Skip to main content

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 14))

Abstract

Almost all over the world, the production of sewage sludge rises due to increased population, industrialization and urbanization. Treatment and disposal of sewage sludge is an expensive and environmentally challenging task, problems arising mainly from lack of social acceptability, high treatment costs, human and environmental health risks associated with treatment and lack of sustainable disposal options. Currently the most widely available and recommended option is land application of sewage sludge. It is also a growing problem worldwide since there is a special concern about organic contaminants and the discussion about potential standards.

The aim of this paper is to assess the challenges to planners and policy makers with regard to sludge management. Constantly increasing environmental concerns require to identify the occurrence, type and concentration of pollutant, assess treatment efficiencies of different treatment methods as provided in literature and to evaluate the existing sludge disposal options and propose a sustainable and safe option.

Different groups and levels of inorganic (heavy metals) and organic substances and the problems of pathogens in sludge are pointed out. The mere concentration of a potential health hazards does not give any information on the connected risk. The outcomes of different risk assessments for metals and organic contaminants are listed. As it will never be possible with single substance analyses to have sufficient information an alternative approach for effect monitoring is described.

Recycling and use of wastes are the preferred options for sustainable development, rather than incineration or land filling, but with sewage sludge this is not straight forward because of perceptions over inorganic and organic contaminants, pathogens and its fecal origin, particularly by the food retailers. For the assurance of public and environmental health, a quality system and standards for the treatment and the produce are recommended, which need to be accepted by all stakeholders as farmers, food retailers and public requirements.

The paper demonstrates that treated sewage sludge, which fulfils the quality requirements for heavy metals, organic compounds and pathogens, can be beneficially reused providing a land application of restricted amounts as a long-term sustainable waste management solution for sludge from municipal waste water treatment plants. In the future sludge management needs to be based on sustainability and beneficial reuse, and the treatment technology has to be effective and affordable. The treatment options have to be adapted to local situations to fit the socio-cultural framework, available technology and affordability as well as local climatic conditions. Therefore, it is recommended to include environmental, social, economic and technical analysis in the search for the most sustainable alternative for sludge disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EC (European Commission) (2001c) Disposal and recycling routes for sewage sludge, Part 3 regulatory report. Office for Official Publications of the European Communities, Luxemburg, 2001

    Google Scholar 

  2. Bastian RK, Bachmaier JT, Schmidt DW, Salomon SN, Jones A, Chiu WA, Setlow LW, Wolbarst AB, Goodman CJ, Lenhart T (2005) Radioactive materials in biosolids: national survey, dose modeling, and publicly owned treatment works (POTW) guidance. J Environ Qual 34:64–74

    CAS  Google Scholar 

  3. Singh RP, Agrawal M (2008) Potential benefits and risks of land application of sewage sludge. Waste Manage 28:347–358

    Article  CAS  Google Scholar 

  4. Wang X, Chen T, Ge Y, Jia Y (2008) Studies on land application of sewage sludge and its limiting factors. J Hazard Mater 160:554–558

    Article  CAS  Google Scholar 

  5. Fuentes A, Lloréns M, Sáez J, Aguilar MJ, Ortuño JF, Meseguer VF (2004) Phytotoxicity and heavy metals speciation of stabilised sewage sludges. J Hazard Mater A 108:161–169

    Article  CAS  Google Scholar 

  6. Carballa M, Omil F, Lema JM (2009) Influence of different pretreatments on anaerobically digested sludge characteristics: suitability for final disposal. Water Air Soil Pollut 199:311–321

    Article  CAS  Google Scholar 

  7. Gasco G, Lobo MC (2007) Composition of a Spanish sewage sludge and effects on treated soil and olive trees. Waste Manage 27:1494–1500

    Article  CAS  Google Scholar 

  8. Singh KP, Mohan D, Sinha S, Dalwani R (2004) Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere 55(2):227–255

    Article  CAS  Google Scholar 

  9. Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. Environ Qual 34:49–63

    CAS  Google Scholar 

  10. Pathak A, Dastidar MG, Sreekrishnan TR (2008) Bioleaching of heavy metals from anaerobically digested sewage sludge. J Environ Sci Health A 43(4):402–411

    Article  CAS  Google Scholar 

  11. Tyagi RD, Coullard D, Fran FT (1988) Heavy metal removal from anaerobically digested sludge by chemical and microbiological methods. Environ Pollut 50:295–316

    Article  CAS  Google Scholar 

  12. Meknassi YF, Tyagi RD, Narasiah KS (2000) Simultaneous sewage sludge digestion and metal leaching: effect of aeration. Process Biochem 36:263–273

    Article  Google Scholar 

  13. Dai J, Xu M, Chen J, Yang X, Ke Z (2007) PCDD/Fs, PAHs and heavy metals in the sewage sludge from six wastewater treatment plants in Beijing, China. Chemosphere 66(2):353–361

    Article  CAS  Google Scholar 

  14. Ghazy M, Dockhorn M, Dichtl N (2009) Sewage sludge management in Egypt: current status and perspectives towards a sustainable agricultural use. World Acad Sci Eng Technol 57:299–307. http://www.waset.org/journals/waset/v57/v57-53.pdf

  15. Hoffmann G, Schignitz D, Bilitewski B (2010) Comparing different methods of analytical sewage sludge and sewage sludge ash. Desalination 250:399–403

    Article  CAS  Google Scholar 

  16. Carballa M, Manterola G, Larrea L, Ternes T, Omil F, Lema JM (2007) Influence of ozone pre-treatment on sludge anaerobic digestion: removal of pharmaceutical and personal care products. Chemosphere 67(7):1444–1452

    Article  CAS  Google Scholar 

  17. Dacera DM, Babel S, Parkpian P (2009) Potential for land application of contaminated sewage sludge treated with fermented liquid from pineapple wastes. J Hazard Mater 167:866–872

    Article  Google Scholar 

  18. Bastian RK (1997) The biosolids treatment, beneficial use, and disposal in the USA. Eur Water Pollut Control 7(2):62–79

    Google Scholar 

  19. Lester JN, Sterritt RM, Kirk WW (1983) Significance and behaviour of heavy metals in waste water treatment processes. II. Sludge treatment and disposal. Sci Total Environ 30:45–83

    Article  CAS  Google Scholar 

  20. McBride MB (1995) Toxic metal accumulation from agricultural use of sludge: are USEPA regulations protective? J Environ Qual 24:5–18

    Article  CAS  Google Scholar 

  21. Morera MT, Echeverria J, Garrido J (2002) Bioavailability of heavy metals in soils amended with sewage sludge. Can J Soil Sci 82:433–438

    Article  CAS  Google Scholar 

  22. Harrison EZ, Oakes SR, Hysell M, Hay A (2006) Review: organic chemicals in sewage sludges. Sci Total Environ 367:481–497

    Article  CAS  Google Scholar 

  23. Drescher-Kaden U, Brüggeman R, Matthes B, Matthies M (1992) Contents of organic pollutants in German sewage sludges. In: Hall JE, Sauerbeck DR, L’Hermite P (eds) Effects of organic contaminants in sewage sludge on soil fertility, plants and animals 1992, pp 14–35

    Google Scholar 

  24. Smith SR (2009) Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling. Philos Trans R Soc A 367:4005–4041

    Article  CAS  Google Scholar 

  25. Barkowski D, Günther P, Machtolf M, Raecke F (2005) Abfälle aus Kläranlagen in Nordrhein-Westfalen – Teil E: Organische Schadstoffe in Klärschlämmen – Bewertung und Ableitung von Anforderungen an die landwirtschaftliche Verwertung. Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen, Herausgeber

    Google Scholar 

  26. Langenkamp H, Part P, Erhardt W, Prüeß A (2001) Organic contaminants in sewage sludge for agricultural use. European Commission, p 73. http://europa.eu.int/comm/environment/waste/sludge/organics_in_sludge/pdf

  27. Jensen J, Smith SR, Krogh PH, Versteeg DJ, Temara A (2007) European risk assessment of LAS in agricultural soil revisited: species sensitivity distribution and risk estimates. Chemosphere 69:880–892

    Article  CAS  Google Scholar 

  28. HERA (2003) Human and environmental risk assessment of ingredients of household cleaning products. http://www.heraptoject.com/RiskAssessment.cft

  29. Jensen J, Jepsen SE (2005) The production, use and quality of sewage sludge in Denmark. Waste Manage 25:239–247

    Article  CAS  Google Scholar 

  30. Petersen SO, Henriksen K, Mortensen GK, Krogh PH, Brandt KK, Sorensen J, Madsen T, Petersen J, Gron C (2003) Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil Tillage Res 72:139–152

    Article  Google Scholar 

  31. Gomez-Rico MF, Font R, Vera J, Fuentes D, Disante K, Cortina J (2008) Degradation of organic pollutants in Mediterranean forest soils amended with sewage sludge. Chemosphere 71:2129–2138

    Article  Google Scholar 

  32. González MM, Martín J, Santos JL, Aparicio L, Alonso E (2010) Occurrence and risk assessment of nonylphenol and nonylphenolethoxylates in sewage sludge from different conventional treatment processes. Sci Total Environ 408:563–570

    Article  Google Scholar 

  33. Renner R (2000) What fate for brominated flame retardants? Environ Sci Technol 34:223A–226A

    Google Scholar 

  34. Knoth W, Mann W, Meyer R, Nebhuth J (2007) Polybrominated diphenyl ether in sewage sludge in Germany. Chemosphere 67:1831–1837

    Article  CAS  Google Scholar 

  35. Hale RC, La Guardia MJ, Harvey E, Mainor TM (2002) Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment. Chemosphere 46:729–735

    Article  CAS  Google Scholar 

  36. Mueller KE, Mueller-Spitz SR, Henry HF, Vonderheide AP, Soman RS, Kinkle BK, Shann JR (2006) Fate of pentabrominated diphenyl ethers in soil: abiotic sorption, plant uptake, and the impact of interspecific plant interactions. Environ Sci Technol 40:6662–6667

    Article  CAS  Google Scholar 

  37. EC (European Commission) (2000a) Working Document on Sludge 3rd Draft. 27 April 2000. DG Environment, Brussels

    Google Scholar 

  38. El-Hadj BT, Dosta J, Torres R, Mata-Álvarez J (2007) PCB and AOX removal in mesophilic and thermophilic sewage sludge digestion. Biochem Eng J 36(3):281–287

    Article  Google Scholar 

  39. Lapen DR, Topp E, Metcalfe CD, Li H, Edwards M, Gottschall N, Bolton P, Curnoe W, Payne M, Beck A (2008) Pharmaceutical and personal care products in tile drainage following land application of municipal biosolids. Sci Total Environ 399:50–65

    Article  CAS  Google Scholar 

  40. Topp E, Monteiro SC, Beck A, Coelho BB, Boxall AB, Duenk PW, Kleywegt S, Lapen DR, Payne M, Sabourin L, Li H, Metcalfe CD (2008) Runoff of pharmaceuticals and personal care products following application of biosolids to an agricultural field. Sci Total Environ 396:52–59

    Article  CAS  Google Scholar 

  41. McClellan K, Halden RU (2010) Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Res 44:658–668

    Article  CAS  Google Scholar 

  42. Heidler J, Sapkota A, Halden RU (2006) Partitioning, persistence, and accumulation in digested sludge of the topical anti septic triclocarban during wastewater treatment. Environ Sci Technol 40:3634–3639

    Article  CAS  Google Scholar 

  43. Kinney CA, Furtlong E, Zaungg S, Werner S, Cahill J, Jorgensen G (2006) Survey of organic wastewater contaminants in biosolids destined for land application. Environ Sci Technol 40:7207–7215

    Article  CAS  Google Scholar 

  44. Jones-Lepp TL, Stevens R (2007) Pharmaceuticals and personal care products in biosolids /sewage sludge: the interface between analytical chemistry and regulation. Anal Bioanal Chem 387:1173–1183

    Article  CAS  Google Scholar 

  45. Jiménez B (2007) Helminth ova control in sludge: a review. Water Sci Technol 56(9):147–155

    Article  Google Scholar 

  46. Dorny P, Praet N, Deckers N, Gabriel S (2009) Emerging food-borne parasites. Vet Parasitol 63:196–206

    Article  Google Scholar 

  47. Cabaret J, Geerts S, Madeline M, Ballandonne C, Barbier D (2002) The use of urban sewage sludge on pastures: the cysticercosis threat. Vet Res 33:575–597

    Article  Google Scholar 

  48. Fan PC, Chung WC (1997) Sociocultural factors and local customs related to taeniasis in east Asia, Kaohsiung. J Med Sci 13:647–652

    CAS  Google Scholar 

  49. Gerba CP, Rose JB (2003) International guidelines for water recycling microbiological considerations. Water Supply 3:311–316

    CAS  Google Scholar 

  50. WHO (2006) Guidelines for the safe use of wastewater, excreta and greywater, vols 1–4. Excreta and greywater use in agriculture. http://www.who.int/water_sanitation_health/wastewater/gsuweg4/en/index.html

  51. US EPA (US Environmental Protection Agency) (1992). Technical support document for land application of sewage sludge, vol I. Eastern Research Group, Lexington

    Google Scholar 

  52. USEPA (1993) Standards for the use or disposal of sewage sludge. 40 CFR Part 257 et al. pp. 9248–9415 Federal Register February 19 1993, vol 58 No. 32.

    Google Scholar 

  53. EC (European Commission) (2001b) Evaluation of sludge treatments for pathogen reduction – final report. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  54. EC (European Commission) (2001a) Disposal and recycling routes for sewage sludge, Part 2 regulatory report. Office for Official Publications of the European Communities, Luxemburg

    Google Scholar 

  55. EFAR (2008) Public health risk assessment of sludge land spreading. Final Report No. DRC-07-81117-09289-C, INERIS for EFAR

    Google Scholar 

  56. Smith SR (2008) The implications for human health and the environment of recycling biosolids on agricultural land. Imperial College London, Centre for Environmental Control and Waste Management. http://www3.imperical.ac.uk/ewre

