Skip to main content

Role of Sulfide Oxidation Intermediates in the Redox Balance of the Oxic–Anoxic Interface of the Gotland Deep, Baltic Sea

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 22))

Abstract

Depth profiles of sulfur species, including sulfide oxidation intermediates (zero-valent sulfur and thiosulfate), nutrients, metals (Mn, Fe), oxygen, temperature, salinity, and turbidity, were measured in the Gotland Deep, at the eastern Gotland Basin, in July 2007. We found that the highest concentrations of more oxidized sulfide oxidation intermediate, thiosulfate, were located below the highest concentrations of zero-valent sulfur. We explain this paradox by bacterial nitrate reduction coupled with thiosulfate oxidation. The same process using zero-valent sulfur is less effective due to particulate form of the latter. Oxic water intrusions were traced in both the redox transition zone (RTZ) and deep water column by decrease in concentrations of reduced nitrogen and sulfur species (sulfide, zero-valent sulfur, and thiosulfate) as well as by increase in nitrate concentration. Two turbidity maxima were found in the RTZ. Turbidity maximum, which coincides with past oxic water intrusion, was found in the deep sulfide-rich water layer. Profiles of metals and nutrients in most of the profiles indicate as well unstability of the redoxcline and oxic water intrusions at and below the redoxcline.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BBL:

Bottom boundary layer

RTZ:

Redox transition zone

References

  1. Brüchert V, Jørgensen BB, Neumann K, Riechmann D, Schlösser M, Schulz H (2003) Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central namibian coastal upwelling zone. Geochim Cosmochim Acta 67:4505–4518

    Article  Google Scholar 

  2. Neretin LN, Volkov II, Rozanov AG, Demidova TP, Falina AS (2006) Biogeochemistry of the Black Sea anoxic zone with areference to sulphur cycle. In: Neretin LN (ed) Past and present water column anoxia. Springer, Dordrecht, pp 69–104

    Chapter  Google Scholar 

  3. Gustafsson BG, Stigebrandt A (2007) Dynamics of nutrients and oxygen/hydrogen sulfide in the Baltic Sea deep water. J Geophys Res 112:G02023

    Article  Google Scholar 

  4. Scranton MI, Astor Y, Bohrer R, Ho T-Y, Muller-Karger F (2001) Controls on temporal variability of the geochemistry of the deep Cariaco Basin. Deep Sea Res Part I Oceanogr Res Pap 48:1605–1625

    Article  CAS  Google Scholar 

  5. Skei JM, Dyrssen D (eds) (1988) Processes in anoxic basins – with special reference to Framvaren, South Norway. Mar Chem (special volume) 23:209–461

    Google Scholar 

  6. Zopfi J, Ferdelman TG, Jørgensen BB, Teske A, Thamdrup B (2001) Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Mar Chem 74:29–51

    Article  CAS  Google Scholar 

  7. Overmann J, Beatty JT, Hall KJ, Pfennig N, Northcote TG (1991) Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol Oceanogr 36:846–859

    Article  CAS  Google Scholar 

  8. Eckert W, Conrad R (2007) Sulfide and methane evolution in the hypolimnion of a subtropical lake: a three-year study. Biogeochemistry 82:67–76

    Article  CAS  Google Scholar 

  9. Murray JW, Codispoti LA, Friederich GE (1995) In: Huang CP, O’Melia CR, Morgan JJ (eds) Aquatic chemistry: interfacial and interspecies processes. ACS advances in chemistry series. No. 224. American Chemical Society, Washington, DC, pp 157–176

    Google Scholar 

  10. Trouwborst RE, Clement BG, Tebo BM, Glazer BT, Luther GW (2006) Soluble Mn(III) in suboxic zones. Science 313:1955–1957

    Article  CAS  Google Scholar 

  11. Chen KY, Morris JC (1972) Kinetics of oxidation of aqueous sulfide by O2. Environ Sci Technol 6:529–537

    Article  CAS  Google Scholar 

  12. Zhang J, Millero FJ (1993) The products from the oxidation of H2S in seawater. Geochim Cosmochim Acta 57:1705–1718

    Article  CAS  Google Scholar 

  13. Pyzik AJ, Sommer SE (1981) Sedimentary iron monosulfides – kinetics and mechanism of formation. Geochim Cosmochim Acta 45:687–698

    Article  CAS  Google Scholar 

  14. dos Santos Afonso M, Stumm W (1992) Reductive dissolution of iron(III) hydr(oxides) by hydrogen sulfide. Langmuir 8:1671–1675

    Article  Google Scholar 

  15. Yao W, Millero FJ (1996) Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Mar Chem 52:1–16

    Article  CAS  Google Scholar 

  16. Burdige DJ, Nealson KH (1986) Chemical and microbiological studies of sulfide-mediated manganese reduction. Geomicrobiol J 4:361–387

    Article  CAS  Google Scholar 

  17. Yao W, Millero FJ (1993) The rate of sulfide oxidation by δMnO2 in seawater. Geochim Cosmochim Acta 57:3359–3365

    Article  CAS  Google Scholar 

  18. Kostka JE, Luther GW III, Nealson KH (1995) Chemical and biological reduction of Mn (III)-pyrophosphate complexes: potential importance of dissolved Mn (III) as an environmental oxidant. Geochim Cosmochim Acta 59:885–894

    CAS  Google Scholar 

  19. Jørgensen BB (2000) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 173–207

    Google Scholar 

  20. Cohen Y, Jørgensen BB, Padan E, Shilo M (1975) Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257:489–492

    Article  CAS  Google Scholar 

  21. Jørgensen BB (1990) A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152–154

    Article  Google Scholar 

  22. Jørgensen BB (1990) The sulfur cycle of freshwater sediments: role of thiosulfate. Limnol Oceanogr 35:1329–1342

    Article  Google Scholar 

  23. Jørgensen BB, Bak F (1991) Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl Environ Microbiol 57:847–856

    Google Scholar 

  24. Brettar I, Rheinheimer G (1991) Denitrification in the Central Baltic: evidence for H2S-oxidation as motor of denitrification at the oxic-anoxic interface. Mar Ecol Prog Ser 77:157–169

    Article  CAS  Google Scholar 

  25. Dannenberg S, Kroder M, Dilling W, Cypionka H (1992) Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch Microbiol 158:93–99

    Article  CAS  Google Scholar 

  26. Taylor GT, Iabichella M, Ho T-Y, Scranton MI, Thunell RC, Muller-Karger F, Varela R (2001) Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol Oceanogr 46:148–163

    Article  CAS  Google Scholar 

  27. Soares MIM (2002) Denitrification of groundwater with elemental sulfur. Water Res 36:1392–1395

    Article  CAS  Google Scholar 

  28. Haajer SCM, Lamers LPM, Smolders AJP, Jetten MSM, Op den Camp HJM (2007) Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiol J 24:391–401

    Article  Google Scholar 

  29. Brettar I, Labrenz M, Flavier S, Bötel J, Kuosa H, Christen R, Höfle MG (2006) Identification of a Thiomicrospora denitrificans-like Epsilonproteobacterium as a catalyst for autotrophic denitrification in the central Baltic Sea. Appl Environ Microbiol 72:1364–1372

    Article  CAS  Google Scholar 

  30. Otte S, Kuenen JG, Nielsen LP, Paerl HW, Zopfi J, Schulz HN, Teske A, Strotmann B, Gallardo VA, Jørgensen BB (1999) Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. Appl Environ Microbiol 65:3148–3157

    CAS  Google Scholar 

  31. Percy D, Li X, Taylor GT, Astor Y, Scranton MI (2008) Controls on iron, manganese and intermediate oxidation state sulfur compounds in the Cariaco Basin. Mar Chem 111:47–62

