Advertisement

The Effect of Multiple Stressors on Biological Communities in the Llobregat

  • I. MuñozEmail author
  • E. García-Berthou
  • S. Sabater
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 21)

Abstract

This chapter reviews the diversity and composition of algal, invertebrate and fish communities in the Llobregat basin and analyses the factors affecting their distribution. Phytoplankton develops only during short periods and in particular areas where the hydraulic residence time is high. Diatoms are by far the most diverse and abundant in autotrophic benthic biofilms. The invertebrate community is highly rich taxonomically, whereas the native fish richness is relatively low, with about eight freshwater species and some others of marine origin. Some of the fish native species are threatened and two have been extirpated. Many exotic fish species have been introduced into the basin and are suspected to have contributed to the decline of native fish. Salt inputs, organic pollution and hydrological conditions lead to further alterations in water quality in the middle part of the river and downstream, thus reducing ecological quality. Multiple pressures on fluvial biodiversity severely compromise the integrity of this river’s ecosystem. To recover the structure and functioning of the biological communities, it is important to maintain the integrity of headwater ecosystems to ensure a species pool for colonisation downstream and reduce water abstraction, regulation and nutrient and pollutant inputs.

Keywords

Algae Diversity Fish Invertebrate Physical and chemical stressors 

Abbreviations

AMA

Aminopeptidase activity

APCs

Alkylphenolic compounds

DW

Dry weight

EQS

Environmental quality standard

NP1EC, NP2EC

Nonylphenol (mono)di-ether carboxylate

WWTP

Wastewater treatment plants

Notes

Acknowledgements

This research was funded by the Spanish Ministry of Science and Innovation, projects SCARCE (Consolider-Ingenio 2010 program, CSD2009-00065), CGL2009-12877-C02-01 and CGL2011-30474-C02.

