Skip to main content

Perfluorinated Compounds’ Analysis, Environmental Fate and Occurrence: The Llobregat River as Case Study

  • Chapter
  • First Online:
The Llobregat

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 21))

Abstract

Perfluorinated compounds are industrial chemicals widely used for more than 60 years. However, during the last decade, due to their high resistance to degradation, bioaccumulation attached to proteins, biomagnification to the food chain and their relation to toxicological effects of these compounds have gained scientific and regulatory attention.

In addition, the difficulty associated with their analysis in complex matrices such as biota, food and human fluids and tissues samples should be mentioned.

This chapter provides a comprehensive examination of the current knowledge on PFCs’ analysis, environmental fate and occurrence in aquatic systems, using as a central example the Llobregat River.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AcH:

Acetic acid

ACN:

Acetonitrile

APCI:

Atmospheric pressure chemical ionization

APPI:

Atmospheric pressure photoionization

ASE:

Accelerated solvent extractor

DMF:

Dimethylformamide

EFSA:

European Food Safety Authority

EPA:

Environmental Protection Agency

EPI:

Enhanced product ion

EQS:

Environmental quality standards

ESI:

Electrospray ionization source

Et-FOSA:

Ethyl perfluorosulphonamide

EtOAc:

Ethyl acetate

FID:

Flame ionization detection

FoH:

Formic acid

FOSA:

Perfluorosulphonamide

FOSE:

Perfluorooctane sulphonamide-ethanol

FTOH:

Fluorotelomer alcohol

FTUCA:

Fluorotelomer unsaturated carboxylate

GC:

Gas chromatography

HCl:

Hydrochloric acid

HLB:

Hydrophilic lipophilic balance

ip-PFNA:

Isopropyl perfluorononanoic acid

IT:

Ion trap

LC/ARC:

Liquid chromatography/accurate radioisotope counting

LC:

Liquid chromatography

LC-MS/MS:

Liquid chromatography coupled to tandem mass spectrometry

LC-MS:

Liquid chromatography–mass spectrometry

LRET:

Long-range environmental transport

MeOH:

Methanol

MLOD:

Method limit of detection

MLOQ:

Limits of quantification

MS:

Mass spectrometry

MS2 :

Mass spectrometry/mass spectrometry

MS3 :

Mass spectrometry/mass spectrometry/mass spectrometry

MTBE:

Methyl tert-butyl ether

N2 :

Nitrogen

NaAc:

Sodium acetate

NaOH:

Sodium hydroxide

N-EtFOSAA:

2-(N-Ethyl perfluorooctane sulphonamido) acetic acid

NH4Ac:

Ammonium acetate

NH4OH:

Ammonium hydroxide

N-MeFOSAA:

2-(N-Methyl perfluorooctane sulphonamido) acetic acid

OW:

Office of Water

PAPs:

Polyfluoroalkyl phosphates

PE:

High density polyethylene

PEEK:

Polyether ether ketone

PFASAs:

Perfluorinated sulphonamides

PFASEs:

Perfluorinated sulphonamide ethanols

PFASs:

Perfluoro alkyl sulphonates

PFBA:

Perfluorobutanoic acid

PFBS:

Perfluorobutane sulphonate

PFC:

Perfluorinated compounds

PFCAs:

Perfluoro carboxylic acids

PFDA:

Perfluorodecanoic acid

PFDoA:

Perfluorododecanoic acid

PFDS:

Perfluorodecane sulphonate

PFEtS:

Perfluoroethyl sulphonate

PFHpA:

Perfluoroheptanoic acid

PFHpS:

Perfluoroheptane sulphonate

PFHxDA:

Perfluorohexadecanoic acid

PFHxS:

Perfluorohexane sulphonate

PFNA:

Perfluorononanoic acid

PFOA:

Perfluorooctanoic acid

PFODA:

Perfluorooctadecanoic acid

PFOS:

Perfluorooctane sulphonate

PFOSI:

Perfluorooctane sulphinate

PFPeA:

Perfluoropentanoic acid

PFPrA:

Perfluoropropyl acid

PFPrS:

Perfluoropropyl sulphonate

PFTeA:

Perfluorotetradecanoic acid

PFTOHs:

Perfluorotelomers alcohols

PFUnA:

Perfluoroundecanoic acid

PHA:

Provisional Health Advisories

PLE:

Pressurized liquid extraction

POP:

Persistent organic pollutant

POSF:

Perfluorooctane sulphonyl fluoride

PP:

Polypropylene

PTFE:

Polytetrafluoroethylene

PVDF:

Polyvinylidene fluoride

QqLit:

Hybrid quadrupole linear ion trap

QqQ:

Triple quadrupole mass spectrometer

QTOF:

Hybrid quadrupole time of flight

RP:

Reversed phase

RSD:

Relative standard deviation

SCARCE project:

Assessing and predicting effects on water quantity and quality in Iberian rivers caused by global change (2009–2014)

SPE:

Solid phase extraction

SRM:

Selected reaction monitoring

TBA:

tert-Butyl alcohol

t-Bu-PFOS:

tert-Butyl perfluorooctane sulphonate

TDI:

Tolerable daily intake

TFA:

Trifluoroacetic acid

THPFOS:

Tetrahydro-perfluorooctane sulphonate

TOF:

Time of flight

WAX:

Weak anionic exchange

WWTPs:

Wastewater treatment plants

References

  1. Prevedouros K (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40(1):32–44

    Article  CAS  Google Scholar 

  2. Kantiani L (2010) Emerging food contaminants: a review. Anal Bioanal Chem 398(6):2413–2427

    Article  CAS  Google Scholar 

  3. Pico Y Perfluorinated compounds in food: a global perspective. Crit Rev Food Sci Nutr 51:605–625

    Article  CAS  Google Scholar 

  4. Shoeib M, Harner T, Vlahos P (2006) Perfluorinated chemicals in the arctic atmosphere. Environ Sci Technol 40(24):7577–7583

    Article  CAS  Google Scholar 

  5. Wania F (2007) A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean. Environ Sci Technol 41(13):4529–4535

    Article  CAS  Google Scholar 

  6. Sonne C (2010) Health effects from long-range transported contaminants in Arctic top predators: an integrated review based on studies of polar bears and relevant model species. Environ Int 36(5):461–491

    Article  CAS  Google Scholar 

  7. Martin JW (2004) Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ Sci Technol 38(2):373–380

    Article  CAS  Google Scholar 

  8. Stemmler I, Lammel G (2010) Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources. Atmos Chem Phys 10(20):9965–9980

    Article  CAS  Google Scholar 

  9. Butt CM (2010) Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ 408(15):2936–2965

    Article  CAS  Google Scholar 

  10. Schiavone A (2009) Perfluorinated contaminants in fur seal pups and penguin eggs from South Shetland, Antarctica. Sci Total Environ 407(12):3899–3904

    Article  CAS  Google Scholar 

  11. Tao L (2006) Perfluorooctanesulfonate and related fluorochemicals in albatrosses, elephant seals, penguins, and polar skuas from the southern ocean. Environ Sci Technol 40(24):7642–7648

    Article  CAS  Google Scholar 

  12. Kubwabo C, Vais N, Benoit FM (2004) A pilot study on the determination of perfluorooctanesulfonate and other perfluorinated compounds in blood of Canadians. J Environ Monit 6(6):540–545

    Article  CAS  Google Scholar 

  13. Ericson I (2007) Perfluorinated chemicals in blood of residents in Catalonia (Spain) in relation to age and gender: a pilot study. Environ Int 33(5):616–623

    Article  Google Scholar 

  14. Kärrman A (2009) Biomonitoring perfluorinated compounds in Catalonia, Spain: concentrations and trends in human liver and milk samples. Environ Sci Pollut Res 1–9

    Google Scholar 

  15. Tao L (2008) Perfluorinated compounds in human breast milk from several Asian countries, and in infant formula and dairy milk from the United States. Environ Sci Technol 42(22):8597–8602

    Article  CAS  Google Scholar 

  16. Llorca M (2010) Infant exposure of perfluorinated compounds: levels in breast milk and commercial baby food. Environ Int 36(6):584–592

    Article  CAS  Google Scholar 

  17. So MK (2006) Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China. Environ Sci Technol 40(9):2924–2929

    Article  CAS  Google Scholar 

  18. Inoue K (2004) Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect 112(11):1204–1207

    Article  CAS  Google Scholar 

  19. Monroy R (2008) Serum levels of perfluoroalkyl compounds in human maternal and umbilical cord blood samples. Environ Res 108(1):56–62

