Advertisement

Human Exposure and Health Risks to Emerging Organic Contaminants

  • Adrian CovaciEmail author
  • Tinne Geens
  • Laurence Roosens
  • Nadeem Ali
  • Nele Van den Eede
  • Alin C. Ionas
  • Govindan Malarvannan
  • Alin C. Dirtu
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 20)

Abstract

We have reviewed the human exposure to selected emerging organic contaminants, such new brominated flame retardants, organophosphate flame retardants, phthalate substitutes, triclosan, synthetic musks, bisphenol-A, perchlorate, and polycyclic siloxanes. Levels of these emerging contaminants in matrices relevant for human exposure (air, dust, food, water, etc.) and in human matrices (blood, urine, or tissues) have been reviewed, together with some of the relevant health effects reported recently.

Keywords

Emerging contaminants Flame retardants Human exposure Human health Personal care products Phthalates Review 

References

  1. 1.
    The European Food Safety Authority (EFSA) (2006) Advice of the scientific panel on contaminants in the food chain on a request from the Commission related to relevant chemical compounds in the group of brominated flame retardants for monitoring in feed and food. EFSA J 328:1–4. http://www.efsa.europe.eu Google Scholar
  2. 2.
    Covaci A, Voorspoels S, Abdallah MA, Geens T, Harrad S, Law RJ (2009) Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J Chromatogr A 1216:346–363CrossRefGoogle Scholar
  3. 3.
    Covaci A, Harrad S, Abdallah MAE, Ali N, Law RJ, Herzke D, de Wit CA (2011) Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int 37:532–556CrossRefGoogle Scholar
  4. 4.
    Law K, Palace VP, Halldorson T, Danell R, Wautier K, Evans B, Alaee M, Marvin C, Tomy GT (2006) Dietary accumulation of Hexabromocyclododecane diastereoisomers in juvenile rainbow trout (Oncorhynchus mykiss) I: biomaccumulation parameters and evidence of bioisomerization. Environ Toxicol Chem 25:1757–1761CrossRefGoogle Scholar
  5. 5.
    Vorkamp K, Rigét FR, Bossi R, Dietz R (2011) Temporal trends of hexabromocyclododecane, polybrominated diphenyl ethers and polychlorinated biphenyls in ringed seals from East Greenland. Environ Sci Technol 45:1243–1249CrossRefGoogle Scholar
  6. 6.
    Covaci A, Gerecke AC, Law RJ, Voorspoels S, Kohler M, Heeb NV, Leslie H, Allchin CR, De Boer J (2006) Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environ Sci Technol 40:3679–3688CrossRefGoogle Scholar
  7. 7.
    Roosens L, Abdallah MAE, Harrad S, Neels H, Covaci A (2009) Exposure to hexabromocyclododecanes (HBCDs) via dust ingestion, but not diet, correlates with concentrations in human serum: preliminary results. Environ Health Perspect 117:1707–1712Google Scholar
  8. 8.
    Goscinny S, Vandevijvere S, Maleki M, Van Overmeire I, Windal I, Hanot V, Blaude MN, Vleminckx C, Van Loco J (2011) Dietary intake of hexabromocyclododecane diastereoisomers in the Belgian adult population. Chemosphere 84:279–288CrossRefGoogle Scholar
  9. 9.
    De Winter-Sorkina R, Bakker MI, van Donkersgoed G, van Klaveren JD (2003) Dietary intake of brominated flame retardants by the Dutch population. RIVM Report 310305001. http://rivm.openrepository.com/rivm/bitstream/10029/8876/1/310305001.pdf. Accessed Sept 2009
  10. 10.
    Driffield M, Harmer N, Bradley E, Fernandes AR, Rose M, Mortimer D, Dicks P (2008) Determination of brominated flame retardants in food by LC-MS/MS: diastereoisomer-specific hexabromocyclododecane and tetrabromobisphenol A. Food Addit Contamin 25:895–903CrossRefGoogle Scholar
  11. 11.
    Abdallah MAE, Harrad S, Covaci A (2008) Hexabromocyclododecanes and tetrabromobisphenol-A in indoor air and dust in Birmingham, UK: implications for human exposure. Environ Sci Technol 42:6855–6861CrossRefGoogle Scholar
  12. 12.
    Abdallah MAE, Harrad S, Ibarra C, Diamond M, Melmymuk L, Robson M, Covaci A (2008) Hexabromocyclododecanes in indoor dust from Canada, the United Kingdom, and the United States. Environ Sci Technol 42:459–464CrossRefGoogle Scholar
  13. 13.
    Geens T, Roosens L, Neels H, Covaci A (2009) Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere 76:755–760CrossRefGoogle Scholar
  14. 14.
    Ali N, Harrad S, Goosey E, Neels H, Covaci A (2011) “Novel” brominated flame retardants in Belgian and UK indoor dust: implications for human exposure. Chemosphere 83:1360–1365CrossRefGoogle Scholar
  15. 15.
    Ali N, Harrad S, Dirtu AC, Van den Eede N, t Mannetje A, Coackley J, Douwes J, Neels H, Covaci A. (2011) Assessment of human exposure to alternative flame retardants in New Zealand via indoor dust ingestion. Organohalog Compd 73Google Scholar
  16. 16.
    Wang J, Maa YJ, Chena SJ, Tiana M, Luoa XJ, Maia BX (2010) Brominated flame retardants in house dust from e-waste recycling and urban areas in South China: implications on human exposure. Environ Int 36:535–541CrossRefGoogle Scholar
  17. 17.
    Harrad S, Ibarra C, Abdallah MA, Boon R, Neels H, Covaci A (2008) Concentrations of brominated flame retardants in dust from United Kingdom cars, homes and offices: causes of variability and implications for human exposure. Environ Int 34:1170–1175CrossRefGoogle Scholar
  18. 18.
    ESIS (2006) Summary risk assessment report on 2,2’,6,6’-tetrabromo-4,4’-isopropylidene diphenol (tetrabromobisphenol-A or TBBP-A) Part II – Human Health 2006. http://esis.jrc.ec.europa.eu
  19. 19.
    Glynn A, Lignell S, Darnerud PO, Aune M, Ankarberg EA, Bergdahl IA, Barregård L, Bensryd I (2011) Regional differences in levels of chlorinated and brominated pollutants in mother’s milk from primiparous women in Sweden. Environ Int 37:71–79CrossRefGoogle Scholar
  20. 20.
    Kalantzi OI, Geens T, Covaci A, Siskos PA (2011) Distribution of polybrominated diphenyl ethers (PBDEs) and other persistent organic pollutants in human serum from Greece. Environ Int 37:349–353CrossRefGoogle Scholar
  21. 21.
    Abdallah MAE, Harrad S (2011) Tetrabromobisphenol-A, hexabromocyclododecane and its degradation products in UK human milk: relationship to external exposure. Environ Int 37:443–448CrossRefGoogle Scholar
  22. 22.
    Thomsen C, Knutsen HK, Liane VH, Frøshaug M, Kvalem HE, Haugen M, Meltzer HM, Alexander J, Becher G (2008) Consumption of fish from a contaminated lake strongly affects the concentrations of polybrominated diphenyl ethers and hexabromocyclododecane in serum. Mol Nutr Food Res 52:228–237CrossRefGoogle Scholar
  23. 23.
    Thomsen C, Molander P, Daae HL, Janaak K, Froshaug M, Liane V, Thorud S, Becher G, Dybing A (2007) Occupational exposure to hexabromocyclododecane at an industrial plant. Environ Sci Technol 41:5210–5216CrossRefGoogle Scholar
  24. 24.
    Kakimoto K, Akutsu K, Konishi Y, Tanaka Y (2008) Time trend of hexabromocyclododecane in the breast milk of Japanese women. Chemosphere 71:1110–1114CrossRefGoogle Scholar
  25. 25.
    Shi ZX, Wu YN, Li JG, Zhao YF, Feng JF (2009) Dietary exposure assessment of chinese adults and nursing infants to tetrabromobisphenol-A and hexabromocyclododecanes: occurrence measurements in foods and human milk. Environ Sci Technol 43:4314–4319CrossRefGoogle Scholar
  26. 26.
    Johnson-Restrepo B, Adams DH, Kannan K (2008) Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States. Chemosphere 70:1935–1944CrossRefGoogle Scholar
  27. 27.
    Cariou R, Antignac JP, Zalko D, Berrebi A, Cravedi JP, Maume D, Marchand P, Monteau F, Riu A, Andre F, Le bizec B (2008) Exposure assessment of French women and their newborns to tetrabromobisphenol-A: occurrence measurements in maternal adipose tissue, serum, breast milk and cord serum. Chemosphere 73:1036–1041Google Scholar
  28. 28.
    Hagmar L, Sjodin A, Hoglund P, Thuresson K, Rylander L, Bergman A (2000) Biological halflives of polybrominated diphenyl ethers and tetrabromobisphenol-A in exposed workers. Organohalog Compd 47:198–201Google Scholar
  29. 29.
    Thomsen C, Lundanes E, Becher G (2001) Brominated flame retardants in plasma samples from three different occupational groups in Norway. J Environ Monit 3:366–370CrossRefGoogle Scholar
  30. 30.
    Thomsen C, Lundanes E, Becher G (2002) Brominated flame retardants in archived serum samples from Norway: a study on temporal trends and the role of age. Environ Sci Techn 36:1414–1418CrossRefGoogle Scholar
  31. 31.
    Karlsson M, Julander A, van Bavel B, Hardell L (2007) Levels of brominated flame retardants in blood in relation to levels in household air and dust. Environ Int 33:62–69CrossRefGoogle Scholar
  32. 32.
    Zhu L, Ma B, Hites RA (2009) Brominated flame retardants in serum from the general population in Northern China. Environ Sci Technol 43:6963–6968CrossRefGoogle Scholar
  33. 33.
    Gao S, Wang J, Yu Z, Guo Q, Sheng G, Fu G (2011) Hexabromocyclododecanes in surface soils from e-waste recycling areas and industrial areas in South China: concentrations, diastereoisomer- and enantiomer-specific profiles, and inventory. Environ Sci Technol 45:2093–2099CrossRefGoogle Scholar
  34. 34.