References

  1. 1.
    Margalef R (1960) Ideas for a synthetic approach to the ecology of running waters. Int Rev Hydrobiol 45:133–153CrossRefGoogle Scholar
  2. 2.
    Hynes HBN (1970) The ecology of running waters. Univ Press, LiverpoolGoogle Scholar
  3. 3.
    Barnes JR, Minshall GW (1983) Stream ecology. Plenum Press, New YorkCrossRefGoogle Scholar
  4. 4.
    Statzner B, Higler B (1986) Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshw Biol 16:127–139CrossRefGoogle Scholar
  5. 5.
    Barbour MT, Gerritsen J, Snyder BD, Stribling B (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, macroinvertebrates and fish, 2nd edn. EPA 841-B-99-002, US Environmental Protection Agency, Office of Water, WashingtonGoogle Scholar
  6. 6.
    Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81CrossRefGoogle Scholar
  7. 7.
    Bonada N, Doledec S, Statzner B et al (2007) Taxonomic and biological trait differences of stream macroinvertebrate communities between Mediterranean and temperate regions: implications for future climatic scenarios. Glob Chang Biol 33:1658–1671CrossRefGoogle Scholar
  8. 8.
    Myers N, Russell A, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  9. 9.
    Alvarez-Cobelas M, Rojo C, Angeler DG (2005) Mediterranean limnology: current status, gaps and the future. J Limnol 64:13–29CrossRefGoogle Scholar
  10. 10.
    Millet X, Prat N (1984) Las comunidades de macroinvertebrados a lo largo del río Llobregat. Limnetica 1:222–233Google Scholar
  11. 11.
    Tomas X, Sabater S (1985) The diatom flora of the Llobregat river and its relation to water quality. Verh Int Verein Limnol 22:2348–2352Google Scholar
  12. 12.
    Prat N, Puig MA, González G et al (1984) Llobregat. In: Whitton BA (ed) Ecology of European rivers. Blackwell, OxfordGoogle Scholar
  13. 13.
    Muñoz I, Prat N (1992) Cambios en la calidad del agua de los ríos Llobregat y Cardener en los últimos 10 años. Tecnol Agua 91:17–23Google Scholar
  14. 14.
    Muñoz I, Prat N (1994) A comparison between different biological water quality indexes in the Llobregat basin (NE Spain). Verh Int Verein Limnol 25:1945–1949Google Scholar
  15. 15.
    Sabater S (1990) Phytoplankton composition in a medium-sized Mediterranean river: the Ter (Spain). Limnetica 6:47–56Google Scholar
  16. 16.
    Sabater S, Artigas J, Duran C et al (2008) Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River). Sci Total Environ 404:196–206CrossRefGoogle Scholar
  17. 17.
    Sabater S, Sabater F, Tomas X (1987) Water quality and diatom communities in two Catalan rivers (NE Spain). Water Res 21:901–911CrossRefGoogle Scholar
  18. 18.
    Ricart M (2007) Effects of toxicants on biofilm communities: field and laboratory approaches. MsC Thesis. University of Girona, GironaGoogle Scholar
  19. 19.
    Tornés E, Cambra J, Goma J et al (2007) Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Ann Limnol 43:1–11CrossRefGoogle Scholar
  20. 20.
    Muñoz I, Prat X, Millet X et al (1986) Heterogeneidad espacial en la distribución de los macroinvertebrados a lo largo de un transecto en el río Llobregat. Limnetica 2:135–145Google Scholar
  21. 21.
    López-Doval J, Großschartner M, Höss S et al (2010) Invertebrate communities in soft sediments along a pollution gradient in a Mediterranean river (Llobregat, NE Spain). Limnetica 29:311–322Google Scholar
  22. 22.
    Balleto E, Casale A (1989) Mediterranean insect conservation. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Harcourt Brace Jovanovich Publishers, LondonGoogle Scholar
  23. 23.
    Puig MA (1983) Efemerópteros y Plecópteros de los ríos catalanes. PhD Dissertation. University of Barcelona, BarcelonaGoogle Scholar
  24. 24.
    Puig MA, Bautista I, Tort MJ et al (1981) Les larves de la riviere Llobregat: distribution longitudinales et relation avec la qualite de l’eau. Ser Entomol 20:305–311Google Scholar
  25. 25.
    González MA, García de Jalón D, Terra L (1987) Faunistic studies on Iberian Trichoptera: a historical survey and present state of knowledge. In: Proceedings of the fifth International Symposium on Trichoptera, pp 85–90Google Scholar
  26. 26.
    Décamps H, Besch KW, Vobis H (1973) Influence des produits toxiques sur la construction du filet des larves d'Hydropsyche (Insecta, Trichoptera). C R Acad Sci Paris Sér D 276:375–378Google Scholar
