Additives and Other Hazardous Compounds in Electronic Products and Their Waste

  • Jenny WesterdahlEmail author
  • Mohammed Belhaj
  • Tomas Rydberg
  • John Munthe
  • Rosa Mari Darbra
  • Alba Àgueda
  • Susanne Heise
  • Lou Ziyang
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 18)


The demand for electronic equipment in society is increasing not only as a result of higher living standards around the world but also due to fashion. Many electronic articles are today disposed of before the end of their technical lifetime since they have become outdated. Each year, electronic products are sold for a value of more than $1 trillion. In electronic equipment, there are various compounds that are hazardous to both the environment and human health, such as various metals and organic compounds. These compounds may be emitted from the products during its life cycle. The end-of-life phase has been identified as problematic with respect to emissions of these potentially hazardous additives. The risk caused by the end-of-life treatment of electronic and electric waste can be minimized if treated under controlled condition. If the treatment is under uncontrolled conditions, as in the informal e-waste system in Asia and Africa, there is a large risk that negative effects will occur with regard to human health and the environment.


Electronic products WEEE ROHS Additives Hazardous substances TPP PBDE Pb Risks 



Cathode ray tube


International Data Group


International Telecommunication Union


Liquid crystal display


Maximum concentration value


Mobile Phone Partnership Initiative


Polybrominated diphenyl ether


Triphenyl phosphate


United Nations Environment Programme


  1. 1.
    United Nations University (2007) 2008 review of directive 2002/96 on Waste Electrical and Electronic Equipment (WEEE), Final Report. United Nations University, BonnGoogle Scholar
  2. 2.
    LaDou J, Lovegrove S (2008) Export of electronics equipment waste. Int J Occup Environ Health 14:1–10Google Scholar
  3. 3.
    ITU (2010) World Telecommunication/ICT Development Report 2010 - Monitoring the WSIS targets – a mid-term reviewGoogle Scholar
  4. 4.
    ITU (2010) World Telecommunication/ICT Indicators Database 2010, 14th EditionGoogle Scholar
  5. 5.
    DisplaySearch (2010) Global LCD TV shipments reached 146M units in 2009, faster growth than 2008 (press release). Accessed 14 Dec 2010
  6. 6.
    ITU (2010) Market information and statistics. Accessed 17 Dec 2010
  7. 7.
    Gartner (2010) Gartner says worldwide PC shipments in fourth quarter of 2009 posted strongest growth rate in seven years (press release). Accessed 14 Dec 2010
  8. 8.
    DisplaySearch (2010) Notebook, netbook and slate PC demand expected to propel portable PC market to 26% Y/Y growth in 2010 (press release). Accessed 14 Dec 2010
  9. 9.
    Cobbing M (2008) Toxic tech: not in our backyard, uncovering the hidden flows of e-waste. Greenpeace International ReportGoogle Scholar
  10. 10.
    UNEP (2005) E-waste, the hidden side of IT equipment’s manufacturing and use. Environment Alert Bulletin, UNEPGoogle Scholar
  11. 11.
    DisplaySearch (2010) Strong growth in mobile phone display shipments in Q4 pushes 2009 into positive growth (press release). Accessed 14 Dec 2010
  12. 12.
    IDG (2010) IDG press release – mobile phone shipments rebound to double-digit growth in fourth quarter, According to IDC (press release). Accessed 14 Dec 2010
  13. 13.
    Lundstedt S (2011) Recycling and disposal of electronic waste – health hazards and environmental impacts. Swedish EPA, Report 6417. ISBN 978-91-620-6417-4Google Scholar
  14. 14.
    Cui J, Forssberg E (2003) Mechanical recycling of waste electric and electronic equipment: a review. J Hazard Mater B99:243–263CrossRefGoogle Scholar
  15. 15.
    Lee CH, Chang CT, Fan KS, Chang TC (2004) An overview of recycling and treatment of scrap computers. J Hazard Mater 114:93–100CrossRefGoogle Scholar
  16. 16.