    Article  CAS  Google Scholar 

  20. Carabias-Martínez R (2005) Pressurized liquid extraction in the analysis of food and biological samples. J Chromatogr A 1089(1/2):1–17

    Google Scholar 

  21. EFSA (2008) Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA Guidelines 653:2–131

    Google Scholar 

  22. Ericson I (2008) Human exposure to perfluorinated chemicals through the diet: intake of perfluorinated compounds in foods from the Catalan (Spain) market. J Agric Food Chem 56(5):1787–1794

    Article  CAS  Google Scholar 

  23. Lacina O (2011) Simple, high throughput ultra-high performance liquid chromatography/tandem mass spectrometry trace analysis of perfluorinated alkylated substances in food of animal origin: milk and fish. J Chromatogr A 1218(28):4312–4321

    Article  CAS  Google Scholar 

  24. Committee on Toxicity of Chemicals in Food Environment (2006) COT statement on the tolerable daily intake for perfluorooctane sulfonate. Available on line at http://www.food.gov.uk/multimedia/pdfs/cotstatementpfos200609.pdf

  25. Committee on Toxicity of Chemicals in Food, C.P.a.t.E. (2006) COT statement on the tolerable daily intake for perfluorooctanoic acid. Available on line at http://www.food.gov.uk/multimedia/pdfs/cotstatementpfoa200610.pdf

  26. Commission decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Union L221/8

    Google Scholar 

  27. USEPA (2006) 2010/15 Stewardship Program. Environmental Protection Agency. Available on line at http://www.epa.gov/oppt/pfoa/pubs/stewardship/index.html

  28. UNEP (2010) New POPs SC-4/17: listing of perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride. In: United Nations Environment Programme: Stockholm Convention on Persistent Organic Pollutants (POPs). Geneva, Switzerland

    Google Scholar 

  29. European Union Directive 2008/105/EC on the environmental quality standards in the field of water policy, amending and repealing Council Directives: 82/176/EEC, 83/513/EEC, 84/156/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and Council-348/84, Brussels, 2008

    Google Scholar 

  30. Zhou Q (2010) Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated sludge. Chemosphere 81(4):453–458

    Article  CAS  Google Scholar 

  31. Rayne S, Forest K (2009) Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. J Environ Sci Health A Tox Hazard Subst Environ Eng 44(12):1145–1199

    Article  CAS  Google Scholar 

  32. Ruan T (2010) Presence and partitioning behavior of polyfluorinated iodine alkanes in environmental matrices around a fluorochemical manufacturing plant: another possible source for perfluorinated carboxylic acids? Environ Sci Technol 44(15):5755–5761

    Article  CAS  Google Scholar 

  33. Yoo H (2011) Quantitative determination of perfluorochemicals and fluorotelomer alcohols in plants from biosolid-amended fields using LC/MS/MS and GC/MS. Environ Sci Technol 45:7985–7990

    Article  CAS  Google Scholar 

  34. Navarro I, Sanz P, Martínez MÁ (2011) Analysis of perfluorinated alkyl substances in Spanish sewage sludge by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 400(5):1277–1286

    Article  CAS  Google Scholar 

  35. Llorca M (2011) Analysis of perfluorinated compounds in sewage sludge by pressurized solvent extraction followed by liquid chromatography-mass spectrometry. J Chromatogr A 1218(30):4840–4846

    Article  CAS  Google Scholar 

  36. Clarke BO, Smith SR (2011) Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int 37(1):226–247

    Article  CAS  Google Scholar 

  37. Gottschall N (2010) Polybrominated diphenyl ethers, perfluorinated alkylated substances, and metals in tile drainage and groundwater following applications of municipal biosolids to agricultural fields. Sci Total Environ 408(4):873–883

    Article  CAS  Google Scholar 

  38. Skutlarek D, Exner M, Färber H (2006) Perfluorinated surfactants in surface and drinking waters. Environ Sci Pollut Res 13(5):299–307

    Article  CAS  Google Scholar 

  39. Ericson I (2008) Levels of perfluorochemicals in water samples from Catalonia, Spain: is drinking water a significant contribution to human exposure? Environ Sci Pollut Res 15(7):614–619

