators (biomarkers) and biological indices to diagnose the ecological impact of an oil spillage in a Mediterranean river (NE Catalunya, Spain). Chemosphere 66:1206–1216CrossRefGoogle Scholar
  64. 64.
    Mills GA, Greenwood R, Gonzalez C (2007) Environmental monitoring within the Water Framework Directive (WFD). Trends Anal Chem 26:450–453CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Antoni Munné
    • 1
    Email author
  • Carolina Solà
    • 1
  • Lluís Tirapu
    • 1
  • Carlos Barata
    • 2
  • Maria Rieradevall
    • 3
  • Narcís Prat
    • 3
  1. 1.Department of Monitoring and Aquatic Ecosystem ImprovementCatalan Water AgencyBarcelonaSpain
  2. 2.Department of Environmental ChemistryIDÆA-CSICBarcelonaSpain
  3. 3.Department of EcologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations