Skip to main content

Mercury in Aquatic Organisms of the Ebro River Basin

  • Chapter
  • First Online:
Book cover The Ebro River Basin

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 13))

Abstract

It is well known that chlor-alkali industry has traditionally used the mercury (Hg)-electrolysis process to produce mainly chlorinated solvents. Unfortunately, a fraction of the Hg used during production is released through drainage into the aquatic environment where it can be incorporated to biota. In Europe, Spain and Germany are leading in the number of plants which still use this technology. Moreover, it should be highlighted that three out of the eight chlor-alkali plants in Spain which are still operating with this process are located in the Ebro River basin in the proximities of Sabiñánigo and Monzón cities – along the tributaries Gállego and Cinca Rivers, respectively – and Flix along the Ebro River. Therefore, the mid-low Ebro River watershed might be considered as a hot spot of aquatic mercury pollution in Spain.

This chapter focuses on all the information published up to date about total mercury (THg) and organomercury, with special emphasis on methylmercury (MeHg), in different aquatic organisms sampled along the Ebro River.

First, a brief explanation of the current knowledge regarding the sources and cycling of Hg and its transformation into MeHg is presented. Later, in this chapter, THg and limited data on organomercury levels in aquatic organisms of the Ebro River basin are detailed. The aquatic organisms most commonly studied in the Ebro River basin are zebra mussel, red swamp crayfish, and different fish species, namely European catfish, northern pike, common carp, rudd, roach, barbell, and bleak.

According to the different sentinel species analyzed, THg levels in specimens collected downstream from the impacted areas are 10–20 times greater than upstream levels. It clearly points out the relevance of chlor-alkali plants in terms of mercury river pollution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leermakers M, Baeyens W, Quevauviller P, Horvat M (2005) Mercury in environmental samples: speciation, artifacts and validation. Trends Analyt Chem 24:383–393

    Article  CAS  Google Scholar 

  2. Mason RP, Benoit JM (2003) In: Graig PJ (ed) Organometallic compounds in the environment. Willey, Chichester, p 57

    Chapter  Google Scholar 

  3. Biester H, Kilian R, Franzen C, Woda C, Mangini A, Scholer HF (2002) Elevated mercury accumulation in a peat bog of the Magellanic Moorlands, Chile (53 degrees S) – an anthropogenic signal from the Southern Hemisphere. Earth Planet Sci Lett 201:609–620

    Article  CAS  Google Scholar 

  4. Fitzgerald WF, Engstrom DR, Mason RP, Nater EA (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32:1–7

    Article  CAS  Google Scholar 

  5. Mason RP, Fitzgerald WF, Morel FMM (1994) The Biogeochemical Cycling of Elemental Mercury – Anthropogenic Influences. Geochim Cosmochim Acta 58:3191–3198

    Article  CAS  Google Scholar 

  6. Roos-Barraclough F, Martinez-Cortizas A, Garcia-Rodeja E, Shotyk W (2002) A 14 500 year record of the accumulation of atmospheric mercury in peat: volcanic signals, anthropogenic influences and a correlation to bromine accumulation. Earth Planet Sci Lett 202:435–451

    Article  CAS  Google Scholar 

  7. Ross-Barraclough F, Shotyk W (2003) Millennial-scale records of atmospheric mercury deposition obtained from ombrotrophic and minerotrophic peatlands in the Swiss Jura Mountains. Environ Sci Technol 37:235–244

    Article  CAS  Google Scholar 

  8. Szefer P, Czarnowski W, Pempkowiak J, Holm E (1993) Mercury and major essential elements in seals, penguins, and other representative fauna of the Antarctic. Arch Environ Contam Toxicol 25:422–427

    Article  CAS  Google Scholar 

  9. Diez S (2009) Human health effects of methylmercury exposure. Rev Environ Contam Toxicol 198:111–132

    CAS  Google Scholar 

  10. Graydon JA, Louis VLS, Hintelmann H, Lindberg SE, Sandilands KA, Rudd JWM, Kelly CA, Hall BD, Mowat LD (2008) Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environ Sci Technol 42:8345–8351

    Article  CAS  Google Scholar 

  11. Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng XB, Fitzgerald W, Pirrone N, Prestbo E, Seigneur C (2007) A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 36:19–32

    Article  CAS  Google Scholar 

  12. Clarkson TW, Magos L, Myers GJ (2003) Human exposure to mercury: the three modern dilemmas. J Trace Elem Exp Med 16:321–343

    Article  CAS  Google Scholar 

  13. Siciliano SD, O'Driscoll NJ, Lean DRS (2002) Microbial reduction and oxidation of mercury in freshwater lakes. Environ Sci Technol 36:3064–3068

    Article  CAS  Google Scholar 

  14. Grandjean P, White RF, Nielsen A, Cleary D, Santos ECD (1999) Methylmercury neurotoxicity in Amazonian children downstream from gold mining. Environ Health Perspect 107:587–591

    Article  CAS  Google Scholar 

  15. Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33:951–957

    Article  CAS  Google Scholar 

  16. Hammerschmidt CR, Fitzgerald WF (2004) Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ Sci Technol 38:1487–1495

    Article  CAS  Google Scholar 

  17. Kelly CA, Rudd JWM, Holoka MH (2003) Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Environ Sci Technol 37:2941–2946

    Article  CAS  Google Scholar 

  18. Harada M (1995) Minamata disease – methylmercury poisoning in Japan caused by environmental-pollution. Crit Rev Toxicol 25:1–24

    Article  CAS  Google Scholar 

  19. Greenwood MR (1985) Methylmercury poisoning in Iraq – an epidemiological-study of the 1971–1972 outbreak. J Appl Toxicol 5:148–159

    Article  CAS  Google Scholar 

  20. FAO/WHO (2006) Summary and conclusions of the sixty-seventh meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 20–29 June 2006. JECFA, Rome

    Google Scholar 

  21. USEPA (2005) Water quality criterion for the protection of human health. Methylmercury. U.S. Environmental Protection Agency, Office of Science and Technology, Office of Water, Washington, DC

    Google Scholar 

  22. EU (2001) Official Journal of the European Communities. pp 1–13

    Google Scholar 

  23. Biester H, Muller G, Scholer HF (2002) Estimating distribution and retention of mercury in three different soils contaminated by emissions from chlor-alkali plants: part I. Sci Total Environ 284:177–189

    Article  CAS  Google Scholar 

  24. Degetto S, Schintu M, Contu A, Sbrignadello G (1997) Santa Gilla lagoon (Italy): a mercury sediment pollution case study. Contamination assessment and restoration of the site. Sci Total Environ 204:49–56

    Article  CAS  Google Scholar 

  25. Landis MS, Keeler GJ, Al-Wali KI, Stevens RK (2004) Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition. Atmos Environ 38:613–622

    Article  CAS  Google Scholar 

  26. Montuori P, Jover E, Diez S, Ribas-Fito N, Sunyer J, Triassi M, Bayona JM (2006) Mercury speciation in the hair of pre-school children living near a chlor-alkali plant. Sci Total Environ 369:51–58

    Article  CAS  Google Scholar 

  27. OSPAR (2008) Implementation of PARCOM Decision 90/3 on reducing atmospheric emissions from existing chlor-alkali plants. ISBN 978-1-905859-88-7

    Google Scholar 

  28. OSPAR (2007) Mercury losses from the chlor-alkali industry (1982–2005). ISBN 978-1-905859-56-6

    Google Scholar 

  29. Ramos L, Fernandez MA, Gonzalez MJ, Hernandez LM (1999) Heavy metal pollution in water, sediments, and earthworms from the Ebro River, Spain. Bull Environ Contam Toxicol 63:305–311

    Article  CAS  Google Scholar 

  30. Grimalt JO, Sánchez-Cabeza JA, Palanques A, Catalán J (2003) ACA/CIRIT final report

    Google Scholar 

  31. Raldua D, Pedrocchi C (1996) Mercury concentrations in three species of freshwater fishes from the lower Gallego and Cinca Rivers, Spain. Bull Environ Contam Toxicol 57:597–602