    Zegers BN, Mets A, Van Bommel R, Minkenberg C, Hamers T, Kamstra J, Pierce GJ, Boon JP (2005) Levels of HBCD in harbour porpoises and common dolphin from western European seas with evidence for stereospecific biotransformation by cytochrome P450. Environ Sci Technol 39:2095–2100CrossRefGoogle Scholar
  35. 35.
    Eljarrat E, Guerra P, Martínez E, Farré M, Alvarez JG, López-Teijón M, Barcelo D (2009) Hexabromocyclododecane in human breast milk: levels and enantiomeric patterns. Environ Sci Technol 43:1940–1946CrossRefGoogle Scholar
  36. 36.
    Schauer UM, Volkel W, Dekant W (2006) Toxicokinetics of tetrabromobisphenol a in humans and rats after oral administration. Toxicol Sci 91:49–58CrossRefGoogle Scholar
  37. 37.
    Hakk H, Larsen G, Bergman A, Orn U (2000) Metabolism, excretion and distribution of the flame retardant tetrabromobisphenol-A in conventional and bile-duct cannulated rats. Xenobiotica 30:881–890CrossRefGoogle Scholar
  38. 38.
    de Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46:583–624CrossRefGoogle Scholar
  39. 39.
    Sjödin A, Bergman A, Pattersson DG Jr (2009) A review on human exposure to brominated flame retardants – particularly polybrominated diphenyl ethers. Environ Int 29:829–839CrossRefGoogle Scholar
  40. 40.
    Kawashiro Y, Fukata H, Omori-Inoue M, Kubunoya K, Jotaki T, Takigami H, Sakai S, Mori C (2008) Perinatal exposure to brominated flame retardants and polychlorinated biphenyls in Japan. Endocr J 55:1071–1084CrossRefGoogle Scholar
  41. 41.
    Saegusa Y, Fujimoto H, Woo GH, Inoue K, Takahashi M, Mitsumori K, Hirose M, Nishikawa A, Shibutani M (2009) Developmental toxicity of brominated flame retardants, tetrabromobisphenol A and 1,2,5,6,9,10-hexabromocyclododecane, in rat offspring after maternal exposure from mid-gestation through lactation. Reprod Toxicol 28:456–467CrossRefGoogle Scholar
  42. 42.
    Van der Ven LTM, Verhoef A, Van de Kuil T, Slob W, Leonards PEG (2006) A 28-day oral dose toxicity study of HBCD in Wistar rats. Toxicol Sci 94:281–292CrossRefGoogle Scholar
  43. 43.
    Eriksson P, Fisher C, Wallin M, Jakobsson E, Fredriksson A (2006) Impaired behaviour, learning and memory in adult mice neonatally exposed to HBCD. Environ Toxicol Pharmacol 21:317–322CrossRefGoogle Scholar
  44. 44.
    Ema M (2008) Two generation reproductive toxicity study of the flame retardant HBCD in rats. Reprod Toxicol 25:335–351CrossRefGoogle Scholar
  45. 45.
    Nomeir AA, Markham PM, Ghanayem BI, Chadwick M (1993) Disposition of the flame retardant 1,2- bis(2,4,6-tribromophenoxy)ethane in rats following administration in the diet. Drug Metab Dispos 21:209–214Google Scholar
  46. 46.
    Hakk H, Larsen G, Bowers J (2004) Metabolism, tissue disposition, and excretion of 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) in male Sprague–Dawley rats. Chemosphere 54:1367–1374CrossRefGoogle Scholar
  47. 47.
    Koster P, Debets FMH, Strik JJTW (1980) Porphyrinogenic action of fire retardants. Bull Environ Contamin Toxicol 25:313–315CrossRefGoogle Scholar
  48. 48.
    Li X, Yang L, Liu E, Xu W (2004) Research on the risk characteristics of decabrominated diphenyl ethane. Prog Saf Sci Technol, Proc Int Symp B:2164–2166Google Scholar
  49. 49.
    Hardy ML, Margitich D, Ackerman L, Smith RL (2002) The subchronic oral toxicity of ethane, 1,2- bis(pentabromophenyl) (Saytex 8010) in rats. Int J Toxicol 21:165–170CrossRefGoogle Scholar
  50. 50.
    McKinney MA, Dietz R, Sonne C, De Guise S, Skirnisson K, Karlsson K, Steingrímsson E, Letcher RJ (2011) Comparative hepatic microsomal biotransformation of selected PBDEs, including decabromodiphenyl ether, and decabromodiphenyl ethane flame retardants in Arctic marine-feeding mammals. Environ Toxicol Chem 30:1506–1514CrossRefGoogle Scholar
  51. 51.
    Nakari T, Huhtala S (2010) In vivo and in vitro toxicity of decabromodiphenyl ethane, a flame retardant. Environ Toxicol 25:333–338CrossRefGoogle Scholar
  52. 52.
    Harju M, Heimstad ES, Herzke D, Sandanger T, Posner S, Wania F (2009) Emerging “new” brominated flame retardants in flame retarded products and the environment. Report 2462, Norwegian Pollution Control Authority, Oslo, NorwayGoogle Scholar
  53. 53.
    Bearr JS, Stapleton HM, Mitchelmore CL (2010) Accumulation and DNA damage in fathead minnows (pimephales promelas) exposed to 2 brominated flame-retardant mixtures, Firemaster 550 and Firemaster BZ-54. Environ Toxicol Chem 29:722–729CrossRefGoogle Scholar
  54. 54.
    Knudsen GA, Jacobs LM, Kuester RK, Sipe IG (2007) Absorption, distribution, metabolism and excretion of intravenously and orally administered tetrabromobisphenol A (2,3-dibromopropyl ether) in male Fischer-344 rats. Toxicology 237:158–167CrossRefGoogle Scholar
  55. 55.
    Great Lakes Chem. Corp. (1987) Summaries of toxicity data. PE-68, Bis(2,3-dibromopropyl ether) of tetrabromobisphenol A. West Lafayette, INGoogle Scholar
  56. 56.
    International Programme on Chemical Safety (IPCS) (1995) Environmental Health Criteria 172. Tetrabromobisphenol A and derivatives. World Health Organization, Geneva, Switzerland. http://www.inchem.org/documents/ehc/ehc/ehc172.htm
  57. 57.
    World Health Organisation (WHO) (1991a) Tri-n-butyl phosphate. Environmental Health Criteria 112. WHO, GenevaGoogle Scholar
  58. 58.
    World Health Organisation (WHO) (1991b) Triphenyl phosphate. Environmental Health Criteria 111. WHO, GenevaGoogle Scholar
  59. 59.
    Organisation for Economic Cooperation and Development (1998) Screening information data set, Triethyl Phosphate (CAS 78-40-0)Google Scholar
  60. 60.
    World Health Organisation (WHO) (2000) Flame retardants: Tris(2-butoxyethyl)phosphate, tris(2-ethylhexyl) phosphate and tetrakis(hydroxymethyl)phosphonium salts. Environmental Health Criteria 218, WHO, GenevaGoogle Scholar
  61. 61.
    Marklund A, Andersson B, Haglund P (2003) Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere 53:1137–1146CrossRefGoogle Scholar
  62. 62.
    Quintana JB, Rodil R, Reemstma T, Garcia-Lopez M, Rodriguez I (2008) Organophosphorus flame retardants and plasticizers in water and air II. Anal Methodol Trac Trend Anal Chem 27:904–915CrossRefGoogle Scholar
  63. 63.
    World Health Organisation (WHO) (1998) Flame retardants: Tris(chloropropyl) phosphate and tris(2-chloroethyl) phosphate. Environmental Health Criteria 209, WHO, GenevaGoogle Scholar
  64. 64.
    World Health Organisation (WHO) (1997) Flame retardants: a general introduction. Environmental Health Criteria 192, WHO, GenevaGoogle Scholar
  65. 65.
    World Health Organisation (WHO) (1990) Tricresyl Phosphate. Environmental Health Criteria 110. WHO, GenevaGoogle Scholar
  66. 66.
    Saito I, Onuki A, Seto H (2007) Indoor organophosphate and polybrominated flame retardants in Tokyo. Indoor Air 17:28–36CrossRefGoogle Scholar
  67. 67.
    National Research Council (2000) Toxicological risks of selected flame-retardant chemicals. National Academy Press, Washington DC, pp 338–416Google Scholar
  68. 68.
    Bergh C, Torgrip R, Emenius G, Östman C (2011) Organophosphate and phthalate esters in air and settled dust – a multi-location indoor study. Indoor Air 21:67–76CrossRefGoogle Scholar
  69. 69.
    Brommer S, Harrad S, Van den Eede N, Covaci A (2011) Concentrations of organophosphate and brominated flame retardants in german indoor dust samples. Organohalog Compd 73Google Scholar
  70. 70.
    Ingerowski G, Friedle A, Thumulla J (2001) Chlorinated ethyl and isopropyl phosphoric acid triesters in the indoor environment – an inter-laboratory exposure study. Indoor Air Int J Indoor Air Qual Clim 11:145–149Google Scholar
  71. 71.
    Kanazawa A, Saito I, Araki A, Takeda M, Ma M, Saijo Y, Kishi R (2010) Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings. Indoor Air 20:72–84Google Scholar
  72. 72.
    Takigami H, Suzuki G, Hirai Y, Ishikawa Y, Sunami M, Sakai S (2009) Flame retardants in indoor dust and air of a hotel in Japan. Environ Int 35:688–693CrossRefGoogle Scholar
  73. 73.
    Dirtu AC, Ali N, Van den Eede, Neels H, Covaci A (2011) Profile for chlorinated and brominated organic contaminants in indoor dust. Case study for Iasi, Eastern Romania. Organohalog Compd 73Google Scholar
  74. 74.
    García M, Rodríguez I, Cela R (2007) Microwave-assisted extraction of organophosphate flame retardants and plasticizers from indoor dust samples. J Chromatogr A 1152:280–286CrossRefGoogle Scholar
  75. 75.