    Article  CAS  Google Scholar 

  32. Kamyshny A Jr, Ekeltchik I, Gun J, Lev O (2006) Method for the determination of inorganic polysulfide distribution in aquatic systems. Anal Chem 78:2631–2639

    Article  CAS  Google Scholar 

  33. Kamyshny A Jr, Borkenstein CG, Ferdelman TG (2009) Protocol for quantitative detection of elemental sulfur and polysulfide zero-valent sulfur distribution in natural aquatic samples. Geostand Geoanal Res 33:415–435

    Article  CAS  Google Scholar 

  34. Kamyshny A Jr (2009) Solubility of cyclooctasulfur in pure water and sea water at different temperatures. Geochim Cosmochim Acta 73:6022–6028

    Article  CAS  Google Scholar 

  35. Fahey RC, Newton GL (1987) Determination of low-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. Methods Enzymol 143:85–96

    Article  CAS  Google Scholar 

  36. Vairavamurthy A, Mopper K (1990) Determination of sulfite and thiosulfate in aqueous samples including anoxic seawater by liquid chromatography after derivatization with 2, 2′-Dithiobis(5-nitropyridine). Environ Sci Technol 24:333–337

    Article  Google Scholar 

  37. Rethmeier J, Rabenstein A, Langer M, Fischer U (1997) Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods. J Chromatogr A 760:295–302

    Article  CAS  Google Scholar 

  38. Zopfi J, Böttcher M, Jørgensen BB (2008) Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central Chile. Geochim Cosmochim Acta 72:827–843

    Article  CAS  Google Scholar 

  39. Volkov II, Demidova TP (2003) Compounds of reduced inorganic sulfur in the waters of the Baltic Sea. Oceanology 43:805–810

    Google Scholar 

  40. Hayes MK, Taylor GT, Astor Y, Scranton MI (2006) Vertical distribution of thiosulfate and sulfite in the Cariaco Basin. Limnol Oceanogr 51:280–287

    Article  CAS  Google Scholar 

  41. Kamyshny A Jr, Zilberbrand M, Ekeltchik I, Voitsekovski T, Gun J, Lev O (2008) Speciation of polysulfides and zero-valent sulfur in sulfide-rich water wells in southern and central Israel. Aquat Geochem 14:171–192

    Article  CAS  Google Scholar 

  42. Li X, Taylor GT, Astor Y, Scranton MI (2008) Relationship of sulfur speciation to hydrographic conditions and chemoautotrophic production in the Cariaco Basin. Mar Chem 112:53–64

    Article  Google Scholar 

  43. Yakushev EV, Neretin LN (1997) One-dimensional modeling of nitrogen and sulfur cycles in the aphotic zones of the Black and Arabian Seas. Global Biogeochem Cycles 11:401–414

    Article  CAS  Google Scholar 

  44. Luther GW III, Church TM, Powell D (1991) Sulfur speciation and sulfide oxidation in the water column of the Black Sea. Deep Sea Res 38(Suppl 2):S1121–S1137

    Google Scholar 

  45. Zhang J, Millero FJ (1993) The chemistry of the anoxic waters of the Cariaco Trench. Deep Sea Res I 40:1023–1041

    Article  CAS  Google Scholar 

  46. Tuttle JH, Jannasch HW (1979) Microbial dark assimilation of CO2 in the Cariaco Trench. Limnol Oceanogr 24:746–753

    Article  CAS  Google Scholar 

  47. Yakushev EV, Pollehne F, Jost G, Kuznetsov I, Schneider B, Umlauf L (2007) Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar Chem 107:388–410

    Article  CAS  Google Scholar 

  48. Hastings D, Emerson S (1988) Sulfate reduction in the presence of low oxygen levels in the water column of the Cariaco Trench. Limnol Oceanogr 33:391–396

    Article  CAS  Google Scholar 

  49. Fonselius S, Dyrssen D, Yhlen B (1999) Determination hydrogen sulfide. In: Grashoff K, Kremling K, Ehrhard M (eds) Methods of seawater analysis. 3d, completely revised and extended edition. WILEY-VCH, Weinheim, pp 91–100

