Skip to main content

Manganese and Iron at the Redox Interfaces in the Black Sea, the Baltic Sea, and the Oslo Fjord

  • Chapter
  • First Online:
Chemical Structure of Pelagic Redox Interfaces

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 22))

Abstract

The joint analysis of the data of manganese and iron species distributions (dissolved Mn, dissolved bound Mn, dissolved Fe(II) and Fe(III), particulate Fe and Mn) obtained in the Black Sea, the Baltic Sea, and the Oslo Fjord allowed to reveal the common features that testify the similarity of the mechanism of the redox layer biogeochemical structure formation in these regions. Our investigations demonstrated that Mn bound in stable complexes with hypothetically organic matter or pyrophosphate is observed in the redox zones in significant concentrations (up to 2 μM), and is likely presented by Mn(III), an intermediate product of Mn(II) oxidation and Mn(IV) reduction. This bound Mn(III) can explain phosphate distribution in redox interfaces – formation of so-called phosphate dipole with a minimum above the sulfidic boundary and a maximum just below, and with a steep increase in the concentrations between these two. This dipole structure serves as a geochemical barrier that decreases the upward flux of phosphate from the anoxic layer. On the base of the recent data obtained in the 100th cruise of RV “Professor Shtokman” (March to April, 2009), it was found that the bound Mn could exist in two forms – colloidal (0.02–0.40 μm) and truly dissolved (<0.02 μm) that perhaps result from complexing with different types of ligands. The flushing events, river input, sporadically increased mixing, and anoxygenic photosynthesis affect the distributions of the redox zone parameters. Response time for changes in the microbial processes involved in reduction and/or reoxidation of Mn and Fe lags behind that for oxygen injection into water. Concentrations of redox-sensitive species of Mn and Fe should thus be useful as a tracer to inter prior hypoxic/anoxic conditions not apparent from oxygen levels at the time of sampling. Modeling results showed that the manganese cycle [formation of sinking down Mn(IV) and presence of dissolved Mn(III)] is the main reason of oxygen and hydrogen sulfide direct contact absence. Modeling allowed to study the role of affecting factors in the formation of the observed distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

B-Chl-e:

Bacterial chlorophyll-e

DO:

Dissolved oxygen

Fe(II):

Dissolved bivalent iron

Fe(III):

Dissolved trivalent iron

Mn-bou:

Dissolved bound trivalent manganese Mn(III)

Mn-diss:

Dissolved manganese Mn(II)

Mn-part:

Particulate manganese Mn(IV)

NRL:

Nepheloid redox layer

OM:

Organic matter

SPM:

Suspended particulate matter

References

  1. Lewis BL, Landing WM (1991) The biochemistry of manganese and iron in the Black Sea. Deep-Sea Res II 38:S773–S803

    Article  Google Scholar 

  2. Tebo BM (1991) Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep-Sea Res II 38:S883–S905

    Article  Google Scholar 

  3. Canfield DE, Thamdrup B, Kristensen E (2005) Aquatic geomicrobiology. In: Southward AJ, Tyler PA, Young CM, Fuiman LA (eds) Advances in marine biology, 48. Elsevier Academic Press, Amsterdam – Tokio, p 640

    Google Scholar 

  4. Dubinin AV (2005) Geochimiya redkozemelnykh elementov v okeane (Geochemistry of the rare earth elements in the ocean). Naukja, Moscow

    Google Scholar 

  5. Murray JW, Codispoti LA, Friederich GE (1995) Oxidation–reduction environments. The suboxic zone in the Black Sea. In: Huang CP et al (eds) Aquatic chemistry: interfacial and interspecies processes, ACS advances in chemistry series 244, pp 157–176

    Google Scholar 

  6. Yakushev EV, Debolskaya EI (2000) Particulate manganese as a main factor of oxidation of hydrogen sulfide in redox zone of the Black Sea. In: Oceanic fronts and related phenomena. Konstantin Fedorov Memorial Symposium. Pushkin, Saint-Petersburg, Russia. 18–22 May 1998. Proceedings. IOC Workshop Report No. 159. Kluwer Acad. Publ., 2000, pp 592–597

    Google Scholar 

  7. Trouwborst RE, Brian GC, Tebo BM, Glazer BT, Luther GW III (2006) Soluble Mn(III) in Suboxic Zones. Science 313:1955–1957

    Article  CAS  Google Scholar 

  8. Tebo BM, Clement BG, Luther GW III, Trouwborst RE, Webb SM, Bargar JR, Parker DL, Sposito G (2005) The mechanism of bacterial manganese(II) oxidation and its implication for maintenance of the suboxic zone in the Black Sea. In: Program and abstracts of international ocean research conference, Paris, France, p 154, 5–10 June 2005