    García M, Rodríguez I, Cela R (2007) Optimisation of a matrix solid-phase dispersion method for the determination of organophosphate compounds in dust samples. Anal Chim Acta 590:17–25CrossRefGoogle Scholar
  76. 76.
    Bergh C, Aberg KM, Svartengren M, Emenius G, Östman C (2011) Organophosphate and phthalate esters in indoor air: a compoarison between multi-storey buildings with high and low prevalence of sick building symptoms. J Environ Monit 13:2001–2009CrossRefGoogle Scholar
  77. 77.
    Carlsson H, Nilsson U, Becker G, Östman C (1997) Organophosphate ester flame retardants and plasticizers in the indoor environment: analytical methodology and occurrence. Environ Sci Technol 31:2931–2396CrossRefGoogle Scholar
  78. 78.
    Sjödin A, Carlsson H, Thuresson K, Sjölin S, Bergman Å, Östman C (2001) Flame retardants in indoor air at an electronics recycling plant and at other work environments. Environ Sci Technol 35:448–454CrossRefGoogle Scholar
  79. 79.
    Marklund A, Andersson B, Haglund P (2005) Organophosphorus flame retardants and plasticizers in air from various indoor environments. J Environ Monit 7:814–819CrossRefGoogle Scholar
  80. 80.
    Hartmann PC, Bürgi D, Giger W (2004) Organophosphate flame retardants and plasticizers in indoor air. Chemosphere 57:781–787CrossRefGoogle Scholar
  81. 81.
    Marklund A, Olofsson U, Haglund P (2010) Organophosphorus flame retardants and plasticizers in marine and fresh water biota and human milk. J Environ Monit 12:943–951CrossRefGoogle Scholar
  82. 82.
    Stackelberg PA, Gibs J, Furlong ET, Meyer MT, Zaugg SD, Lippincott RL (2007) Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci Total Environ 377:255–272CrossRefGoogle Scholar
  83. 83.
    Andresen J, Bester K (2006) Elimination of organophosphate ester flame retardants and plasticizers in drinking water purification. Water Res 40:621–629CrossRefGoogle Scholar
  84. 84.
    Staaf T, Östman C (2005) Organophosphate triesters in indoor environments. J Environ Monit 7:883–887CrossRefGoogle Scholar
  85. 85.
    Meyer J, Bester K (2004) Organophosphate flame retardants and plasticisers in wastewater treatment plants. J Environ Monit 6:599–605CrossRefGoogle Scholar
  86. 86.
    Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB (2004) Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking water treatment plant. Sci Total Environ 329:99–113CrossRefGoogle Scholar
  87. 87.
    US Food and Drug Administration (2006) Total Diet Study – Pesticides and industrial contaminants, Analytical results, Revision 3. http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdulteration/TotalDietStudy/ucm184293.htm
  88. 88.
    Campone L, Piccinelli AL, Östman C, Rastrelli L (2010) Determination of organophosphorous flame retardants in fish tissues by matrix solid-phase dispersion and gas chromatography. Anal Bioanal Chem 397:799–806CrossRefGoogle Scholar
  89. 89.
    Brandsma S, de Boer J, Leonards P (2011) Determination of organophosphorous flame retardants in the food web of the western Scheldt – including in vitro biotransformation. Organohalog Compd 73Google Scholar
  90. 90.
    Cooper E, Stapleton HM (2011) Flame retardants tris(1,3-dichloroisopropyl) phosphate and triphenyl phosphate in recreational equipment: a mini case study. Organohalog Compd 73Google Scholar
  91. 91.
    Hudec T, Thean J, Kuehl D, Dougherty RC (1981) Tris(dichloropropyl)phosphate, a mutagenic flame-retardant – frequent occurence in human seminal plasma. Science 211:951–952CrossRefGoogle Scholar
  92. 92.
    Shah M, Meija J, Cabovska B, Caruso JA (2006) Determination of phosphoric acid triesters in human plasma using solid-phase microextraction and gas chromatography coupled to inductively coupled plasma mass spectrometry. J Chromatogr A 1103:329–336CrossRefGoogle Scholar
  93. 93.
    Cooper E, Covaci A, van Nuijs ALN, Webster TF, Stapleton HM (2011) Analysis of the flame retardant metabolites bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and diphenyl phosphate (DPP) in urine using liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem. doi: 10.1007/s00216-011-5294-7
  94. 94.
    Camarasa JG, Serra-Baldrich E (1992) Allergic contact dermatitis from triphenyl phosphate. Contact Dermatitis 26:264–265CrossRefGoogle Scholar
  95. 95.
    Meeker JD, Stapleton HM (2010) House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters. Environ Health Persp 118:318–323CrossRefGoogle Scholar
  96. 96.
    Rudel RA, Perovich LJ (2009) Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ 43:170–181CrossRefGoogle Scholar
  97. 97.
    Harrad S, de Wit CA, Abdallah MAE, Bergh C, Bjorklund JA, Covaci A, Darnerud PO, de Boer J, Diamond M, Huber S, Leonards P, Mandalakis M, Oestman C, Haug LS, Thomsen C, Webster TF (2010) Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: an important exposure pathway for people? Environ Sci Technol 44:3221–3231CrossRefGoogle Scholar
  98. 98.
    ECHA (2008a) Member State Committee–Support document for identification of benzyl butyl phthalate (BBP) as a substance of very high concern. European Chemicals Agency, 1 October. http://echa.europa.eu/doc/candidatelist/svhcsupdocbbppublication.pdf. Accessed April 2010
  99. 99.
    ECHA (2008b) Member State Committee–Support document for identification of dibutyl phthalate (DBP) as a substance of very high concern. European Chemicals Agency, 1 October. http://echa.europa.eu/doc/consultations/recommendations/prioritisations/prioritisationdbp.pdf. Accessed April 2010
  100. 100.
    Oomen AG, Janssen PJCM, Dusseldorp A, Noorlander CW (2008) Exposure to chemicals via house dust. RIVM Report 609021064/2008, National Institute for Public Health and Environment. http://rivm.nl/bibliotheek/609021064.html. Accessed April 2010
  101. 101.
    Krauskopf LG, Godwin A (2005) Plasticizers. In: Wilkens CE, Daniels CA, Summers JW (eds) PVC Handbook. Carl Hanser, MunichGoogle Scholar
  102. 102.
    European Parliament and the Council (2005) Directive 2005/84/EC of the European Parliament and of the Council of the 14. December 2005 amending for the 22nd time CouncilDirective 76/769/EEC on the approximation of the laws, regulations and administrative provisions of the Member States relating to the restrictions on the marketing and use of certain dangerous substances and preparations (phthalates in toys and childcare articles). OJ L344/40:27. December. European Union. Commission Directive 2011/8/EU of 28 January 2011 amending Directive 2002/72/EC as regards the restriction of use of bisphenol A in plastic infant feeding bottleGoogle Scholar
  103. 103.
    ECHA (2009) Data on manufacture, import, export, uses and releases of Bis(2-ethylhexyl)phthalate (DEHP) as well as information on potential alternatives to its use. European Chemicals Agency, Revised version of 29 January. http://echa.europa.eu/doc/consultations/recommendations/techreports/techrepdehp.pdf. Accessed April 2010
  104. 104.
    ECPI (2009) European plasticizer consumption – trends. European Council for Plasticizers and IntermediatesGoogle Scholar
  105. 105.
    Koch HM, Muller J, Angerer J (2007) Determination of secondary, oxidised di-iso-nonylphthalate (DINP) metabolites in human urine representative for the exposure to commercial DINP plasticizers. J Chromatogr B 847:114–125CrossRefGoogle Scholar
  106. 106.
    European Union Risk Assessment Report (2003) 1,2-Benzenedicarboxylic acid, di-C8-10-branched alkyl esters, C9-rich and di-“isononyl” phthalate (DINP), European commission Joint Research Centre, EUR 20784 EN, Office for Official Publications of the European CommunitiesGoogle Scholar
  107. 107.
    Kavlock R, Boekelheide K, Chapin R, Cunningham M, Faustman E, Foster P, Golub M, Henderson R, Hinberg I, Little R, Seed J, Shea K, Tabacova S, Tyl R, Williams P, Zacharewski T (2002) NTP Center for the evaluation of risks to human reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di-isononyl phthalate. Reprod Toxicol 16:679–708CrossRefGoogle Scholar
  108. 108.
    Gärtner E (2009) Risikobewertung–Verunsicherung über PVC-Weichmacher in der EU. September. http://www.firmenpresse.de/pressinfo22630.html. Accessed April 2010
  109. 109.
    Crespo JE, Balart R, Sanchez L, Lopez J (2007) Substitution of di(2-ethylhexyl) phthalate by di(isononyl) cyclohexane-1,2-dicarboxylate as a plasticizer for industrial vinyl plastisol formulations. J Appl Polym Sci 104:1215–1220CrossRefGoogle Scholar
  110. 110.
    NICNAS (2008) Full Public Report: 1,2-Cyclohexanedicarboxylic acid, 1,2-diisononyl ester (‘Hexamoll DINCH’). National Industrial Chemicals Notification and Assessment Scheme (NICNAS), File No: STD/1259. http://www.nicnas.gov.au/publications/car/new/std/stdfullr/std1000fr/std1259fr.pdf. Accessed April 2010
  111. 111.
    Welle F, Wolz G, Franz R (2005) Migration von Weichmachern aus PVC Schläuchen in enterale Nahrungslösungen. Pharma International 3 (in German)Google Scholar
  112. 112.
    Nagorka R, Conrad A, Scheller C, Süßenbach B, Moriske H-J (2011) Diisononyl 1,2-cyclohexanedicarboxylic acid (DINCH) and di(2-ethylhexyl) terephthalate (DEHT) in indoor dust samples: concentration and analytical problems. Int J Hyg Environ Health 214:26–35CrossRefGoogle Scholar
  113. 113.