    Chapter  Google Scholar 

  50. Hansen HP (1999) Determination of oxygen. In: Grashoff K, Kremling K, Ehrhard M (eds) Methods of seawater analysis. 3d, completely revised and extended edition. WILEY-VCH, Weinheim, pp 75–90

    Chapter  Google Scholar 

  51. Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grashoff K, Kremling K, Ehrhard M (eds) Methods of seawater analysis. 3d, completely revised and extended edition. WILEY-VCH, Weinheim, pp 149–228

    Google Scholar 

  52. Koroleff F, Kremling K (1999) Analysis by spectrophotometry. In: Grashoff K, Kremling K, Ehrhard M (eds) Methods of seawater analysis. 3d, completely revised and extended edition. WILEY-VCH, Weinheim, pp 341–344

    Google Scholar 

  53. Pakhomova SV (2005) Soluble forms of iron and manganese in the sea water, sediments, and on the water–bottom interface, Candidate’s Dissertation in Geology and Mineralogy (IO RAN)

    Google Scholar 

  54. Fitz RM, Cypionka H (1990) Formation of thiosulfate and trithionate during sulfite reduction by washed cells of Desulfovibrio desulfuricans. Arch Microbiol 154:400–406

    Article  CAS  Google Scholar 

  55. Sass H, Steuber J, Kroder M, Kroneck PMH, Cypionka H (1992) Formation of thionates by freshwater and marine strains of sulfate-reducing bacteria. Arch Microbiol 158:418–421

    Article  CAS  Google Scholar 

  56. Yakushev EV, Chasovnikov VK, Debolskaya EI, Egorov AV, Makkaveev PN, Pakhomova SV, Podymov OI, Yakubenko VG (2006) The northeastern Black Sea redox zone: hydrochemical structure and its temporal variability. Deep Sea Res II 53:1764–1786

    Article  Google Scholar 

  57. Jost G, Clement B, Pakhomova SV, Yakushev EV (2007) Field studies of anoxic conditions in the Baltic Sea during the cruise of R/V Professor Albrecht Penck in July 2006. Oceanology 47:590–593

    Article  Google Scholar 

  58. Volkov II, Skirta AY, Makkaveev PN, Demidova TP, Rozanov AG, Yakushev EV (2002) On hydropphysical and hydrochemical uniformity of the deep waters of the Black Sea. In: Zatsepin AG, Flint MV (eds) Complex investigation of the Northeastern Black Sea. Nauka, Moscow, pp 119–133 (In Russian)

    Google Scholar 

  59. Kautsky L, Kautsky N (2000) The Baltic Sea, including Bothnian Sea and Bothnian Bay. In: Sheppard CRC (ed) Seas at the millenium: an environmental evaluation, vol 1, Regional Seas: Europe, The Americas and West Africa. Elsevier Science Ltd., Oxford (UK) and Pergamon Press, Amsterdam (Netherlands), pp 121–133

    Google Scholar 

  60. Volkov II, Kontar’ EA, Lukashev YF, Neretin LN, Nyffeler F, Rozanov AG (1997) Upper boundary of the hydrogen sulfide and the nature of the Nepheloid Redox Layer in the waters of the Caucasian Slope of the Black Sea. Geochem Int 6:618–629

    Google Scholar 

Download references

Acknowledgments

This research was supported by the IOW, Norwegian Institute for Water Research project 29083. A.K. gratefully acknowledges support from the MPG Minerva Program and Max Planck-Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kamyshny Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kamyshny, A., Yakushev, E.V., Jost, G., Podymov, O.I. (2010). Role of Sulfide Oxidation Intermediates in the Redox Balance of the Oxic–Anoxic Interface of the Gotland Deep, Baltic Sea. In: Yakushev, E. (eds) Chemical Structure of Pelagic Redox Interfaces. The Handbook of Environmental Chemistry, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2010_83

Download citation

Publish with us

Policies and ethics