  27. 27.
    Bouvet Y (1974) Ecologie et reproduction chez les tricopteres cavernicoles du groupe de Stenophylax. In: Proceedings of the first International Symposium on Trichoptera, pp 105–109Google Scholar
  28. 28.
    Williams DD (1996) Environmental constraints in temporary waters and their consequences for the insect fauna. J N Am Benthol Soc 15:634–650CrossRefGoogle Scholar
  29. 29.
    Murillo J (1985) Algunes captures d'Heteròpters aquàtics a Catalunya i altres localitats de la resta de la península Ibérica. Butll Inst Catalana d'Hist Nat 52:139–148Google Scholar
  30. 30.
    Puntí T, Rieradevall M, Prat N (2009) Environmental factors, spatial variation, and specific requirements of Chironomidae in Mediterranean reference streams. J N Am Benthol Soc 28:247–265CrossRefGoogle Scholar
  31. 31.
    Gonzalez G (1990) Sistemática y ecología de los Simulidae (Diptera) de los ríos de Catalunya y otras cuencas hidrográficas españolas. PhD Dissertation. University of Barcelona, BarcelonaGoogle Scholar
  32. 32.
    Gaudes A, Sabater S, Vilalta E et al (2006) The nematode community in river cyanobacterial biofilms. Nematology 8:909–919CrossRefGoogle Scholar
  33. 33.
    Doadrio I, Kottelat M, de Sostoa A (2007) Squalius laietanus, a new species of cyprinid fish from north-eastern Spain and southern France (Teleostei: Cyprinidae). Ichthyol Explor Freshw 18:247–256Google Scholar
  34. 34.
    Aparicio E, Vargas MJ, Olmo JM, de Sostoa A (2000) Decline of native freshwater fishes in a Mediterranean watershed on the Iberian Peninsula: a quantitative assessment. Environ Biol Fishes 59:11–19CrossRefGoogle Scholar
  35. 35.
    Gutiérrez i Perarnau C, Pagès i Puig J (2005) Espinós (Gasterosteus gymnurus). Apunts sobre la seva distribució entre el Llobregat i la Tordera. Lauro 28:111–113Google Scholar
  36. 36.
    Almaça C, Elvira B (2000) Past and present distribution of Acipenser sturio L., 1758 on the Iberian Peninsula. Bol Inst Esp Oceanogr 16:11–16Google Scholar
  37. 37.
    Vila-Gispert A, García-Berthou E, Moreno-Amich R (2002) Fish zonation in a Mediterranean stream: effects of human disturbances. Aquat Sci 64:163–170CrossRefGoogle Scholar
  38. 38.
    Lasne E, Bergerot B, Lek S, Laffaille P (2007) Fish zonation and indicator species for the evaluation of the ecological status of rivers: example of the Loire basin (France). River Res Appl 23:877–890CrossRefGoogle Scholar
  39. 39.
    García-Berthou E, Moreno-Amich R (2000) Introduction of exotic fish into a Mediterranean lake over a 90-year period. Arch Hydrobiol 149:271–284Google Scholar
  40. 40.
    Carol J, Benejam L, Benito J, García-Berthou E (2009) Growth and diet of European catfish (Silurus glanis) in early and late invasion stages. Fund Appl Limnol 174:317–328CrossRefGoogle Scholar
  41. 41.
    Casals F (2005) Les comunitats íctiques dels rius mediterranis: relació amb les condicions ambientals. PhD Dissertation. University of Barcelona, BarcelonaGoogle Scholar
  42. 42.
    Aparicio E, de Sostoa A (1998) Reproduction and growth of Barbus haasi in a small stream in the NE of the Iberian peninsula. Arch Hydrobiol 142:95–110Google Scholar
  43. 43.
    Aparicio E, de Sostoa A (1999) Pattern of movements of adult Barbus haasi in a small Mediterranean stream. J Fish Biol 55:1086–1095CrossRefGoogle Scholar
  44. 44.
    Maceda-Veiga A, Salvadó H, Vinyoles D, de Sostoa A (2009) Outbreaks of Ichthyophthirius multifiliis in Redtail Barbs Barbus haasi in a Mediterranean stream during drought. J Aquat Anim Health 21:189–194CrossRefGoogle Scholar
  45. 45.
    Sanz Ball-llosera N, García-Marín JL, Pla C (2002) Managing fish populations under mosaic relationships. The case of brown trout (Salmo trutta) in peripheral Mediterranean populations. Conserv Genet 3:385–400CrossRefGoogle Scholar
  46. 46.
    Aparicio E, García-Berthou E, Araguas RM, Martínez P, García-Marín JL (2005) Body pigmentation pattern to assess introgression by hatchery stocks in native Salmo trutta from Mediterranean streams. J Fish Biol 67:931–949CrossRefGoogle Scholar
  47. 47.
    Almodóvar A, Nicola GG, Elvira B, García-Marín JL (2006) Introgression variability among Iberian brown trout evolutionary significant units: the influence of local management and environmental features. Freshw Biol 51:1175CrossRefGoogle Scholar