    Pfrimmer Nutricia (2005) Neu von Pfrimmer Nutricia: DEHP-freie Überleitungsgeräte. Pressrelation Pfrimmer Nutricia PN-05-001 03, 21. January (in German)Google Scholar
  114. 114.
    Premiumpresse (2002) Innovativer Weichmacher für sensible Anwendungen. Premiumpresse.de, pressrelations GmbH, pressrelation 135447, 03. July (in German) [online]. http://www.pressrelations.de/new/standard/dereferrer.cfm?r=98832. Accessed April 2010
  115. 115.
    SpecialChem (2009) SpecialChem4 coatings: Hexamoll Applications. Specialchem 2009. http://www.specialchem4coatings.com/tc/plasticizers/index.aspx?id=application. Accessed April 2010
  116. 116.
    Scientific Committee on Emerging and Newly-Identified Health Risks (SCENIHR) (2007) Preliminary report on the safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk. European Commission, Health and Consumer ProtectionGoogle Scholar
  117. 117.
    Eastman Chemical Company (2009) Eastman 168 Plasticizer. Product Information, Eastman website. http://www.eastman.com/Brands/Eastmanplasticizers/Pages/ProductHome.aspx?product=71045700. Accessed April 2010
  118. 118.
    Frederiksen H, Jorgensen N, Andersson AM (2010) Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34:400–410Google Scholar
  119. 119.
    Kersten W, Reich T (2003) Non-volatile organic substances in Hamburg indoor dust. Gefahrst Reinhalt L 63:85–91Google Scholar
  120. 120.
    Fromme H, Lahrz T, Piloty M, Gebhart H, Oddoy A, Ruden H (2004) Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany). Indoor Air 14:188–195CrossRefGoogle Scholar
  121. 121.
    Nagorka R, Scheller C, Ullrich D (2005) Plasticizer in house dust. Gefahrst Reinhalt L 65:99105Google Scholar
  122. 122.
    Butte W, Hostrup O, Walker G (2008) Phthalates in house dust and air: associations and potential sources indoors. Gefahrst Reinhalt L 68:79–81Google Scholar
  123. 123.
    Abb M, Heinrich T, Sorkau E, Lorenz W (2009) Phthalates in house dust. Environ Int 35:965–970CrossRefGoogle Scholar
  124. 124.
    Bergh C, Torgrip R, Östman C (2010) Simultaneous selective detection of organophosphate and phthalate esters using gas chromatography with positive ion chemical ionization tandem mass spectrometry and its application to indoor air and dust. Rapid Commun Mass Spectrom 24:2859–2867CrossRefGoogle Scholar
  125. 125.
    Wittassek M, Angerer J (2008) Phthalates: metabolism and exposure. Int J Androl 31:131–138CrossRefGoogle Scholar
  126. 126.
    Koch HM, Preuss R, Angerer J (2006) Di(2-ethyl-hexyl)phthalate (DEHP): human metabolism and internal exposure – an update and latest results. Int J Androl 29:155–165CrossRefGoogle Scholar
  127. 127.
    Stroheker T, Cabaton N, Nourdin G, Regnier JF, Lhuguenot JC, Chagnon MC (2005) Evaluation of anti-androgenic activity of di-(2-ethylhexyl)phthalate. Toxicology 208:115–121CrossRefGoogle Scholar
  128. 128.
    Bouma K, Schakel DJ (2002) Migration of phthalates from PVC toys into saliva simulant by dynamic extraction. Food Addit Contamin 19:602–610CrossRefGoogle Scholar
  129. 129.
    Fromme H, Korner W, Gruber L, Heitmann D, Schlummer M, Volkel W, Bolte G (2010) Exposure of the population to phthalates – results from the INES study. Gefahrst Reinhalt L 70:77–81Google Scholar
  130. 130.
    Fromme H, Gruber L, Seckin E, Raab U, Zimmermann S, Kiranoglu M, Schlummer M, Schwegler U, Smolic S, Volkel W (2011) Phthalates and their metabolites in breast milk – results from the Bavarian Monitoring of Breast Milk (BAMBI). Environ Int 37:715–722CrossRefGoogle Scholar
  131. 131.
    Hogberg J, Hanberg A, Berglund M, Skerfving S, Remberger M, Calafat AM, Filipsson AF, Jansson B, Johansson N, Appelgren M, Hakansson H (2008) Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations. Environ Health Perspect 116:334–339CrossRefGoogle Scholar
  132. 132.
    Bruns-Weller E, Pfordt J (2000) Bestimmung von phthalsäureestern in lebensmitteln, frauenmilch, hausstaub und textilien. UWSF-Z Umweltchem Ökotox 12:125–130CrossRefGoogle Scholar
  133. 133.
    Zhu J, Phillips SP, Feng YL, Yang X (2006) Phthalate esters in human milk: concentration variations over a 6-month postpartumtime. Environ Sci Technol 40:5276–5281CrossRefGoogle Scholar
  134. 134.
    Chen J, Liu H, Qiu Z, Shu W (2008) Analysis of di-n-butyl phthalate and other organic pollutants in Chongqing women undergoing parturition. Environ Pollut 156:849–853CrossRefGoogle Scholar
  135. 135.
    Fromme H, Bolte G, Koch HM, Angerer J, Boehmer S, Drexler H, Mayer R, Liebl B (2007) Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int J Hyg Environ Health 210:21–33CrossRefGoogle Scholar
  136. 136.
    Hines EP, Calafat AM, Silva MJ, Mendola P, Fenton SE (2009) Concentrations of phthalate metabolites in milk, urine, saliva, and serum of lactating North Carolina women. Environ Health Perspect 117:86–92Google Scholar
  137. 137.
    Engel SM, Zhu C, Berkowitz GS, Calafat AM, Silva MJ, Miodovnik A, Wolff MS (2009) Prenatal phthalate exposure and performance on the Neonatal Behavioral Assessment Scale in a multiethnic birth cohort. Neurotoxicology 30:522–528CrossRefGoogle Scholar
  138. 138.
    Adibi JJ, Whyatt RM, Williams PL, Calafat AM, Camann D, Herrick R, Nelson H, Bhat HK, Perera FA, Silva MJ, Hauser R (2008) Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environ Health Perspect 116:467–473Google Scholar
  139. 139.
    Berman T, Hochner-Celnikier D, Calafat AM, Larry L. Needham LL, Amitai Y, Wormser U, Richter E (2009) Phthalate exposure among pregnant women in Jerusalem, Israel: results of a pilot study. Environ Int 35:353–357Google Scholar
  140. 140.
    Calafat AM, Wong L-Y, Silva MJ, Samandar E, Preau JL Jr, Jia LT, Needham LL (2011) Selecting adequate exposure biomarkers of diisononyl and diisodecyl phthalates: data from the 2005–2006 National Health and Nutrition Examination survey. Environ Health Perspect 119:50–55CrossRefGoogle Scholar
  141. 141.
    Koch HM, Bolt HM, Angerer J (2004) Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch Toxicol 78:123–130CrossRefGoogle Scholar
  142. 142.
    Hellwing J, Freudenberger H, Jackh R (1997) Differential prenatal toxicity of branched phthalate esters in rats. Food Chem Toxicol 35:501–512CrossRefGoogle Scholar
  143. 143.
    Faber WD, Deyo JA, Stump DG, Navarro L, Ruble K, Knapp J (2007) Developmental toxicity and uterotrophic studies with di-2-ethylhexyl therephthalate. Birth Defects Res B Dev Reprod Toxicol 80:396–405CrossRefGoogle Scholar
  144. 144.
    Howdeshell KL, Furr J, Lambright CR, Rider CV, Wilson VS, Gray LE (2007) Cumulative effects of dibutyl phthalate and diethyl hexyl phthalate on male rat reproductive tract development: altered fetal steroid hormones and genes. Toxicol Sci 99:190–202CrossRefGoogle Scholar
  145. 145.
    Howdeshell KL, Wilson VS, Furr J, Lambright CR, Rider CV, Blystone CR, Hotchkiss AK, Gray LE (2008) A mixture of five phthalate esters inhibits fetal testicular testosterone production in the Sprague Dawley rat in a cumulative, dose additive manner. Toxicol Sci 105:153–165CrossRefGoogle Scholar
  146. 146.
    Martino-Andrade AJ, Morais RN, Botelho GG, Muller G, Grande SW, Carpentieri GB, Leao GMC, Dalsenter PR (2009) Coadministration of active phthalates results in disruption of foetal testicular function in rats. Int J Androl 32:704–712CrossRefGoogle Scholar
  147. 147.
    Scientific Committee on Consumer Safety, SCCS (2010) Opinion on triclosan (antimicrobial resistance). http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_023.pdf
  148. 148.
    Fang JL, Stingley RL, Beland FA, Harrouk W, Lumpkins DL, Howard P (2010) Occurrence, efficacy, metabolism, and toxicity of triclosan. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 28:147–171Google Scholar
  149. 149.
    Rodricks JV, Swenberg JA, Borzelleca JF, Maronpot RR, Shipp AM (2010) Triclosan: a critical review of the experimental data and development of margins of safety for consumer products. Crit Rev Toxicol 40:422–484CrossRefGoogle Scholar
  150. 150.
    Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31:285–311CrossRefGoogle Scholar
  151. 151.
    Ye X, Kuklenyik Z, Needham LL, Calafat AM (2005) Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal Chem 77:5407–5413CrossRefGoogle Scholar
  152. 152.
    Wolff MS, Teitelbaum SL, Windham G, Pinney SM, Britton JA, Chelimo C, Godbold J, Biro F, Kushi LH, Pfeiffer CM, Calafat AM (2007) Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ Health Perspect 115:116–121CrossRefGoogle Scholar
  153. 153.
    Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Urinary concentrations of triclosan in the U.S. population: 2003–2004. Eniviron Health Perspect 116:303–307CrossRefGoogle Scholar
  154. 154.
    Milieu en Gezondheid (2010) Vlaams Humaan Biomonitoringsprogramma 2007–2011. Resultatenrapport: deel referentiebiomonitoringGoogle Scholar
  155. 155.