    Méar F, Yot P, Cambon M, Ribes M (2006) The characterization of waste cathode-ray tube glass. Waste Manag 26:1468–1476CrossRefGoogle Scholar
  17. 17.
    Felix J, Letcher B (2009) Prestudy – recycling of flat panel displays, Vinnova project no. 2008–04230Google Scholar
  18. 18.
    Liang J (2009) WEEE waste LCD liquid crystal burning pyrolysis. Master dissertation, Southwest Jiaotong University (in Chinese)Google Scholar
  19. 19.
    MPPI (2006) Guidance document on the environmentally sound management of used and end-of-life mobile phones Shredder Residue from an Electronic Waste Recycling Facility and in Soils from a Chemical Industrial Complex in Eastern China. Environ Sci Technol 43:7350–7356Google Scholar
  20. 20.
    Wu BY, Chan YC, Middendorf A, Gu X, Zhong HW (2008) Assessment of toxicity potential of metallic elements in discarded electronics: a case study of mobile phones in China. J Environ Sci 20:1403–1408CrossRefGoogle Scholar
  21. 21.
    Markarian J (2002) Additives in the North American electrical and electronics market. Plastics, Additives and Compounding 4(9):12–15CrossRefGoogle Scholar
  22. 22.
    Harrant M (2002) Umweltrelevante Inhaltsstoffe in Elektro- und Elektronikgeräten. Bayerisches Landesamt für Umweltschutz. Augsburg, April 2002. 62 ppGoogle Scholar
  23. 23.
    Zweifel H, Maier RD, Schiller M (2009) Plastics additives handbook, 6th edn. Carl Hanser Verlag, MunichGoogle Scholar
  24. 24.
    Brossas J (1989) Fire retardance in polymers: an introductory lecture. Polym Degrad Stab 23(4):313–325CrossRefGoogle Scholar
  25. 25.
    Camino G, Costa L (1988) Performance and mechanisms of fire retardants in polymers–a review. Polym Degrad Stab 20(3–4):271–294CrossRefGoogle Scholar
  26. 26.
    Leisewitz A, Kruse H, Schramm E (2001) Erarbeitung von Bewertungsgrundlagen zur Substitution umweltrelevanter Flammschutzmittel. Band I - Ergebnisse und zusammenfassende Übersicht. Umweltbundesamt, Berlin, 209 ppGoogle Scholar
  27. 27.
    Sony Ericson (2010) The Sony Ericsson lists of banned and restricted substances. Accessed 4 Mar 2011
  28. 28.
  29. 29.
    Horne RE, Gertsakis J (2006) A literature review on the environmental and health impacts of waste electrical and electroni equipment. RMIT University, prepared for the Ministry for the Environment, Government of New Zealand. Melbourne, 24 ppGoogle Scholar
  30. 30.
    Markarian J (2005) Increased demands in electronics drive additive developments in conductivity. Plastics, Additives and Compounding 7(1):26–30CrossRefGoogle Scholar
  31. 31.
    Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Review – carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22CrossRefGoogle Scholar
  32. 32.
    Dunning P (2009) Cadmium pigments. In: Faulkner EB, Schwartz RJ (eds) High performance pigments. Wiley-VCH verlag GmbH & Co KG, WeinheimGoogle Scholar
  33. 33.
    Wäger P, Schluep M, Müller E (2010) RoHS substances in mixed plastics from Waste Electrical and Electronic Equipment. Final Report, 17.9.2010. EMPA, St. Gallen, 99 ppGoogle Scholar
  34. 34.
    Premier Farnell (2010) RoHS Directive Technical Guide. Farnell Guide to RoHS Compliance. 2 June 2010. 17 ppGoogle Scholar
  35. 35.
    German Federal Environment Agency (2009) Stellungnahme des Umweltbundesamtes zum Vorschlag der EU-Kommission vom 3. Dezember 2008 zur Revision der Richtlinie 2002/95/EG zur „Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten“ (RoHS-RL). Umweltbundesamt (UBA). Dessau-Roßlau, 14 ppGoogle Scholar
  36. 36.
    Markarian J (2007) PVC additives – what lies ahead? Plastics Additives and Compounding 9(6):22–25CrossRefGoogle Scholar
  37. 37.
    Murner C (2006) Plastics, electronics the environment. Plastics Technology Magazine no information given (reprint) - 56–61
  38. 38.
    Illinois Environmental Protection Agency (2007) Report on alternatives to the flame retardant decaBDE: evaluation of toxicity, availability, affordability, and fire safety issues. Illinois Environmental Protection Agency. A report to the Governor and the General Assembly. 86 ppGoogle Scholar