    Article  CAS  Google Scholar 

  40. USEPA (2009) Provisional Health Advisories (PHA) for PFOA and PFOS. Environmental Protection Agency. Available on line at http://www.epa.gov/oppt/pfoa/pubs/pfoainfo.html

  41. Martin JW (2004) Analytical challenges hamper perfluoroalkyl research. Environ Sci Technol 38(13):248A–255A

    Article  CAS  Google Scholar 

  42. Sinclair E, Mayack DT, Roblee K, Yamashita N, Kannan K (2006) Arch Environ Contam Toxicol 50:398–410

    Google Scholar 

  43. Guo R, Sim W-J, Lee E-S, Lee J-H, Oh J-E (2010) Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants. Water Res 44:3476–3486

    Article  CAS  Google Scholar 

  44. Yu J, Hu J, Tanaka S, Fujii S (2009) Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants. Water Res 43:2399–2408

    Article  CAS  Google Scholar 

  45. Hu J, Yu J (2010) An LC-MS-MS method for the determination of perfluorinated surfactants in environmental matrices. Chromatographia 72:411–416

    Article  CAS  Google Scholar 

  46. Sun H (2011) Long-chain perfluorinated chemicals in digested sewage sludges in Switzerland. Environ Pollut 159(2):654–662

    Article  CAS  Google Scholar 

  47. Loveless SE (2006) Comparative responses of rats and mice exposed to linear/branched, linear, or branched ammonium perfluorooctanoate (APFO). Toxicology 220(2–3):203–217

    Article  CAS  Google Scholar 

  48. Frömel T, Knepper TP (2010) Fluorotelomer ethoxylates: sources of highly fluorinated environmental contaminants. Part I: biotransformation. Chemosphere 80(11):1387–1392

    Article  CAS  Google Scholar 

  49. Holm A (2004) Determination of perfluorooctane sulfonate and perfluorooctanoic acid in human plasma by large volume injection capillary column switching liquid chromatography coupled to electrospray ionization mass spectrometry. J Sep Sci 27(13):1071–1079

    Article  CAS  Google Scholar 

  50. Kärrman A (2006) Perfluorinated chemicals in relation to other persistent organic pollutants in human blood. Chemosphere 64(9):1582–1591

    Article  CAS  Google Scholar 

  51. Liu J, Lee LS (2005) Solubility and sorption by soils of 8:2 fluorotelomer alcohol in water and cosolvent systems. Environ Sci Technol 39(19):7535–7540

    Article  CAS  Google Scholar 

  52. Guo R, Zhou Q, Cai Y, Jiang G (2008) Determination of perfluorooctanesulfonate and perfluorooctanoic acid in sewage sludge samples using liquid chromatography/quadrupole time-of-flight mass spectrometry. Talanta 75:1394–1399

    Article  CAS  Google Scholar 

  53. Szostek B, Prickett KB, Buck RC (2006) Determination of fluorotelomer alcohols by liquid chromatography/tandem mass spectrometry in water. Rapid Commun Mass Spectrom 20(19):2837–2844

    Article  CAS  Google Scholar 

  54. Schultz MM, Barofsky DF, Field JA (2006) quantitative determination of fluorinated alkyl substances by large-volume-injection liquid chromatography tandem mass spectrometry characterization of municipal wastewaters. Environ Sci Technol 40(1):289–295

    Article  CAS  Google Scholar 

  55. Li F (2010) Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China. Sci Total Environ 408(3):617–623

    Article  CAS  Google Scholar 

  56. Bossi R (2008) Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments. Environ Int 34(4):443–450

    Article  CAS  Google Scholar 

  57. Ericson I, Domingo J, Nadal M, Bigas E, Llebaria X, van Bavel B, Lindström G (2009) Levels of perfluorinated chemicals in municipal drinking water from Catalonia, Spain: public health implications. Arch Environ Contam Toxicol 57(4):631–638

    Article  CAS  Google Scholar 

  58. D'Eon JC (2009) Perfluorinated phosphonic acids in Canadian surface waters and wastewater treatment plant effluent: discovery of a new class of perfluorinated acids. Environ Toxicol Chem 28(10):2101–2107

    Article  Google Scholar 

  59. Gómez C (2011) Occurrence of perfluorinated compounds in water, sediment and mussels from the Cantabrian Sea (North Spain). Mar Pollut Bull 62(5):948–955