    Google Scholar 

  9. Webb SM, Dick GJ, Bargar JR, Tebo BM (2005) Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). PNAS 102:5558–5563

    Article  CAS  Google Scholar 

  10. Kostka JE, Luther GW III, Nealson KH (1995) Chemical and biological reduction of Mn(III)-pyrophosphate complexes: potential importance of dissolved Mn(III) as an environmental oxidant. Geochim et Cosmochim Acta 59:885–894

    CAS  Google Scholar 

  11. Ali K, Ashiq U (2004) Study of the kinetics and activation parameters of reduction of Mn(III) to Mn(II) by SO 2-3 ion in (MnSiW11O40H2)5- heteropoly ion. J Iran Chem Soc 1:122–127

    Article  CAS  Google Scholar 

  12. Dellwig O, Leipe T, Glockzin M, Marz C, Pollehne F, Schnetger B, Yakushev EV, Brumsack H-J, Böttcher ME (2010) A new particulate Mn-Fe-P-shuttle in the water column of anoxic basins. Geochim Cosmochim Acta. doi:10.1016/j.gca.2010.09.017

    Google Scholar 

  13. Krueger S (2004) Operating manual, integrated IOW/MPI PUMP CTD System, IOW, Warnemuende Germany; <Siegfried.Krueger@iowarnemuende.de>

    Google Scholar 

  14. Bordovskiy OK, Chernyakova AM (eds) (1992) Modern methods of the ocean hydrochemical investigations. P.P.Shirshov Institute of Oceanology, Moscow, p 200 (in Russian)

    Google Scholar 

  15. Grashoff K, Kremling K, Ehrhard M (1999) Methods of seawater analysis, 3rd completely revised and extended edition. WILEY-VCH, Weinheim

    Google Scholar 

  16. Hansen HP (1999) Determination of oxygen. In: Grashoff K, Kremling K, Ehrhard M (eds) Methods of seawater analysis 3rd completely revised and extended edition. WILEY-VCH, Weinheim, pp 75–90

    Google Scholar 

  17. Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grashoff K et al (eds) Methods of seawater analysis, 3rd completely revised and extended edition. WILEY-VC, Weinheim, p 149–228

    Google Scholar 

  18. Koroleff F, Kremling K (1999) Analysis by spectrophotometry. In: Grashoff K, Kremling K, Ehrhard M (eds) Methods of seawater analysis, 3rd completely revised and extended edition. WILEY-VCH, Weinheim, pp 341–344

    Google Scholar 

  19. Kononets MYu, Pakhomova SV, Rozanov AG, Proskurnin MA (2002) Determination of soluble iron species in seawater using ferrozine. J Anal Chem 57:704–708

    Article  Google Scholar 

  20. Yakushev EV, Pollehne F, Jost G, Umlauf L, Kuznetsov I, Schneider B (2007) Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a Redox-Layer Model. Mar Chem 107:388–410

    Article  CAS  Google Scholar 

  21. Burchard H, Bolding K, Kuhn W, Meister A, Neumann T, Umlauf L (2006) Description of flexible and extendable physical-biogeochemical model system for the water column. J Mar Syst 61:180–211

    Article  Google Scholar 

  22. Yakushev EV (2011) RedOx layer model. The Handbook of Environmental Chemistry (this volume)

    Google Scholar 

  23. Rozanov AG, Volkov II (2002) Manganese in the Black Sea. In: Complex investigations of the northeastern part of the Black Sea. Nauka, Moscow, p 190–200 (in Russian)

    Google Scholar 

  24. Yemenicioglu S, Erdogan S, Tugrul S (2006) Distribution of dissolved forms of iron and manganese in the Black Sea. Deep-Sea Res II 53:1842–1855

    Article  CAS  Google Scholar 

  25. Skopintsev BA (1975) Forming of the modern chemical composition of water in the Black Sea. Hydrometizdat, Leningrad (in Russian)

    Google Scholar 

  26. Stumm W, Morgan JJ (1981) Aquatic chemistry. Wiley, New York

    Google Scholar 

  27. Yakushev EV, Chasovnikov VK, Murray JW, Pakhomova SV, Podymov OI, Stunzhas PA (2008) Vertical hydrochemical structure of the Black Sea. In: Kostyanoy AG, Kosarev AN (eds) The Black Sea environment, vol 5, The handbook of environmental chemistry. Springer, Berlin, pp 277–307

    Chapter  Google Scholar 

  28. Pakhomova SV, Rozanov AG, Yakushev EV (2009) Dissolved and particulate forms of iron and manganese in the redox zone of the Black Sea. Oceanology 49:773–787

    Article  Google Scholar 

  29. Stunzhas PA, Yakushev EV (2006) Fine hydrochemical structure of the redox zone in the Black Sea according to the results of measurements with an open oxygen sensor and with bottle samplers. Oceanology 46:629–641

    Article  Google Scholar 

  30. Stunzhas PA (2000) On the structure of the interaction zone of aerobic and anaerobic water in the Black Sea on the base of measurements by membrane-free oxygen sensor. Oceanology 40:503–509