    Casas L, Fernández MF, Llop S, Guxens M, Ballester F, Olea N, Iruzun MB, Rodríguez LSM, Riaño I, Tardón A, Vrijheid M, Calafat AM, Sunyer J (2011) Urinary concentrations of phthalates and phenols in a population of Spanish pregnant women and children. Environ Int 37:858–866CrossRefGoogle Scholar
  156. 156.
    Li X, Ying GG, Zhao JL, Chen ZF, Lai HJ, Su HC (2011) 4-nonylphenol, bisphenol-A and triclosan levels in human urine of children and students in China and the effects of drinking these bottles materials on levels. Environ Int (in press)Google Scholar
  157. 157.
    Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G (2006) Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ 372:87–93CrossRefGoogle Scholar
  158. 158.
    Ye X, Tao LJ, Needham LL, Calafat AM (2008) Automated on-line column-switching HPLC–MS/MS method for measuring environmental phenols and parabens in serum. Talanta 76:865–871CrossRefGoogle Scholar
  159. 159.
    Dirtu AC, Roosens L, Geens T, Gheorghe A, Neels H, Covaci A (2008) Simultaneous determination of bisphenol A, triclosan, and tetrabromobisphenol A in human serum using solid-phase extraction and gas chromatography-electron capture negative-ionization mass spectrometry. Anal Bioanal Chem 391:1175–1181CrossRefGoogle Scholar
  160. 160.
    Geens T, Neels H, Covaci A (2009) Sensitive and selective method for the determination of bisphenol-A and triclosan in serum and urine as pentafluorobenzoate-derivatives using GC-ECNI/MS. J Chromatogr B Anal Technol Biomed Life Sci 877:4042–4046CrossRefGoogle Scholar
  161. 161.
    Dayan AD (2007) Risk assessment of triclosan [Irgasan®] in human breast milk. Food Chem Toxicol 45:125–129CrossRefGoogle Scholar
  162. 162.
    NICNAS (2009) Priority existing chemical assessment. Report no. 30: triclosan. http://www.nicnas.gov.au/publications/car/pec/pec30/pec_30_full_report_pdf.pdf
  163. 163.
    Wang H, Zhang J, Gao F, Yang Y, Duan H, Wu Y, Berset JD, Shao B (2011) Simultaneous analysis of synthetic musks and triclosan in human breast milk by gas chromatography tandem mass spectrometry. J Chromatogr B 879:1861–1869CrossRefGoogle Scholar
  164. 164.
    Zhang X, Liang G, Zeng X, Zhou J, Sheng G, Fu J (2011) Levels of synthetic musk fragrances in human milk from three cities in the Yangtze River Delta in Eastern China. J Environ Sci 23:983–990CrossRefGoogle Scholar
  165. 165.
    Schlumpf M, Kypke K, Wittassek M, Angerer J, Mascher H, Mascher D, Vökt C, Birchler M, Lichtensteiger W (2010) Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlor pesticides, PBDEs, and PCBs in human milk: correlation of UV filters with use of cosmetics. Chemosphere 81:1171–1183CrossRefGoogle Scholar
  166. 166.
    Kang CS, Lee JH, Kim SK, Lee KT, Lee JS, Park PS, Yun SH, Kannan K, Yoo YW, Ha JY, Lee SW (2010) Polybrominated diphenyl ethers and synthetic musks in umbilical cord Serum, maternal serum, and breast milk from Seoul, South Korea. Chemosphere 80:116–122CrossRefGoogle Scholar
  167. 167.
    Hu Z, Shi Y, Niu H, Cai Y, Jia G, Wu Y (2010) Occurence of synthetic musk fragrances in human blood from 11 cities in China. Environ Toxicol Chem 29:1877–1882CrossRefGoogle Scholar
  168. 168.
    Hutter HP, Wallner P, Hartl W, Uhl M, Lorbeer G, Gminski R, Mersch-Sundermann V, Kundi M (2010) Higher blood concentrations of synthetic musks in women above fifty years than in younger women. Int J Hyg Environ Health 213:124–130CrossRefGoogle Scholar
  169. 169.
    Hutter HP, Wallner P, Moshammer H, Hartl W, Sattelberger R, Lorbeer G, Kundi M (2005) Blood concentrations of polycyclic musks in healthy young adults. Chemosphere 59:487–492CrossRefGoogle Scholar
  170. 170.
    Allmyr M, Harden F, Toms LML, Mueller JF, McLachlan MS, Adolfsson-Erici M, Sandborgh-Englund G (2008) The influence of age and gender on triclosan concentrations in Australian human blood serum. Sci Total Environ 393:162–167CrossRefGoogle Scholar
  171. 171.
    Bhargava HN, Leonard PA (1996) Triclosan: applications and safety. Am J Infect Control 24:209–218CrossRefGoogle Scholar
  172. 172.
    Crofton KM, Paul KB, De Vito MJ, Hedge JM (2007) Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine. Environ Toxicol Pharmacol 24:194–197CrossRefGoogle Scholar
  173. 173.
    Zorilla LM, Gibson EK, Jeffay SC, Crofton KM, Setzer WR, Cooper RL, Stoker TE (2009) The effects of TCS on puberty and thyroid hormones in male Wistar rats. Toxicol Sci 107:56–64CrossRefGoogle Scholar
  174. 174.
    Paul KB, Hedge GM, De Vito MJ, Crofton KM (2010) Short-term exposure to triclosan decreases thyroxine in vivo via upregulation of hepatic catabolism in young Long-Evans rats. Toxicol Sci 113:367–379CrossRefGoogle Scholar
  175. 175.
    Allmyr M, Panagiotidis G, Sparve E, Diczfalusy U, Sandborgh-Englund G (2009) Human exposure to triclosan via toothpaste does not change CYP3A4 activity or plasma concentrations of thyroid hormones. Basic Clin Pharmacol Toxicol 105:339–344CrossRefGoogle Scholar
  176. 176.
    Witorsch RJ, Thomas JA (2010) Personal care products and endocrine disruption: a critical review of the literature. Crit Rev Toxicol 40:1–3CrossRefGoogle Scholar
  177. 177.
    Van der Burg B, Schreurs R, Van der Linden S, Seinen W, Brouwer A, Sonneveld E (2008) Endocrine effects of polycyclic musks: do we smell a rat? Int J Androl 31:188–193CrossRefGoogle Scholar
  178. 178.
    European Commission (1995) Eightieth Commission Directive 95/34/EC of 10 July 1995 adapting to technical progress Annexes II, III, VI and VII to Council Directive 76/768/ EEC on the approximation of the laws of the Member States relating to cosmetic products. Offic J Eur Commun L 167:19–21Google Scholar
  179. 179.
    European Commission (1998) Twenty-third Commission Directive 98/ 62/EC of 3 September 1998 adapting to technical progress Annexes II, III, VI and VII to Council Directive 76/768/ EEC on the approximation of the laws of the Member states relating to cosmetic products. Offic J Eur Commun L 253:20–23Google Scholar
  180. 180.
    Rimkus GG (1999) Polycyclic musk fragrances in the aquatic environment. Toxicol Lett 111:37–56CrossRefGoogle Scholar
  181. 181.
    European Commission (2002) Twenty-sixth Commission Directive 2002/34/EC of 15 April 2002 adapting to technical progress Annexes II, III, VII to Council Directive 76/768/ EEC on the approximation of the laws of the Member States relating to cosmetic products. Offic J Eur Commun L 015:19–31Google Scholar
  182. 182.
    Luckenbach T, Epel D (2005) Nitromusk and polycyclic musk compounds as long-term inhibitors of cellular xenobiotic defense systems mediated by multidrug transporters. Environ Health Perspect 113:17–24CrossRefGoogle Scholar
  183. 183.
    Greenpeace (2005) TNO report: Phtalates and artificial musks in perfumes. http://www.greenpeace.org/raw/content/international/press/reports/phthalates-and-artificial-musk.pdf
  184. 184.
    Reiner JL, Kannan K (2006) A survey of polycyclic musks in selected household commodities from the United States. Chemosphere 62:867–873CrossRefGoogle Scholar
  185. 185.
    Kallenborn R, Gatermann R (2004) Synthetic musks in ambient and indoor air. In: Rimkus G (ed) The handbook of environmental chemistry. Spring, Heidelberg, pp 85–104Google Scholar
  186. 186.
    Werner B (2004) Synthetic musks in house dust. In: Rimkus G (ed) The handbook of environmental chemistry. Springer, Heidelberg, pp 105–121Google Scholar
  187. 187.
    Heberer T (2002) Occurrence, fate, and assessment of polycyclic musk residues in the aquatic environment of urban areas–a review. Acta Hydrochem Hydrobiol 30:227–243CrossRefGoogle Scholar
  188. 188.
    Helbing KS, Schnid P, Schlatter C (1994) The trace analysis of musk xylene in biological samples: problems associated with its ubiquitous occurrence. Chemosphere 29:477–484CrossRefGoogle Scholar
  189. 189.
    Angerer J, Käfferlein HU (1997) Gas chromatographic method using electron-capture detection for the determination of musk xylene in human blood samples. J Chromatogr B 693:71–78CrossRefGoogle Scholar
  190. 190.
    European Commission (2005a) Summary risk assessment report (5-tert-butyl-2,4,6-trinitro-m-xylene) musk xylene. http://esis.jrc.ec.europa.eu
  191. 191.
    European Commission (2005b) Summary risk assessment report (4’-tert-butyl-2’,6’-dimethyl-3’,5’-dinitroacetophenone) musk ketone. http://esis.jrc.ec.europa.eu
  192. 192.
    European Commission (2008a) Summary risk assessment report (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-benzopyran) HHCB. http://esis.jrc.ec.europa.eu
  193. 193.
    European Commission (2008b) Summary risk assessment report 1-(5,6,7,8-tetrahydro-3,5,5,6,8,8-hexamethyl-2-naphtyl ethane-1-one) AHTN. http://esis.jrc.ec.europa.eu
  194. 194.