    Article  CAS  Google Scholar 

  60. Sánchez-Avila J, Meyer J, Lacorte S (2010) Spatial distribution and sources of perfluorochemicals in the NW Mediterranean coastal waters (Catalonia, Spain). Environ Pollut 158(9):2833–2840

    Article  CAS  Google Scholar 

  61. Takazawa Y (2009) Occurrence and distribution of perfluorooctane sulfonate and perfluorooctanoic acid in the rivers of Tokyo. Water Air Soil Pollut 202(1–4):57–67

    Article  CAS  Google Scholar 

  62. Villagrasa M, López De Alda M, Barcelo D (2006) Environmental analysis of fluorinated alkyl substances by liquid chromatography–(tandem) mass spectrometry: a review. Anal Bioanal Chem 386(4):953–972

    Article  CAS  Google Scholar 

  63. Suja F, Pramanik BK, Zain SM (2009) Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper. Water Sci Technol 60:1533–1554

    Article  CAS  Google Scholar 

  64. Taniyasu S (2003) A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environ Sci Technol 37(12):2634–2639

    Article  CAS  Google Scholar 

  65. Saito N (2003) Perfluorooctane sulfonate concentrations in surface water in Japan. Arch Environ Contam Toxicol 45(2):149–158

    Article  CAS  Google Scholar 

  66. Yamashita N (2004) Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry. Environ Sci Technol 38(21):5522–5528

    Article  CAS  Google Scholar 

  67. Taniyasu S (2005) Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. J Chromatogr A 1093(1–2):89–97

    CAS  Google Scholar 

  68. Dasu K (2010) Hydrolysis of fluorotelomer compounds leading to fluorotelomer alcohol production during solvent extractions of soils. Chemosphere 81(7):911–917

    Article  CAS  Google Scholar 

  69. Hansen KJ (2001) Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environ Sci Technol 35(4):766–770

    Article  CAS  Google Scholar 

  70. Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35(7):1339–1342

    Article  CAS  Google Scholar 

  71. Yeung LWY (2009) A survey of perfluorinated compounds in surface water and biota including dolphins from the Ganges River and in other waterbodies in India. Chemosphere 76(1):55–62

    Article  CAS  Google Scholar 

  72. Guruge KS (2008) Species-specific concentrations of perfluoroalkyl contaminants in farm and pet animals in Japan. Chemosphere 73(Suppl 1):S210–S215

    Article  CAS  Google Scholar 

  73. Crozier P, Furdui V, Reiner E, Libelo EL, Mabury S (2009) Observation of a commercial fluorinated material, the polyfluoroalkyl phosphoric acid diesters, in human sera, wastewater treatment plant sludge, and paper fibers. Environ Sci Technol 43:4589–4594

    Article  CAS  Google Scholar 

  74. Zhang T, Sun H, Gerecke AC, Kannan K, Müller CE, Alder AC (2010) Comparison of two extraction methods for the analysis of per- and polyfluorinated chemicals in digested sewage sludge. J Chromatogr A 1217:5026–5034

    Article  CAS  Google Scholar 

  75. Higgins CP (2005) Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ Sci Technol 39(11):3946–3956

    Article  CAS  Google Scholar 

  76. Loganathan BG (2007) Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. Water Res 41(20):4611–4620

    Article  CAS  Google Scholar 

  77. Yoo H, Washington JW, Jenkins TM (2009) Analysis of perfluorinated chemicals in sludge: method development and initial results. J Chromatogr A 1216:7831–7839

    Article  CAS  Google Scholar 

  78. Ma R, Shih K (2010) Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong. Environ Pollut 158:1354–1362

    Article  CAS  Google Scholar 

  79. Powley CR (2005) Matrix effect-free analytical methods for determination of perfluorinated carboxylic acids in environmental matrixes. Anal Chem 77(19):6353–6358

    Article  CAS  Google Scholar 

  80. Rhoads KR (2008) Aerobic biotransformation and fate of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) in activated sludge. Environ Sci Technol 42(8):2873–2878

    Article  CAS  Google Scholar 

  81. Sun H, Gerecke AC, Giger W, Alder AC (2011) Long-chain perfluorinated chemicals in digested sewage sludges in Switzerland. Environ Pollut 159(2):654–662