  39. 39.
    Lassen C, Havelund S, Leisewitz A, Maxson P (2006) Deca-BDE and Alternatives in Electrical and Electronic Equipment. Danish Ministry of the Environment. Environmental Project No. 1141 2006, Miljøprojekt 93 ppGoogle Scholar
  40. 40.
    German Federal Environment Agency (2007) Bromierte Flammschutzmittel in Elektro- und Elektronikgeräten: Das Flammschutzmittel Decabromdiphenylether (DecaBDE) ist durch umweltverträglichere Alternativen ersetzbar. Umweltbundesamt (UBA). Fachpapier. 11 ppGoogle Scholar
  41. 41.
    van Oers L, van der Voet E, Grundmann V (2011) Additives in the plastics industry. In: Bilitewski B, Darbra RM, Barceló D (eds) The handbook of environmental chemistry – global risk-based management of chemical additives I: production, usage and environmental occurrence. Springer, HeidelbergGoogle Scholar
  42. 42.
    Pucketh J, Smith T (eds.) (2002) Exporting harm: the high-tech trashing of Asia. Basel Action Network and Silicon Valley Toxics CoalitionGoogle Scholar
  43. 43.
    Brigden K, Labunska I, Santillo D, Allsopp M (2005) Recycling of electronics waste in China and India: Worklplace and environmental contamination. Greenpeace International ReportGoogle Scholar
  44. 44.
    Lindberg SE, Wallschläger D, Prestbo EM, Bloom NS, Price JL, Reinhart D (2001) Methylated mercury species in municipal waste landfill gas sampled in Florida, USA. Atm Environ 35:4011–4015CrossRefGoogle Scholar
  45. 45.
    Tsydenova O, Bengtsson M (2009) Environmental and human health risks associated with the end-of-life treatment of electrical and electronic equipment. Institute for Global Environmental Strategies. (IGES)Google Scholar
  46. 46.
    Sepúlveda A, Schluep M, Renaud FG, Streicher M, Kuehr R, Hagelüken C, Gerecke AC (2010) A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: examples from China and India. Environ Impact Assessment Rev 30(1):28–41CrossRefGoogle Scholar
  47. 47.
    Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag 31(1):45–58CrossRefGoogle Scholar
  48. 48.
    Gullett B, Linak W, Touati A, Wasson S, Gatica S, King C (2007) Characterization of air emissions and residual ash from open burning of electronic wastes during simulated rudimentary recycling operations. J Mater Cycl Waste Manag 9:69–79CrossRefGoogle Scholar
  49. 49.
    Bi X, Simoneit BRT, Wang Z, Wang X, Sheng G, Fu J (2010) The major components of particles emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China. Atmos Environ 44(35):4440–4445CrossRefGoogle Scholar
  50. 50.
    Ma J, Addink R, Yun S, Cheng J, Wang W, Kannan K (2009) Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern china. Environ Sci Technol. 43(A):7350–7356Google Scholar
  51. 51.
    Watson A, Bridgen K, Shinn M, Cobbing M (2010) Toxic transformers; - a review of the hazards of brominated & chlorinated substances in electrical and electronic equipment. Greenpeace. Greenpeace Research Laboratories Technical Note 01/2010 48 ppGoogle Scholar
  52. 52.
    Olivero-Verbel J, Duarte D, Echenique M, Guette J, Johnson-Restrepo B, Parsons P (2007) Blood lead levels in children aged 5–9 years living in Cartagena, Colombia. Sci Total Environ 372:707–716CrossRefGoogle Scholar
  53. 53.
    Costa de Almeida G, Umbelino de Freitas C, Barbosa F, Tanus-Santos J, Gerlach R (2009) Lead in saliva from lead-exposed and unexposed children. Sci Total Environ 407:1547–1550CrossRefGoogle Scholar
  54. 54.
    Wang H, Han M, Yang S, Chen Y, Lui Q, Ke S (2011) Urinary heavy metal levels and relevant factors among people exposed to e-waste dismantling. Environ Int 37:80–85CrossRefGoogle Scholar
  55. 55.
    Wang S, Zhang J (2006) Blood lead levels in children, China. Environ Res 101:412–418CrossRefGoogle Scholar
  56. 56.
    He K, Wang S, Zhang J (2009) Blood lead levels of children and its trend in China. Sci Total Environ 407:3986–3993CrossRefGoogle Scholar
  57. 57.