    Google Scholar 

  31. Bashturk O, Volkov II, Gekman S, Gungor H, Romanov AS, Yakushev EV (1998) International expedition on R/V Bilim in July 1997 in the Black sea. Oceanology 38:473–476

    Google Scholar 

  32. Neretin L, Pohl C, Jost G, Leipe T, Pollehne F (2003) Manganese cycling at the oxic/anoxic interface in the Gotland deep, Baltic Sea. Mar Chem 82:125–143

    Article  CAS  Google Scholar 

  33. Volkov II, Kontar EA, Lukashev YuF, Neretin LN, Niffeler F, Rozanov AG (1997) The upper boundary of hydrogen sulfide and redox nefeloid layer in water of the Caucasian slope in the Black Sea. Geochemistry 7:540–550

    Google Scholar 

  34. Kamyshny A Jr, Yakushev EV, Jost G, Podymov OI (2011) Role of Sulfide Oxidation Intermediates in the Redox Balance of the Oxic-Anoxic Interface of the Gotland Deep, Baltic Sea. The Handbook of Environmental Chemistry. doi:10.1007/698_2010_83

    Google Scholar 

  35. Gloe A, Pfennig N, Brockmann H, Trowitzsch W (1975) A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 102:103–109

    Article  CAS  Google Scholar 

  36. Yakushev E, Pakhomova S, Sørenson K, Skei J (2009) Importance of the different manganese species in the formation of water column redox zones: observations and modeling. Mar Chem 117:59–70

    Article  CAS  Google Scholar 

  37. Sørensen K (1988) The distribution and biomass of phytoplankton and phototrophic bacteria in Framvaren, a permanently anoxic fjord in Norway. Mar Chem 23:229–241

    Article  Google Scholar 

  38. Ozturk M (1995) Trends of trace metal (Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb) distributions at the oxic-anoxic interface and in sulfidic water of the Drammensfjord. Mar Chem 48:329–342

    Article  Google Scholar 

  39. Pohl C, Loffler A, Hennings U (2004) A sediment trap study for trace metals under seasonal aspects in the stratified Baltic Sea (Gotland Basin; 57º19.20’N; 20º03.00’E). Mar Chem 84:143–160

    Article  CAS  Google Scholar 

  40. Jost G, Clement B, Pakhomova SV, Yakushev EV (2007) Field studies of anoxic conditions in the Baltic Sea during the cruise of R/V Professor Albrecht Penck in July 2006. Oceanology 47:590–593

    Article  Google Scholar 

  41. Yakushev EV, Vinogradova EL, Dubinin AV, Kostyleva AV, Pakhomova SV (2011) On the determination of low oxygen concentrations with Winkler technique. Oceanology (in press)

    Google Scholar 

  42. Lewis BL, Holt PD, Taylor SW, Wilhelm SW, Trick CG, Butler A, Luther GW III (1995) Voltammetric estimation of iron(III) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Mar Chem 50:176–188

    Article  Google Scholar 

  43. Spenser DW, Brewer PG (1972) Aspect of the distribution and trace element composition of suspended matter in the Black Sea. Geochim Cosmochim Acta 36:71–86

    Article  Google Scholar 

  44. Haraldsson C, Westerlund S (1988) Trace metals in the water columns of the Black Sea and Framvaren Fjord. Mar Chem 23:417–424

    Article  CAS  Google Scholar 

  45. Swarzenski PW, McKee BA, Sørensen K, Todd JF (1999) 210Pb and 210Po, manganese and iron cycling across the O2/H2S interface of a permanently anoxic fjord: Framvaren, Norway. Mar Chem 67:199–217

    Article  CAS  Google Scholar 

  46. Lewis BL, Glazer BT, Montbriand PJ, Luther GW, Nuzzio DB, Deering T, Ma S, Theberge S (2007) Short-term and interannual variability of redox-sensitive chemical parameters in hypoxic/anoxic bottom waters of the Chesapeake Bay. Mar Chem 105:296–308

    Article  CAS  Google Scholar 

  47. Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50:117–138

    Article  CAS  Google Scholar 

  48. Van den Berg CMG (1995) Evidence for organic complexation of iron in seawater. Mar Chem 50:139–157

    Article  Google Scholar 

  49. Powell RT, Landing WM, Bauer JE (1996) Colloidal trace metals, organic carbon and nitrogen in a southeastern U.S. estuary. Mar Chem 55:165–176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pakhomova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pakhomova, S., Yakushev, E.V. (2011). Manganese and Iron at the Redox Interfaces in the Black Sea, the Baltic Sea, and the Oslo Fjord. In: Yakushev, E. (eds) Chemical Structure of Pelagic Redox Interfaces. The Handbook of Environmental Chemistry, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2011_98

Download citation

Publish with us

Policies and ethics