    Suter-Eichenberger R, Boelsterli UA, Conscience-Egli M, Lichtensteiger W, Schlumpf M (1999) CYP 450 enzyme induction by chronic oral musk xylene in adult and developing rats. Toxicol Lett 111:117–132CrossRefGoogle Scholar
  195. 195.
    Apostolidis S, Chandra T, Demirhan I, Cinatl J, Doerr HW, Chandra A (2002) Evaluation of carcinogenic potential of two nitro-musk derivatives, musk xylene and musk tibetene in a host-mediated in vivo/in vitro assay system. Anticancer Res 22:2657–2662Google Scholar
  196. 196.
    Lehman-McKeeman LD, Caudill D, Vassallo JD, Pearce RE, Madan A, Parkinson A (1999) Effects of musk xylene and musk ketone on rat hepatic cytochrome P450 enzymes. Toxicol Lett 111:105–115CrossRefGoogle Scholar
  197. 197.
    Api AM, San RHC (1999) Genotoxicity tests with 6-acetyl-1,1,2,4,4,7-hexamethyltetraline and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-g-2- benzopyran. Mutat Res Genet Toxicol Environ Mutagenesis 446:67–81CrossRefGoogle Scholar
  198. 198.
    Seinen W, Lemmen JG, Pieters RHH, Verbruggen EMJ, van der Burg B (1999) AHTN and HHCB show weak estrogenic – but no uterotrophic activity. Toxicol Lett 111:161–168CrossRefGoogle Scholar
  199. 199.
    Plastics Europe (2007) BPA applications. http://www.bisphenol-a-europe.org/uploads/BPA%20applications.pdf. Accessed August 2011
  200. 200.
    Geens T, Goeyens L, Covaci A (2011) Are potential sources for human exposure to bisphenol-A overlooked? Int J Hyg Environ Health 214:339–347CrossRefGoogle Scholar
  201. 201.
    Ozaki A, Yamaguchi Y, Fujita T, Kuroda K, Endo G (2004) Chemical analysis and genotoxicological safety assessment of paper and paperboard used for food packaging. Food Chem Toxicol 42:1323–1337CrossRefGoogle Scholar
  202. 202.
    Biedermann S, Tschudin P, Grob K (2010) Transfer of bisphenol A from thermal printer paper to the skin. Anal Bioanal Chem 398:571–576CrossRefGoogle Scholar
  203. 203.
    Mielke H, Partisch F, Gundert-Remy U (2011) The contribution of dermal exposure to the internal exposure of bisphenol A in man. Toxicol Lett 204:190–198CrossRefGoogle Scholar
  204. 204.
    Zalko D, Jacques C, Duplan H, Bruel S, Perdu E (2011) Viable skin efficiently absorbs and metabolizes bisphenol A. Chemosphere 82:424–430CrossRefGoogle Scholar
  205. 205.
    Dekant W, Völkel W (2008) Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicol Appl Pharmacol 228:114–134CrossRefGoogle Scholar
  206. 206.
    Völkel W, Colnot T, Csanady GA, Filser JG, Dekant W (2002) Metabolism and kinetics of bisphenol-A in humans at low doses following oral administration. Chem Res Toxicol 15:1281–1287CrossRefGoogle Scholar
  207. 207.
    Calafat AM, Ye XY, Wong LY, Reidy JA, Needham LL (2008) Exposure of the US population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116:39–44CrossRefGoogle Scholar
  208. 208.
    Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Needham LL (2005) Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect 113:391–395CrossRefGoogle Scholar
  209. 209.
    Bushnik T, Haines D, Levallois P, Levesque J (2010) Lead and bisphenol A concentrations in the Canadian populations. Stat Can Health Rep 21:7–18Google Scholar
  210. 210.
    Becker K, Göen T, Seiwert M, Conrad A, Pick-Fuβ H, Müller J, Wittassek M, Schulz C, Kolossa-Gehring M (2009) GerES IV: Phthalate metabolites and bisphenol A in urine of German children. Int J Hyg Environ Health 212:685–692CrossRefGoogle Scholar
  211. 211.
    Völkel W, Kiranoglu M, Fromme H (2008) Determination of free and total bisphenol A in human urine to assess daily uptake as a basis for a valid risk assessment. Toxicol Lett 179:155–162CrossRefGoogle Scholar
  212. 212.
    Galloway T, Cipelli R, Guralnik J, Ferrucci L, Bandinelli S, Corsi AM, Money C, McCormack P, Melzer D (2010) Daily bisphenol A excretion and associations with sex hormone concentrations: results from the InCHIANTI adult population study. Environ Health Perspect 118:1603–1608CrossRefGoogle Scholar
  213. 213.
    Hong YC, Park EY, Park MS, Ko JA, Oh SY, Kim H, Lee KH, Leem JH, Ha EH (2009) Community level exposure to chemicals and oxidative stress in adult population. Toxicol Lett 184:139–144CrossRefGoogle Scholar
  214. 214.
    He Y, Miao M, Herrinton LJ, Wu C, Yuan W, Zhou Z, Li DK (2009) Bisphenol A levels in blood and urine in a Chinese population and the personal factores affecting the levels. Environ Res 109:629–633CrossRefGoogle Scholar
  215. 215.
    Zhang Z, Alomirah H, Cho HS, Li YF, Liao C, Minh TB, Mohd MA, Nakata H, Ren N, Kannan K (2011) Urinary bisphenol A concentrations and their implications for human exposure in several Asian countries. Environ Sci Technol 45:7044–7050Google Scholar
  216. 216.
    Völkel W, Kiranoglu M, Fromme H (2011) Determination of free and total bisphenol A in urine of infants. Environ Res 111:143–148CrossRefGoogle Scholar
  217. 217.
    Teitelbaum SL, Britton JA, Calafat AM, Ye X, Silva MJ, Reidy JA, Galvez MP, Brenner BL, Wolff MS (2008) Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ Res 106:257–269CrossRefGoogle Scholar
  218. 218.
    Morgan MK, Jones PA, Calafat AM, Ye X, Croghan CW, Chuang JC, Wilson NK, Clifton MS, Figueroa Z, Sheldon LS (2011) Assessing the quantitative relationship between preschool children’s exposure to bisphenol A by route and urinary biomonitoring. Environ Sci Technol 45:5309–5316CrossRefGoogle Scholar
  219. 219.
    Wolff MS, Engel SM, Berkowitz GS, Ye X, Silva MJ, Zhu C, Wetmur J, Calafat AM (2008) Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect 116:1092–1097CrossRefGoogle Scholar
  220. 220.
    Ye X, Pierik FH, Hauser R, Duty S, Angerer J, Park MM, Burdorf A, Hofman A, Jaddoe VWV, Mackenbach JP, Steegers EAP, Tiemeier H, Longnecker MP (2008) Urinary metabolite concentrations of organophosphorous pesticides, bisphenol A, and phthalates among pregnant women in Rotterdam, the Netherlands: the generation R study. Environ Res 108:260–267CrossRefGoogle Scholar
  221. 221.
    Mahalingaiah S, Meeker JD, Pearson KR, Calafat AM, Ye X, Petrozza J, Hauser R (2008) Temporal variability of urinary bisphenol A concentrations among men and women. Environ Health Perspect 116:173–178CrossRefGoogle Scholar
  222. 222.
    Bondesson M, Jönsson J, Pongratz I, Olea N, Cravedi JP, Zalko D, Hakansson H, Halldin K, Di Lorenzo D, Behl C, Manthey D, Balaguer P, Demeneix B, Fini JB, Laudet V, Gustafsson JA (2009) A cascade of effects of bisphenol A. Reprod Toxicol 28:563–567CrossRefGoogle Scholar
  223. 223.
    Vandenberg LN, Maffini MV, Sonneschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95CrossRefGoogle Scholar
  224. 224.
    Hengstler JG, Foth H, Gebel T, Kramer PJ, Lilienblum W, Schweinfurth H, Völkel W, Wollin KM, Gundert-Remy U (2011) Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Crit Rev Toxicol 41:263–291CrossRefGoogle Scholar
  225. 225.
    Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24:199–224Google Scholar
  226. 226.
    Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJR, Schoenfelder G (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118:1055–1070CrossRefGoogle Scholar
  227. 227.
    Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal FS (2003) Large effects from small exposures I: mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 111:994–1006Google Scholar
  228. 228.
    Urbansky ET (1998) Perchlorate chemistry: implications for analysis and remediation. Bioremed J 2:81–95CrossRefGoogle Scholar
  229. 229.
    Urbansky ET, Brown SK, Magnuson ML, Kelty SK (2001) Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche. Environ Pollut 112:299–302CrossRefGoogle Scholar
  230. 230.
    Dasgupta PK, Martinelango PK, Jackson WA, Anderson TA, Tian K, Tock RW, Rajagopalan S (2005) The origin of naturally occurring perchlorate: the role of atmospheric processes. Environ Sci Technol 39:1569–1575CrossRefGoogle Scholar
  231. 231.
    Gal H, Ronen Z, Weisbrod N, Dahan O, Nativ R (2008) Perchlorate biodegradation in contaminated soils and the deep unsaturated zone. Soil Biol Biochem 40:1751–1757CrossRefGoogle Scholar
  232. 232.
    Kirk AB, Smith EE, Tian K, Anderson TA, Dasgupta PK (2003) Perchlorate in milk. Environ Sci Technol 37:4979–4981CrossRefGoogle Scholar
  233. 233.
    Kirk AB, Martinelango PK, Tian K, Dutta A, Smith EE, Dasgupta PK (2005) Perchlorate and iodide in dairy and breast milk. Environ Sci Technol 39:2011–2017CrossRefGoogle Scholar
  234. 234.
    Sanchez CA, Crump KS, Krieger RI, Khandaker NR, Gibbs JP (2005) Perchlorate and nitrate in leafy vegetables of North America. Environ Sci Technol 39:9391–9397CrossRefGoogle Scholar
  235. 235.
    United States Environmental Protection Agency (USEPA) (1998) Drinking water contaminant list. EPA document No. 815-F-98-002, GPO, Washington, DCGoogle Scholar
  236. 236.