    Article  CAS  Google Scholar 

  82. Liu J, Wang N, Buck RC, Wolstenholme BW, Folsom PW, Sulecki LM, Bellin CA (2010) Aerobic biodegradation of [14C] 6:2 fluorotelomer alcohol in a flow-through soil incubation system. Chemosphere 80:716–723

    Article  CAS  Google Scholar 

  83. Schröder HF (2003) Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents. J Chromatogr A 1020(1):131–151

    Article  CAS  Google Scholar 

  84. Kunacheva C (2011) Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand. Chemosphere 83(6):737–744

    Article  CAS  Google Scholar 

  85. Kuklenyik Z (2004) Automated solid-phase extraction and measurement of perfluorinated organic acids and amides in human serum and milk. Environ Sci Technol 38(13):3698–3704

    Article  CAS  Google Scholar 

  86. Calafat AM (2006) Perfluorochemicals in pooled serum samples from United States residents in 2001 and 2002. Environ Sci Technol 40(7):2128–2134

    Article  CAS  Google Scholar 

  87. Taniyasu S (2008) Analysis of trifluoroacetic acid and other short-chain perfluorinated acids (C2–C4) in precipitation by liquid chromatography–tandem mass spectrometry: comparison to patterns of long-chain perfluorinated acids (C5–C18). Anal Chim Acta 619(2):221–230

    Article  CAS  Google Scholar 

  88. Shivakoti BR (2010) Occurrences and behavior of perfluorinated compounds (PFCs) in several wastewater treatment plants (WWTPs) in Japan and Thailand. J Environ Monit 12(6):1255–1264

    Article  CAS  Google Scholar 

  89. Berger U, Haukås M (2005) Validation of a screening method based on liquid chromatography coupled to high-resolution mass spectrometry for analysis of perfluoroalkylated substances in biota. J Chromatogr A 1081(2):210–217

    Article  CAS  Google Scholar 

  90. Llorca M (2010) Study of the performance of three LC-MS/MS platforms for analysis of perfluorinated compounds. Anal Bioanal Chem 398(3):1145–1159

    Article  CAS  Google Scholar 

  91. Yamashita N (2005) A global survey of perfluorinated acids in oceans. Mar Pollut Bull 51(8–12):658–668

    Article  CAS  Google Scholar 

  92. Lohmann R (2007) Global fate of POPs: current and future research directions. Environ Pollut 150(1):150–165

    Article  CAS  Google Scholar 

  93. Bengtson Nash S (2010) Perfluorinated compounds in the Antarctic region: ocean circulation provides prolonged protection from distant sources. Environ Pollut 158(9):2985–2991

    Article  CAS  Google Scholar 

  94. Wallington TJ (2006) Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol. Environ Sci Technol 40(3):924–930

    Article  CAS  Google Scholar 

  95. Yamashita N (2008) Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. Chemosphere 70(7):1247–1255

    Article  CAS  Google Scholar 

  96. Ahrens L (2010) Sources of polyfluoroalkyl compounds in the North Sea, Baltic Sea and Norwegian Sea: evidence from their spatial distribution in surface water. Mar Pollut Bull 60(2):255–260

    Article  CAS  Google Scholar 

  97. Armitage J (2006) Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ Sci Technol 40(22):6969–6975

    Article  CAS  Google Scholar 

  98. Ellis DA (2003) Atmospheric lifetime of fluorotelomer alcohols. Environ Sci Technol 37(17):3816–3820

    Article  CAS  Google Scholar 

  99. D'Eon JC, Mabury SA (2007) Production of perfluorinated carboxylic acids (PFCAs) from the biotransformation of polyfluoroalkyl phosphate surfactants (PAPS): exploring routes of human contamination. Environ Sci Technol 41(13):4799–4805

    Article  CAS  Google Scholar 

  100. Zhang T (2010) Comparison of two extraction methods for the analysis of per- and polyfluorinated chemicals in digested sewage sludge. J Chromatogr A 1217(31):5026–5034

    Article  CAS  Google Scholar 

  101. Guo R (2010) Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants. Water Res 44(11):3476–3486

    Article  CAS  Google Scholar 

  102. Ma R, Shih K (2010) Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong. Environ Pollut 158(5):1354–1362

    Article  CAS  Google Scholar 

  103. Lee H, Deon J, Mabury SA (2010) Biodegradation of polyfluoroalkyl phosphates as a source of perfluorinated acids to the environment. Environ Sci Technol 44(9):3305–3310