    Article  CAS  Google Scholar 

  32. Carrasco L, Diez S, Soto DX, Catalan J, Bayona JM (2008) Assessment of mercury and methylmercury pollution with zebra mussel (Dreissena polymorpha) in the Ebro River (NE Spain) impacted by industrial hazardous dumps. Sci Total Environ 407:178–184

    Article  CAS  Google Scholar 

  33. Lavado R, Urena R, Martin-Skilton R, Torreblanca A, del Ramo J, Raldua D, Porte C (2006) The combined use of chemical and biochemical markers to assess water quality along the Ebro River. Environ Pollut 139:330–339

    Article  CAS  Google Scholar 

  34. Navarro A, Quiros L, Casado M, Faria M, Carrasco L, Benejam L, Benito J, Diez S, Raldua D, Barata C, Bayona JM, Pina B (2009) Physiological responses to mercury in feral carp populations inhabiting the low Ebro River (NE Spain), a historically contaminated site. Aquat Toxicol 93:150–157

    Article  CAS  Google Scholar 

  35. Benejam L, Benito J, García-Berthou E (2009) Decreases in condition and fecundity of freshwater fishes in a highly polluted reservoir. Water Air Soil Pollut. doi:10.1007/s11270-009-0245-z

    Google Scholar 

  36. Mackie GL (1991) Biology of the exotic zebra mussel, Dreissena-polymorpha, in relation to native bivalves and its potential impact in Lake St-Clair. Hydrobiologia 219:251–268

    Article  Google Scholar 

  37. Karatayev AY, Burlakova LE, Padilla DK (1997) The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in eastern Europe. J Shellfish Res 16:187–203

    Google Scholar 

  38. Minchin D, Lucy F, Sullivan M (2002) Zebra mussel: impacts and spread. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe: distribution, impacts and management. Kluwer Academic Publishers, Dordreicht, pp 135–146

    Google Scholar 

  39. Binimelis R, Monterroso I, Rodriguez-Labajos B (2007) A social analysis of the bioinvasions of Dreissena polymorpha in Spain and Hydrilla verticillata in Guatemala. Environ Manage 40:555–566

    Article  Google Scholar 

  40. Ruiz C, Jimenez PJ, Lopez MA, Rofes J, Vinado J (2003) Localización y evaluación de una nueva invasión biológica: el mejillón cebra (Dreissena polymorpha) en el Ebro. Jornada técnica sobre el mejillón cebra, Zaragoza

    Google Scholar 

  41. Johnson LE, Padilla DK (1996) Geographic spread of exotic species: ecological lessons and opportunities from the invasion of the zebra mussel Dreissena polymorpha. Biol Conserv 78:23–33

    Article  Google Scholar 

  42. Cope WG, Bartsch MR, Rada RG, Balogh SJ, Rupprecht JE, Young RD, Johnson DK (1999) Bioassessment of mercury, cadmium, polychlorinated biphenyls, and pesticides in the upper Mississippi river with zebra mussels (Dreissena polymorpha). Environ Sci Technol 33:4385–4390

    Article  CAS  Google Scholar 

  43. Custer CM, Custer TW (1996) Food habits of diving ducks in the Great Lakes after the zebra mussel invasion. J Field Ornithol 67:86–99

    Google Scholar 

  44. Elder JF, Collins JJ (1991) Fresh-water mollusks as indicators of bioavailability and toxicity of metals in surface-water systems. Rev Environ Contam Toxicol 122:37–79

    CAS  Google Scholar 

  45. French JRP (1993) How well can fishes prey on zebra mussels in eastern North-America. Fisheries 18:13–19

    Article  Google Scholar 

  46. Hogan LS, Marschall E, Folt C, Stein RA (2007) How non-native species in Lake Erie influence trophic transfer of mercury and lead to top predators. J Great Lakes Res 33:46–61

    Article  CAS  Google Scholar 

  47. Zhou QF, Zhang JB, Fu JJ, Shi JB, Jiang GB (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150

    Article  CAS  Google Scholar 

  48. Faria M, Huertas D, Soto DX, Grimalt JO, Catalan J, Riva MC, Barata C (2010) Contaminant accumulation and multi-biomarker responses in field collected zebra mussels (Dreissena polymorpha) and crayfish (Procambarus clarkii), to evaluate toxicological effects of industrial hazardous dumps in the Ebro river (NE Spain). Chemosphere 78:232–240

    Article  CAS  Google Scholar 

  49. Finerty MW, Madden JD, Feagley SE, Grodner RM (1990) Effect of environs and seasonality on metal residues in tissues of wild and pond-raised crayfish in southern Louisiana. Arch Environ Contam Toxicol 19:94–100

    Article  CAS  Google Scholar 

  50. Hothem RL, Bergen DR, Bauer ML, Crayon JJ, Meckstroth AM (2007) Mercury and trace elements in crayfish from northern California. Bull Environ Contam Toxicol 79:628–632

    Article  CAS  Google Scholar 

  51. Higueras P, Oyarzun R, Lillo J, Sanchez-Hernandez JC, Molina JA, Esbri JM, Lorenzo S (2006) The Almaden district (Spain): anatomy of one of the world's largest Hg-contaminated sites. Sci Total Environ 356:112–124

    Article  CAS  Google Scholar 

  52. Huner JV (2002) Procambarus. In: Holdich DM (ed) Biology of freshwater crayfish. Iowa State University Press – A Blackwell Science Company, Ames (IA), pp 541–584

    Google Scholar 

  53. Rodriguez-Labajos B (2006) Interlinked biological invasions in the Ebro River. A multi-scale scenario approach. Master thesis. Universitat Autonoma de Barcelona, Cerdanyola del Vallès (Barcelona), pp 22–23

    Google Scholar 

  54. Alikhan MA, Bagatto G, Zia S (1990) The crayfish as a biological indicator of aquatic contamination by heavy-metals. Water Res 24:1069–1076

    Article  CAS  Google Scholar 

  55. Sanchez Lopez FJ, Garcia MDG, Martinez Vidal JL, Aguilera PA, Frenich AG (2004) Assessment of metal contamination in Donana National Park (Spain) using crayfish (Procamburus [Procambarus] clarkii). Environ Monit Assess 93:17–29

    Article  CAS  Google Scholar 

  56. Carol J, Benejam L, Benito J, Garcia-Berthou E (2009) Growth and diet of European catfish (Silurus glanis) in early and late invasion stages. Fundam Appl Limnol 174:317–328

    Article  Google Scholar 

  57. Kerr SJ, Grant RE (1999) Ecological impacts of fish introductions: evaluating the risk. Fish and Wildlife Branch. Ministry of Natural Resources, Peterborough, ON, K.P.R MNR 15 BN, Ontario, p 480

    Google Scholar 

  58. Elvira B, Nicola GG, Almodovar A (1996) Pike and red swamp crayfish: a new case on predator-prey relationship between aliens in central Spain. J Fish Biol 48:437–446

    Google Scholar 

  59. Paradis Y, Bertolo A, Magnan P (2008) What do the empty stomachs of northern pike (Esox lucius) reveal? Insights from carbon (delta C-13) and nitrogen (delta N-15) stable isotopes. Environ Biol Fishes 83:441–448

    Article  Google Scholar 

  60. Garcia-Berthou E (2001) Size- and depth-dependent variation in habitat and diet of the common carp (Cyprinus carpio). Aquat Sci 63:466–476

    Article  Google Scholar 

  61. Carol J, Benejam L, Alcaraz C, Vila-Gispert A, Zamora L, Navarro E, Armengol J, Garcia-Berthou E (2006) The effects of limnological features on fish assemblages of 14 Spanish reservoirs. Ecol Freshw Fish 15:66–77

    Article  Google Scholar 

  62. Garcia-Berthou E, Moreno-Amich R (2000) Introduction of exotic fish into a Mediterranean lake over a 90-year period. Arch Hydrobiol 149:271–284

    Google Scholar 

  63. Doadrio I, Elvira B, Bernat Y (1991) Peces Continentales Españoles. Coleccion Técnica. ICONA-CSIC, Madrid

    Google Scholar 

  64. Díez S, Barata C, Raldúa D (2008) Exposure to mercury: a critical assessment of adverse ecological and human health effects. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, New York, pp 345–373