    Urbansky ET (2002) Perchlorate as an environmental contaminant. Environ Sci Pollut Res 9:187–192CrossRefGoogle Scholar
  237. 237.
    Crump KS, Gibbs JP (2005) Benchmark calculations for perchlorate from three human cohorts. Environ Health Perspect 113:1001–1008CrossRefGoogle Scholar
  238. 238.
    Li FX, Byrd DM, Deyhle GM, Sesser DE, Skeels MR, Katkowsky SR, Lamm SH (2000) Neonatal thyroid-stimulating hormone level and perchlorate in drinking water. Teratology 62:429–431CrossRefGoogle Scholar
  239. 239.
    Li Z, Li FX, Byrd D, Deyhle GM, Sesser DE, Skeels MR, Lamm SH (2000) Neonatal thyroxine level and perchlorate in drinking water. J Occup Environ Med 42:200–205CrossRefGoogle Scholar
  240. 240.
    United States Environmental Protection Agency (USEPA) (2005) http://yosemite.epa.gov/opa/admpress.nsf/b1ab9f485b098972852562e7004dc686/c1a57d2077c4bfda85256fac005b8b32!opendocument. Accessed October 2011
  241. 241.
    Murray CW, Egan SK, Kim H, Beru N, Bolger PM (2008) US Food and Drug Administration’s total diet study: dietary intake of perchlorate and iodine. J Exp Sci Environ Epidemiol 18:571–580CrossRefGoogle Scholar
  242. 242.
    Blount BC, Pirkle JL, Osterloh JD, Valentin-Blasini L, Caldwell KL (2006) Urinary perchlorate and thyroid hormone levels in adolescent and adult men and women living in the United States. Environ Health Perspect 114:1865–1871Google Scholar
  243. 243.
    Blount BC, Valentin-Blasini L, Osterloh JD, Mauldin JP, Pirkle JL (2007) Perchlorate exposure of the US Population, 2001–2002. J Exp Sci Environ Epidemiol 17:400–407CrossRefGoogle Scholar
  244. 244.
    Kirk AB, Dyke JV, Martin CF, Dasgupta PK (2007) Temporal patterns in perchlorate, thiocyanate, and iodide excretion in human milk. Environ Health Perspect 115:182–186CrossRefGoogle Scholar
  245. 245.
    Pearce EN, Leung AM, Blount BC, Bazrafshan HR, He X, Pino S, Valentin-Blasini L, Braverman LE (2007) Breast milk iodine and perchlorate concentrations in lactating Boston-area women. J Clin Endocrinol Metab 92:1673–1677CrossRefGoogle Scholar
  246. 246.
    Amitai Y, Winston G, Sack J, Wasser J, Lewis M, Blount BC, Valentin-Blasini L, Fisher N, Israeli A, Leventhal A (2007) Gestational exposure to high perchlorate concentrations in drinking water and neonatal thyroxine levels. Thyroid 17:843–850CrossRefGoogle Scholar
  247. 247.
    Ohira S, Kirk AB, Dyke JV, Dasgupta PK (2008) Creatinine adjustment of spot urine samples and 24 h excretion of iodine, selenium, perchlorate, and thiocyanate. Environ Sci Technol 42:9419–9423CrossRefGoogle Scholar
  248. 248.
    Blount BC, Rich DD, Valentin-Blasini L, Lashley S, Ananth CV, Murphy E, Smulian JC, Spain BJ, Barr DB, Ledoux T (2009) Perinatal exposure to perchlorate, thiocyanate, and nitrate in New Jersey mothers and newborns. Environ Sci Technol 43:7543–7549CrossRefGoogle Scholar
  249. 249.
    Oldi JF, Kannan K (2009) Perchlorate in human blood serum and plasma: relationship to concentrations in saliva. Chemosphere 77:43–47CrossRefGoogle Scholar
  250. 250.
    Oldi JF, Kannan K (2009) Analysis of perchlorate in human saliva by liquid chromatography–tandem mass spectrometry. Environ Sci Technol 43:142–147CrossRefGoogle Scholar
  251. 251.
    Kannan K, Praamsma M, Oldi JF, Kunisue T, Sinha RK (2009) Occurrence of perchlorate in drinking water, groundwater, surface water and human saliva from India. Chemosphere 76:22–26CrossRefGoogle Scholar
  252. 252.
    Zhang T, Wu Q, Sun WH, Rao J, Kannan K (2010) Perchlorate and iodide in whole blood samples from infants, children, and adults in Nanchang, China. Environ Sci Technol 44:6947–6953CrossRefGoogle Scholar
  253. 253.
    Borjian M, Marcella S, Blount B, Greenberg M, Zhang J, Murphy E, Blasini VL, Robson M (2011) Perchlorate exposure in lactating women in an urban community in New Jersey. Sci Total Environ 409:460–464CrossRefGoogle Scholar
  254. 254.
    Gibbs JP, Narayanan L, Mattie DR (2004) Study among school children in Chile: subsequent urine and serum perchlorate levels are consistent with perchlorate in water in Taltal. J Occup Environ Med 46:516–517CrossRefGoogle Scholar
  255. 255.
    Tellez R, Chacon PM, Crump KS, Blount BC, Gibbs JP (2005) Chronic environmental exposure to perchlorate through drinking water and thyroid function during pregnancy and the neonatal period. Thyroid 15:963–975CrossRefGoogle Scholar
  256. 256.
    Valentin-Blasini L, Mauldin JP, Maple D, Blount BC (2005) Analysis of perchlorate in human urine using ion chromatography and electrospray tandem mass spectrometry. Anal Chem 77:2475–2481CrossRefGoogle Scholar
  257. 257.
    Braverman LE, Pearce EN, He X, Pino S, Seeley M, Beck B (2006) Effects of six months of daily low-dose perchlorate exposure on thyroid funct ion in healthy volunt eers. J Clin Endocrinol Metab 91:2721–2724CrossRefGoogle Scholar
  258. 258.
    Dasgupta PK, Kirk AB, Dyke JV, Ohira S (2008) Intake of iodine and perchlorate and excretion in human milk. Environ Sci Technol 42:8115–8121CrossRefGoogle Scholar
  259. 259.
    Blount BC, Valentin-Blasini L (2006) Analysis of perchlorate, thiocynate, nitrate and iodide in human amniotic fluid using ion chromatography and electrospray tendem mass spectrometry. Anal Chim Acta 567:87–93CrossRefGoogle Scholar
  260. 260.
    Wolff J (1998) Perchlorate and the thyroid gland. Pharmacol Rev 50:89–105Google Scholar
  261. 261.
    Anbar M, Guttmann S, Lweitus Z (1959) The mode of action of perchlorate ions on the iodine uptake of the thyroid gland. Int J Appl Radiat Isot 7:87–96CrossRefGoogle Scholar
  262. 262.
    Lawrence JE, Lamm SH, Pino S, Richman K, Braverman LE (2000) The effect of short-term low-dose perchlorate on various aspects of thyroid function. Thyroid 10:659–663CrossRefGoogle Scholar
  263. 263.
    Greer MA, Goodman G, Pleus RC, Greer SE (2002) Health effects assessment for environmental perchlorate contamination: the dose response for inhibition of thyroidal radioiodine uptake in humans. Environ Health Perspect 110:927–937CrossRefGoogle Scholar
  264. 264.
    Institute of Medicine (IOM) (1991) Subcommittee on Nutrition during Lactation. Nutrition during lactation. National Academy Press, Washington, DCGoogle Scholar
  265. 265.
    NAS (2005) Health implications of perchlorate ingestion. National Research Council, National Academy Press, Washington DC, http://www.nap.edu/books/0309095689/html. Accessed October 2011
  266. 266.
    Malamud D (1992) Malamud D, Tabak L (eds) Saliva as a diagnostic fluid. Ann NY Acad Sci 694:36–47Google Scholar
  267. 267.
    Bernert JT, McGuffey JE, Morrison MA, Pirkle JL (2000) Comparison of serum and salivary cotinine measurements by a sensitive high-performance liquid chromatography-tandem mass spectrometry method as an indicator of exposure to tobacco smoke among smokers and nonsmokers. J Anal Toxicol 24:333–339Google Scholar
  268. 268.
    Wu Q, Zhang T, Sun H, Kannan K (2010) Perchlorate in drinking water, groundwater, surface waters and bottled water from China, and its association with other inorganic anions and with disinfection byproducts. Arch Environ Contam Toxicol 58:543–550CrossRefGoogle Scholar
  269. 269.
    De Groef B, Decallonne BR, Van der Geyten S, Darras VM, Bouillon R (2006) Perchlorate versus other environmental sodium/iodide symporter inhibitors: potential thyroid-related health effects. Eur J Endocrinol 155:17–25CrossRefGoogle Scholar
  270. 270.
    Erdogan MF, Gulec S, Tutar E, Baskal N, Erdogan G (2003) A stepwise approach to the treatment of amiodarone-induced thyrotoxicosis. Thyroid 13:205–209CrossRefGoogle Scholar
  271. 271.
    Cooper DS (2005) Antithyroid drugs. N Engl J Med 352:905–917CrossRefGoogle Scholar
  272. 272.
    Crump C, Michaud P, Tellez R, Reyes C, Gonzalez G, Montgomery EL, Crump KS, Lobo G, Becerra C, Gibbs JP (2000) Does perchlorate in drinking water affect thyroid function in newborns or school-age children? J Occup Environ Med 42:603–612CrossRefGoogle Scholar
  273. 273.
    Li FX, Squartsoff L, Lamm SH (2001) Prevalence of thyroid diseases in Nevada counties with respect to perchlorate in drinking water. J Occup Environ Med 43:630–634CrossRefGoogle Scholar
  274. 274.
    Gibbs JP, Ahmad R, Crump KS, Houck DP, Leveille TS, Findley JE, Francis M (1998) Evaluation of a population with occupational exposure to airborne ammonium perchlorate for possible acute or chronic effects on thyroid function. J Occup Environ Med 40:1072–1082Google Scholar
  275. 275.