  48. 48.
    Araguas RM, Sanz N, Fernández R, Utter FM, Pla C, García-Marín JL (2009) Role of genetic refuges in the restoration of native gene pools of brown trout. Conserv Biol 23:871–878CrossRefGoogle Scholar
  49. 49.
    Petrovic M, Solé M, López De Alda MJ, Barceló D (2002) Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: integration of chemical analysis and biological effects on feral carp. Environ Toxicol Chem 21:2146–2156CrossRefGoogle Scholar
  50. 50.
    Céspedes R, Lacorte S, Raldúa D, Ginebreda A, Barceló D, Piña B (2005) Distribution of endocrine disruptors in the Llobregat River basin (Catalonia, NE Spain). Chemosphere 61:1710–1719CrossRefGoogle Scholar
  51. 51.
    Peré-Trepat E, Ginebreda A, Tauler R (2007) Comparison of different multiway methods for the analysis of geographical metal distributions in fish, sediments and river waters in Catalonia. Chemometr Intell Lab Syst 88:69–83CrossRefGoogle Scholar
  52. 52.
    Peré-Trepat E, Olivella L, Ginebreda A, Caixach J, Tauler R (2006) Chemometrics modelling of organic contaminants in fish and sediment river samples. Sci Total Environ 371:223–237CrossRefGoogle Scholar
  53. 53.
    Solé M, Barceló D, Porte C (2002) Seasonal variation of plasmatic and hepatic vitellogenin and EROD activity in carp, Cyprinus carpio, in relation to sewage treatment plants. Aquat Tox 60:233–248CrossRefGoogle Scholar
  54. 54.
    Solé M, Raldua D, Piferrer F, Barceló D, Porte C (2003) Feminization of wild carp, Cyprinus carpio, in a polluted environment: plasma steroid hormones, gonadal morphology and xenobiotic metabolizing system. Comp Biochem Physiol C Toxicol Pharmacol 136:145–156CrossRefGoogle Scholar
  55. 55.
    Clavero M, García-Berthou E (2006) Homogenization dynamics and introduction routes of invasive freshwater fish in the Iberian Peninsula. Ecol Appl 16:2313–2324CrossRefGoogle Scholar
  56. 56.
    Benejam L, Carol J, Benito J, García-Berthou E (2007) On the spread of the European catfish (Silurus glanis) in the Iberian Peninsula: first record in the Llobregat river basin. Limnetica 26:169–171Google Scholar
  57. 57.
    Rincón PA, Correas AM, Morcillo F, Risueño P, Lobón-Cerviá J (2002) Interaction between the introduced eastern mosquitofish and two autochthonous Spanish toothcarps. J Fish Biol 61:1560–1585CrossRefGoogle Scholar
  58. 58.
    Alcaraz C, García-Berthou E (2007) Life history variation of invasive mosquitofish (Gambusia holbrooki) along a salinity gradient. Biol Conserv 139:83–92CrossRefGoogle Scholar
  59. 59.
    García-Berthou E, Boix D, Clavero M (2007) Non-indigenous animal species naturalized in Iberian inland waters. In: Gherardi F (ed) Biological invaders in inland waters: profiles, distribution, and threats. Springer, DordrechtGoogle Scholar
  60. 60.
    Ormerod SJ, Dobson M, Hildrew AG et al (2010) Multiple stressors in freshwater ecosystems. Freshw Biol 55:1–4CrossRefGoogle Scholar
  61. 61.
    Holmstrup M, Bindesbøl AM, Oostingh GJ et al (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762CrossRefGoogle Scholar
  62. 62.
    Allan JD, Castillo MM (2007) Stream ecology: structure and function in running waters. Springer, DordrechtGoogle Scholar
  63. 63.
    CAS (2010) Chemical abstract service. American Chemical Society. http://www.cas.org/expertise/cascontent/ataglance/index.html. Accessed 11 Jan 2012
  64. 64.
    Koeck-Schulmeyer M, Ginebreda A, Postigo C et al (2011) Wastewater reuse in Mediterranean semi-arid areas: the impact of discharges of tertiary treated sewage on the load of polar micro pollutants in the Llobregat river (NE Spain). Chemosphere 82:670–678CrossRefGoogle Scholar
  65. 65.
    Muñoz I, López-Doval JC, Ricart M et al (2009) Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat river basin (NE Spain). Environ Toxicol Chem 2:2706–2714CrossRefGoogle Scholar
  66. 66.
    Ricart M, Guasch H, Barceló D et al (2010) Primary and complex stressors in polluted mediterranean rivers: pesticide effects on biological communities. J Hydrol 383(1–2):52–61CrossRefGoogle Scholar
  67. 67.
    Brix R, López-Doval J, Ricart M et al (2011) Establishing potential links between the presence of alkylphenolic compounds and the benthic community in a European river basin. Environ Sci Pollut Res. doi: 10.1007/s11356-011-0527-z
  68. 68.