    Google Scholar 

  65. Raldua D, Diez S, Bayona JM, Barcelo D (2007) Mercury levels and liver pathology in feral fish living in the vicinity of a mercury cell chlor-alkali factory. Chemosphere 66:1217–1225

    Article  CAS  Google Scholar 

  66. Burrows WD, Krenkel PA (1973) Studies on uptake and loss of methylmercury-203 by bluegills (Lepomis-Macrochirus Raf). Environ Sci Technol 7:1127–1130

    Article  CAS  Google Scholar 

  67. Hakanson L (1984) Metals in fish and sediments from the River Kolbacksan water-system, Sweden. Arch Hydrobiol 101:373–400

    Google Scholar 

  68. Abreu SN, Pereira E, Vale C, Duarte AC (2000) Accumulation of mercury in sea bass from a contaminated lagoon (Ria de Aveiro, Portugal). Mar Pollut Bull 40:293–297

    Article  CAS  Google Scholar 

  69. Arribere MA, Guevara SR, Sanchez RS, Gil MI, Ross GR, Daurade LE, Fajon V, Horvat M, Alcalde R, Kestelman AJ (2003) Heavy metals in the vicinity of a chlor-alkali factory in the upper Negro River ecosystem, Northern Patagonia, Argentina. Sci Total Environ 301:187–203

    Article  CAS  Google Scholar 

  70. Bosch C, Olivares A, Faria M, Navas JM, del Olmo I, Grimalt JO, Pina B, Barata C (2009) Identification of water soluble and particle bound compounds causing sublethal toxic effects. a field study on sediments affected by a chlor-alkali industry. Aquat Toxicol 94:16–27

    Article  CAS  Google Scholar 

  71. Garcia-Berthou E, Moreno-Amich R (2000) Rudd (Scardinius erythrophthalmus) introduced to the Iberian peninsula: feeding ecology in Lake Banyoles. Hydrobiologia 436:159–164

    Article  Google Scholar 

  72. Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49:1010–1017

    Article  CAS  Google Scholar 

  73. Claisse D, Cossa D, Bretaudeau-Sanjuan J, Touchard G, Bombled B (2001) Methylmercury in molluscs along the French coast. Mar Pollut Bull 42:329–332

    Article  CAS  Google Scholar 

  74. Secor CL, Mills EL, Harshbarger J, Kuntz HT, Gutenmann WH, Lisk DJ (1993) Bioaccumulation of toxicants, element and nutrient composition, and soft tissue histology of zebra mussels (Dreissena polymorpha) from New York State waters. Chemosphere 26:1559–1579

    Google Scholar 

  75. Camusso M, Balestrini R, Muriano F, Mariani M (1994) Use of fresh-water mussel Dreissena polymorpha to assess trace-metal pollution in the lower River Po (Italy). Chemosphere 29:729–745

    Google Scholar 

  76. Camusso M, Balestrini R, Binelli A (2001) Use of zebra mussel (Dreissena polymorpha) to assess trace metal contamination in the largest Italian subalpine lakes. Chemosphere 44:263–270

    Google Scholar 

  77. Wiesner L, Günther B, Fenske C (2001) Temporal and spatial variability in the heavy-metal content of Dreissena polymorpha (Pallas) (Mollusca: Bivalvia) from the Kleines Haff (northeastern Germany). Hydrobiologia 443:137–145

    Google Scholar 

  78. Kwan KHM, Chan HM, de Lafontaine Y (2003) Metal contamination in zebra mussels (Dreissena polymorpha) along the St. Lawrence River. Environ Monit Assess 88:193–219

    Google Scholar 

  79. Richman L, Somers K (2005) Can we use zebra and quagga mussels for biomonitoring contaminants in the Niagara River? Water Air Soil Pollut 167:155–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Díez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carrasco, L., Bayona, J.M., Díez, S. (2010). Mercury in Aquatic Organisms of the Ebro River Basin. In: Barceló, D., Petrovic, M. (eds) The Ebro River Basin. The Handbook of Environmental Chemistry(), vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2010_71

Download citation

Publish with us

Policies and ethics