    Braverman LE, He X, Pino S, Cross M, Magnani B, Lamm SH, Kruse MB, Engel A, Crump KS, Gibbs JP (2005) The effect of perchlorate, thiocyanate, and nitrate on thyroid function in workers exposed to perchlorate long-term. J Clin Endocrinol Metab 90:700–706CrossRefGoogle Scholar
  276. 276.
    Horii Y, Kannan K (2008) Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products. Arch Environ Contamin Toxicol 55:701–710CrossRefGoogle Scholar
  277. 277.
    Wang R, Moody RP, Koniecki D, Zhu JP (2009) Low molecular weight cyclic volatile methylsiloxanes in cosmetic products sold in Canada: implication for dermal exposure. Environ Int 35:900–904CrossRefGoogle Scholar
  278. 278.
    Brooke DN, Crookes MJ, Gray D, Robertson S (2009) Environmental Risk Assessment Report: Octamethylcyclotetrasiloxane. Environment Agency of England and Wales, Bristol, UK. http://publications.environment-agency.gov.uk/pdf/SCHO0309BPQZ-e-e.pdf
  279. 279.
    Brooke DN, Crookes MJ, Gray D, Robertson S (2009) Environmental risk assessment report: decamethylcyclopentasiloxane. Environment Agency of England and Wales, Bristol, UK. http://publications.environment-agency.gov.uk/pdf/SCHO0309BPQX-e-e.pdf
  280. 280.
    Brooke DN, Crookes MJ, Gray D, Robertson S (2009) Environmental risk assessment report: dodecamethylcyclohexasiloxane. Environment Agency of England and Wales, Bristol, UK. http://publications.environment-agency.gov.uk/pdf/SCHO0309BPQY-e-e.pdf
  281. 281.
    Lu Y, Yuan T, Yun SH, Wang W, Wu Q, Kannan K (2010) Occurrence of cyclic and linear siloxanes in indoor dust from China, and implications for human exposures. Environ Sci Technol 44:6081–6087CrossRefGoogle Scholar
  282. 282.
    Lu Y, Yuan T, Wang W, Kannan K (2011) Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China. Environ Pollut 12:3522–3528CrossRefGoogle Scholar
  283. 283.
    Maguire RJ (2001) Preliminary environmental assessment of organosilicon substances. Environment Canada, National Water Research Institute, Burlington/Saskatoon, NWRI Contribution No. 01-037Google Scholar
  284. 284.
    Kierkegaard A, van Egmond R, McLachlan MS (2011) Cyclic volatile methylsiloxane bioaccumulation in Flounder and Ragworm in the Humber Estuary. Environ Sci Technol 45:5936–5942CrossRefGoogle Scholar
  285. 285.
    Jovanovic ML, McMahon JM, McNett DA, Tobin JM, Plotzke KP (2008) In vitro and in vivo percutaneous absorption of 14 C-octamethylcyclotetrasiloxane (14 C-D4) and 14 C-decamethyl cyclopentasiloxane (14 C-D5). Regul Toxicol Pharmacol 50:239–248CrossRefGoogle Scholar
  286. 286.
    Plotzke KP, Crofoot SD, Ferdinandi ES, Beattie ES, Reitz JG, McNett RH, Meeks DA (2000) Disposition of radioactivity in Fischer 344 rats after single and multiple inhalation exposure to [C-14]-octamethylcyclotetrasiloxane ([C-14]D4). Drug Metab Dispos 28:192–204Google Scholar
  287. 287.
    McKim JM, Wilga PC, Breslin WJ, Plotzke KP, Gallavan RH, Meeks RG (2001) Potential estrogenic and antiestrogenic activity of the cyclic siloxane octamethylcyclotetrasiloxane (D4) and the linear siloxane hexamethyldisiloxane (HMDS) in immature rats using the uterotrophic assay. Toxicol Sci 63:37–46CrossRefGoogle Scholar
  288. 288.
    He B, Rhodes-Brower S, Miller MR, Munson AE, Germolec DR, Walker VR, Korach KS, Meade BJ (2003) Octamethylcy-clotetrasiloxane exhibits estrogenic activity in mice via ER alpha. Toxicol Appl Pharmacol 192:254–261CrossRefGoogle Scholar
  289. 289.
    Quinn AL, Regan JM, Tobin JM, Marinik BJ, McMahon JM, McNett DA, Sushynski CM, Crofoot SD, Jean PA, Plotzke KP (2007) In vitro and in vivo evaluation of the estrogenic, androgenic, and progestagenic potential of two cyclic siloxanes. Toxicol Sci 96:145–153CrossRefGoogle Scholar
  290. 290.
    Meeks RG, Stump DG, Siddiqui WH, Holson JF, Plotzke KP, Reynolds VL (2007) An inhalation reproductive toxicity study of octamethylcyclotetrasiloxane (D-4) in female rats using multiple and single day exposure regimens. Reprod Toxicol 23:192–201CrossRefGoogle Scholar
  291. 291.
    OEHHA (2007) Toxicity data review: decamethylcyclopentasiloxane (D5). September, 2007. http://www.arb.ca.gov/toxics/dryclean/oehhad5review.pdf
  292. 292.
    Environment Canada (2008) Screening assessment for the challenge. Dodecamethylcyclohexasiloxane (D6). Chemical Abstracts Service Registry Number: 540-97-6. http://www.ec.gc.ca/substances/ese/eng/challenge/batch2/batch2_540-97-6_en.pdf
  293. 293.
    Environment Canada (2007) Existing substances evaluation. Substance profile for the challenge. Decamethylcyclopentasiloxane (D5). Chemical Abstracts Service Registry Number: 541-02-6. http://www.ec.gc.ca/substances/ese/eng/challenge/batch2/batch2_541-02-6.cfm
  294. 294.
    Reddy MB, Dobrev ID, Plotzke KP, Andersen ME, Reitz RH, Morrow P, Utell M (2003) A physiologically based pharma-cokinetic model for inhalation of octamethylcyclotetrasiloxane (D4) in Human during rest and exercise. Toxicol Sci 72:3–18CrossRefGoogle Scholar
  295. 295.
    Andersen ME, Reddy MB, Plotzke KP (2008) Are highly lipophilic volatile compounds expected to bioaccumulate with repeated exposures? Toxicol Lett 179:85–92CrossRefGoogle Scholar
  296. 296.
  297. 297.
    Stapleton HM, Klosterhaus S, Eagle S, Fuh J, Meeker JD, Blum A, Webster TF (2009) Detection of organophosphate flame retardants in furniture foam and US house dust. Environ Sci Technol 43:7490–7495CrossRefGoogle Scholar
  298. 298.
    Van den Eede N, Dirtu AC, Neels H, Covaci A (2011) Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust. Environ Int 37: 454–461CrossRefGoogle Scholar
  299. 299.
    Regnery J, Puttmann W, Merz, C, Berthold G (2011) Occurrence and distribution of organophosphorus flame retardants and plasticizers in anthropogenically affected groundwater. J Environ Monit 13: 347–354CrossRefGoogle Scholar
  300. 300.
    Weschler CJ, Nazaroff WW (2008) Semivolatile organic compounds in indoor environments. Atm Environ 42: 9018–9040CrossRefGoogle Scholar
  301. 301.
    Makinen MSE, Makinen MRA, Koistinen JTB, Pasanen AL, Pasanen PO, Kalliokoski PI, Korpi AM (2009) Respiratory and Dermal Exposure to Organophosphorus Flame Retardants and Tetrabromobisphenol A at Five Work Environments. Environ Sci Technol 43:941–947CrossRefGoogle Scholar
  302. 302.
    Schindler BK, Foerster K, Angerer J (2009a) Determination of human urinary organophosphate flame retardant metabolites by solid-phase extraction and gas chromatography-tandem mass spectrometry. J Chromatogr B 877:375–381CrossRefGoogle Scholar
  303. 303.
    Schindler BK, Foerster K, Angerer J (2009b) Quantification of two urinary metabolites of organophosphorus flame retardants by solid-phase extraction and gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 395: 1167–1171CrossRefGoogle Scholar
  304. 304.
    Reemtsma T, Lingott J, Roegler S (2011) Determination of 14 monoalkyl phosphates, dialkyl phosphates and dialkyl thiophosphates by LC-MS/MS in human urinary samples. Sci Total Environ 409:1990–1993CrossRefGoogle Scholar
  305. 305.
    Martino-Andrade AJ, Chahoud I (2010) Reproductive toxicity of phthalate esters. Mol Nutr Food Res 54:148–157CrossRefGoogle Scholar
  306. 306.
    Hawkins DR, Elsom LF, Kirkpatrick D, Ford RA, Api AM (2002) Dermal absorption and disposition of musk ambrette, musk ketone and musk xylene in human subjects. Toxicol Lett 131:147–151CrossRefGoogle Scholar
  307. 307.
    Lignell S, Darnerud PO, Aune M, Cnattingius S, Hajslova J, Setkova L, Glynn A (2008) Temporal trends of synthetic musk compounds in mother's milk and associations with personal use of perfumed products. Environ Sci Technol 42:6743–6748CrossRefGoogle Scholar
  308. 308.
    Reiner JL, Wong CM, Arcaro KF, Kannan K (2007) Synthetic musk fragrances in human milk from the United States. Environ Sci Technol 41:3815–3820CrossRefGoogle Scholar
  309. 309.
    Kafferlein HU, Angerer J (2001) Trends in the musk xylene concentrations in plasma samples from the general population from 1992/1993 to 1998 and the relevance of dermal uptake. Intern Arch Occup Environ Health 74:470-476Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011 2011

Authors and Affiliations

  • Adrian Covaci
    • 1
    Email author
  • Tinne Geens
    • 1
  • Laurence Roosens
    • 1
  • Nadeem Ali
    • 1
  • Nele Van den Eede
    • 1
  • Alin C. Ionas
    • 1
  • Govindan Malarvannan
    • 1
  • Alin C. Dirtu
    • 1
  1. 1.Toxicological CentreUniversity of AntwerpWilrijk-AntwerpBelgium

Personalised recommendations