    López-Doval JC, Kukkonen JVK, Rodrigo P et al (2011) Effects of indomethacin and propranolol on Chironomus riparius and Physella (Costatella) acuta. Ecotoxicol Environ Saf. doi: 10.1016/j.ecoenv.2011.11.004
  69. 69.
    Tuikka AI, Schmitt C, Hoss S et al (2011) Toxicity assessment of sediments from three European river basins using a sediment contact test battery. Ecotoxicol Environ Saf 74:123–131CrossRefGoogle Scholar
  70. 70.
    Ginebreda A, Muñoz I, López de Alda M et al (2010) Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ Int 36:153–162CrossRefGoogle Scholar
  71. 71.
    Gonzalez S, Petrovic M, Barcelo D (2004) Simultaneous extraction and fate of linear alkylbenzene sulfonates, coconut diethanol amides, nonylphenol ethoxylates and their degradation products in wastewater treatment plants, receiving coastal waters and sediments in the Catalonian area (NE Spain). J Chromatogr A 1052:111–120CrossRefGoogle Scholar
  72. 72.
    Persson PE (1996) Cyanobacteriaand off-flavours. Phycologia 30:168–171CrossRefGoogle Scholar
  73. 73.
    Aoyama K (1990) Studies on the earthy-musty odour in natural water (IV). Mechanism of earthy-musty odour porduction of actinomycetes. J Appl Bact 68:405–410CrossRefGoogle Scholar
  74. 74.
    Wu TJ, Juttner F (1988) Effect of environmental factors on geosmin production by Fischerella muscicola. Wat Sci Technol 20:143–148Google Scholar
  75. 75.
    Chow CWK, House J, Velzeboer RMA et al (1998) The effects of ferric chloride flocculation on cyanobacterial cells. Wat Res 32:808–814CrossRefGoogle Scholar
  76. 76.
    Paerl HW, Millie DF (1996) Physiological ecology of toxic aquatic cyanobacteria. Phycologia 35:160–167CrossRefGoogle Scholar
  77. 77.
    Wu JT, Ma PI, Chou TL (1991) Variation of geosmin content in Anabaena cells and its relation to nitrogen utilization. Arch Microbiol 157:66–69CrossRefGoogle Scholar
  78. 78.
    Sabater S, Vilalta E, Gaudes A et al (2003) Ecological implications of mass growth of benthic cyanobacteria in rivers. Aquat Microb Ecol 32:175–184CrossRefGoogle Scholar
  79. 79.
    Patel AB, Fukami K, Nishijima T (2000) Regulation of seasonal variability of aminopeptidase activities in surface and bottom waters of Uranouchi Inlet, Japan. Aquat Microb Ecol 21:139–149CrossRefGoogle Scholar
  80. 80.
    Sala MM, Karner M, Arin L et al (2001) Measurement of ectoenzyme activities as an indication of inorganic nutrients imbalance in microbial communities. Aquat Microb Ecol 23:301–311CrossRefGoogle Scholar
  81. 81.
    Vilalta E, Sabater S (2005) Structural heterogeneity in cyanobacterial mats is associated with geosmin production in rivers. Phycologia 44:678–684CrossRefGoogle Scholar
  82. 82.
    Dodds WK, Smith VH, Zander B (1997) Developing nutrient targets to control benthic chlorophyll levels in streams: a case study of the Clark Fork River. Wat Res 31:1738–1750CrossRefGoogle Scholar
  83. 83.
    Romaní AM, Sabater S (2000) Influence of algal biomass on extracellular enzyme activity in river biofilms. Microb Ecol 40:16–24Google Scholar
  84. 84.
    Freyhof J, Brooks E (2011) European red list of freshwater fishes. Publications Office of the European Union, LuxembourgGoogle Scholar
  85. 85.
    IUCN Standards and Petitions Subcommittee (2011) Guidelines for using the IUCN red list categories and criteria. Version 9.0. Prepared by the Standards and Petitions Subcommittee. http://www.iucnredlist.org/documents/RedListGuidelines.pdf. Accessed 11 Jan 2012
  86. 86.
    Marcé R, Honey-Rosés J, Manzano A, Moragas L, Catllar C, Sabater S (2012) The Llobregat River Basin: A paradigm of impaired rivers under climate change threats. Hdb Env Chem doi:  10.1007/698_2012_152
  87. 87.
    Guillén D, Ginebreda A, Eljarrat E, Petrovic M, Barcelo D (2012) Occurrence of persistent organic pollutants in the Llobregat River Basin: An overview. Hdb Env Chem doi:  10.1007/698_2012_144
  88. 88.
    Eljarrat E, Barceló D (2012) Occurrence and behavior of brominated flame retardants in the Llobregat River Basin. Hdb Env Chem doi:  10.1007/698_2011_139

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of EcologyUniversity of BarcelonaBarcelonaSpain
  2. 2.Institute of Aquatic EcologyUniversity of GironaGironaSpain
  3. 3.Catalan Institute of Water Research (ICRA)GironaSpain

Personalised recommendations