    Article  CAS  Google Scholar 

  104. Frömel T, Knepper TP (2010) Biodegradation of fluorinated alkyl substances. Rev Environ Contam Toxicol 208:161–177

    Article  Google Scholar 

  105. Zhou P (2009) Fluorine bonding – how does it work in protein-ligand interactions? J Chem Inf Model 49(10):2344–2355

    Article  CAS  Google Scholar 

  106. Becker AM (2010) Perfluorooctanoic acid and perfluorooctane sulfonate released from a waste water treatment plant in Bavaria, Germany. Environ Sci Pollut Res 17(9):1502–1507

    Article  CAS  Google Scholar 

  107. Wang Y (2010) Distribution of perfluorooctane sulfonate and other perfluorochemicals in the ambient environment around a manufacturing facility in china. Environ Sci Technol 44(21):8062–8067

    Article  CAS  Google Scholar 

  108. Pico Y (2011) Occurrence of perfluorinated compounds in water and sediment of L'Albufera Natural Park (València, Spain). Environ Sci Pollut Res 1–12.

    Google Scholar 

  109. Loos R, Wollgast J, Huber T, Hanke G (2007) Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy. Anal Bioanal Chem 387(4):1469–1478

    Article  CAS  Google Scholar 

  110. Takagi S, Adachi F, Miyano K, Koizumi Y, Tanaka H, Mimura M, Watanabe I, Tanabe S, Kannan K (2008) Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka, Japan. Chemosphere 72(10):1409–1412

    Article  CAS  Google Scholar 

  111. Dinglasan MJA (2004) Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids. Environ Sci Technol 38(10):2857–2864

    Article  CAS  Google Scholar 

  112. Wang N (2005) Fluorotelomer alcohol biodegradation – direct evidence that perfluorinated carbon chains breakdown. Environ Sci Technol 39(19):7516–7528

    Article  CAS  Google Scholar 

  113. Cheng J (2008) Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. Environ Sci Technol 42(21):8057–8063

    Article  CAS  Google Scholar 

  114. Houtman CJ (2011) Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. J Integr Environ Sci 7(4):271–295

    Article  Google Scholar 

  115. Ferré-Huguet N (2008) Assessment of metals from consuming vegetables, fruits and rice grown on soils irrigated with waters of the Ebro River in Catalonia, Spain. Biol Trace Elem Res 123(1):66–79

    Article  CAS  Google Scholar 

  116. Petrovic M (2011) Combined scenarios of chemical and ecological quality under water scarcity in Mediterranean rivers. Trends Anal Chem 30(8):1269–1278

    Article  CAS  Google Scholar 

  117. Scott BF (2006) Analysis for perfluorocarboxylic acids/anions in surface waters and precipitation using GC-MS and analysis of PFOA from large-volume samples. Environ Sci Technol 40(20):6405–6410

    Article  CAS  Google Scholar 

  118. Konwick BJ (2008) Concentrations and patterns of perfluoroalkyl acids in Georgia, USA surface waters near and distant to a major use source. Environ Toxicol Chem 27(10):2011–2018

    Article  CAS  Google Scholar 

  119. Saez M, De Voogt P, Parsons JR (2008) Persistence of perfluoroalkylated substances in closed bottle tests with municipal sewage sludge. Environ Sci Pollut Res 15(6):472–477

    Article  CAS  Google Scholar 

  120. Wang T (2011) Perfluorinated compounds in surface waters from Northern China: comparison to level of industrialization. Environ Int

    Google Scholar 

Download references

Acknowledgement

This work was funded by the project “Assessing and predicting effects on water quantity and quality in Iberian Rivers caused by global change” SCARCE (CSD-2009-00065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinella Farré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Llorca, M., Pérez, F., Farré, M., Picó, Y., Barceló, D. (2012). Perfluorinated Compounds’ Analysis, Environmental Fate and Occurrence: The Llobregat River as Case Study. In: Sabater, S., Ginebreda, A., Barceló, D. (eds) The Llobregat. The Handbook of Environmental Chemistry, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2012_147

Download citation

Publish with us

Policies and ethics