    Tukker A, Buijst H, van Oers L, van der Voet E (2005) Risk to health and the environment related to the use of lead in products. TNO Report. STB-01-39 (Final) (2005)Google Scholar
  58. 58.
    US EPA (2006) Polybrominated diphenyl ethers (PBDEs). Project Plan, 2006Google Scholar
  59. 59.
    US EPA (2008) Toxicological review of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47). EPA/635/R-07/005F, 2008Google Scholar
  60. 60.
    US EPA (2008) Toxicological review of 2,2’,4,4’,5-pentabromodiphenyl ether (BDE-99). EPA/635/R-07/006F, 2008Google Scholar
  61. 61.
    US EPA (2008) Toxicological review of 2,2’,4,4’,5,5’-hexabromodiphenyl ether (BDE-153). EPA/635/R-07/007F, 2008Google Scholar
  62. 62.
    US EPA (2008) Toxicological review of decabromodiphenyl ether (BDE-209). EPA/635/R-07/008F, 2008Google Scholar
  63. 63.
    OECD SIDS (Organisation for Economic Co-operation and Development - Screening Information Dataset) (2002) Triphenyl phosphate CAS Nº: 115-86-6. SIDS Initial assessment report for SIAM 15. UNEP Publications, 2002Google Scholar
  64. 64.
    US NLM (US National Library of Medicine) (2009) Hazardous Substances Data Bank (HSDB). US, 2009. Accessed 31 Mar 2010
  65. 65.
    Anonymous (2005) Substance Data Sheet: Lead and its compounds. Common Implementation Strategy for the Water Framework Directive. Environmental Quality Standards (EQS), Brussels, 31 July 2005. 40 pGoogle Scholar
  66. 66.
    Rogers JT, Richards JG, Wood CM (2003) Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 64:215–234CrossRefGoogle Scholar
  67. 67.
    Hedelmalm P, Carlsson P, Palm V (1995) A survey of the contents of material and hazardous substances in electric and electronic products. TemaNord 1995:554, Nordic Council of Ministers, Copenhagen, Denmark, cited in de Wit (2002)Google Scholar
  68. 68.
    Watanabe I, Sakai S-I (2003) Environmental release and behavior of brominated flame retardants. Environ Int 29(6):665–682CrossRefGoogle Scholar
  69. 69.
    de Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46(5):583–624CrossRefGoogle Scholar
  70. 70.
    Yogui GT, Sericano JL (2009) Polybrominated diphenyl ether flame retardants in the U.S. marine environment: a review. Environ Int 35(3):655–666CrossRefGoogle Scholar
  71. 71.
    Bayer AG (2002) Calculation of the environmental distribution of triphenyl phosphate acc. to Mackay Fugacity Model Level I, v2.11, 2001 Calculation of the indirect photolysis of triphenyl phosphate in air according to AOPWIN, v1.89, 2001 Calculation of the BCF for fish by SCRBCFWIN v2.14, 2000Google Scholar
  72. 72.
    ATSDR (Agency for Toxic Substances and Disease Registry) (1999). Toxicological profile for mercury. US Department of Health and Human SciencesGoogle Scholar
  73. 73.
    Verbruggen EMJ, Rila JP, Traas TP, Posthuma-Doodeman CJAM (2005) Posthumus, R. Environmental Risk Limits for several phosphate esters, with possible application as flame retardant. RIVM, Report No. 601501024/2005, 2005Google Scholar
  74. 74.
    ECB (European Chemicals Bureau) (2000) IUCLID (International Uniform ChemicaL Information Database) Dataset. Triphenyl phosphate. European Commission, 2000. (Last visited: 31/03/2010) Available at:
  75. 74.
    Korre A, Durucan S, Koutroumani A (2002) Quantitative-spatial assessment of the risks associated with high pb loads in soils around Lavno, Greece. Applied Geochemistry 17:1029–1045Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jenny Westerdahl
    • 1
    Email author
  • Mohammed Belhaj
    • 1
  • Tomas Rydberg
    • 1
  • John Munthe
    • 1
  • Rosa Mari Darbra
    • 2
  • Alba Àgueda
    • 2
  • Susanne Heise
    • 3
  • Lou Ziyang
    • 4
  1. 1.IVL Swedish Environmental Research InstituteGöteborgSweden
  2. 2.CERTEC, Department of Chemical EngineeringUniversitat Politècnica de Catalunya, ETSEIBBarcelonaSpain
  3. 3.Faculty Life SciencesHamburg University of Applied SciencesHamburgGermany
  4. 4.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiPR China

Personalised recommendations