  57. EC (European Commission) (2003) Proposal for a Directive of the European Parliament and of the Council on spreading of sludge on land. 30 April 2003. European Commission, Brussels, Belgium

    Google Scholar 

  58. Skark Ch (2006) Organische Schadstoffe, Pharmaka und endokrin wirksame Substanzen, in Perspektiven der Klärschlammverwertung Bonn, 06–07. Dezember 2006

    Google Scholar 

  59. Dreher P, Hartmann E, Schneider J, Wenzel A (2003) Schadstoffe in klärschlammgedüngten Ackerböden Baden-Württembergs, Landesanstalt für Umweltschutz Baden-Württemberg (Hrsg.), Bodenschutz Band 14, Karlsruhe, 108 S

    Google Scholar 

  60. Bursch W, Fuerhacker M, Leschber R, Pllak M, Pressl A, Schober U (2001) Landwirtschaftliche Klärschlammverwertung in Niederösterreich:. Diskussionsgrundlage zum Sachstand; im Auftrag vom Amt der NÖ Landesregierung, Herausgeber: wpa-Beratende Ingenieure GmbH, p 116

    Google Scholar 

  61. Smith SR (2000) Are controls on organic contaminants necessary to protect the environment when sewage sludge is used in agriculture? Prog Environ 2:129–146

    CAS  Google Scholar 

  62. Chaney RL, Ryan JA, O’Connor GA (1996) Organic contaminants in municipal biosolids: risk assessment, quantitative pathways analysis, and current research priorities. Sci Total Environ 185(1–3):187–216

    Article  CAS  Google Scholar 

  63. Fürhacker M (2003) Organische Schadstoffe im Klärschlamm. Wiener Mitteilungen Wasser Abwasser Gewässer Klärschlamm – 2003, 184, pp 205–224; 0279–5349

    Google Scholar 

  64. EC (European Commission) (2009) Environmental, economic and social impacts of the use of sewage sludge on land, Draft Summary Report 1, Assessment of Existing Knowledge. Report prepared by Milieu Ltd and Wrc. European Commission, Brussels, Belgium

    Google Scholar 

  65. Gale P, Pike EBP, Stanfield G (2003) Pathogens in biosolids. Microbiological Risk Assessment. UKWIR, London, UK. ISBN:1-84057-294-9

    Google Scholar 

  66. Salgot M, Huertas E, Weber S, Dott W, Hollender J (2006) Wastewater reuse and risk: definition of key objectives. Desalination 187:29–40

    Article  CAS  Google Scholar 

  67. Tandukar M, Ohashi A, Harada H (2007) Performance comparison of a pilot-scale UASB and DHS system and activated sludge process for the treatment of municipal wastewater. Water Res 41:2007

    Article  Google Scholar 

  68. Sánchez-Monedero MA, Mondinib C, de Nobili M, Leita L, Roig A (2004) Land application of biosolids. Soil response to different stabilization degree of the treated organic matter. Waste Manage 24:325–332

    Article  Google Scholar 

  69. Kroiss H, Zessner H (2004) Ecological and economical relevance of sludge treatment and disposal options. Institute for Water Quality and Waste Management, Vienna University of Technology, Vienna, pp 47–54

    Google Scholar 

  70. Bridle T, Skrypski-Mantele S (2000) Assessment of sludge reuse options: a life-cycle approach. Water Sci Technol 41(8):131–135

    Google Scholar 

  71. Gerba CP, Smith JE (2005) Sources of pathogenic microorganisms and their fate during land application of wastes. J Environ Qual 34:42–48

    CAS  Google Scholar 

  72. EC (European Commission) (2000b) Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of waste. Official Journal of the European Communities, L 332/91-111

    Google Scholar 

  73. Fytili D, Zabaniotou A (2008) Utilization of sewage sludge in EU application of old and new methods – a review. Renew Sustain Energy Rev 12:116–140

    Article  CAS  Google Scholar 

  74. Hara K, Mino T (2008) Environmental assessment of sewage sludge recycling options and treatment processes in Tokyo. Waste Manage 28(12):2654–2652

    Article  Google Scholar 

  75. Stark K, Plaza E, Hultman B (2006) Technical note: phosphorus release from ash, dried sludge and sludge residue from upper critical water oxidation by acid or base. Chemosphere 62:827–832

    Article  CAS  Google Scholar 

  76. Adam C, Peplinski B, Michaelis M, Kley G, Simon FG (2009) Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manage 29:1122–1128

    Article  CAS  Google Scholar 

  77. Butt TE, Oduyemi KOK (2003) A holistic approach to concentration assessment of hazards in the risk assessment of landfill leachate. Environ Int 28:579–608

    Article  Google Scholar 

  78. CEC (Council of European Communities) (1991) Council Directive 91/271/EEC of 21 March 1991 concerning urban waste-water treatment (amended by the 98/15/EC of 27 February 1998)

    Google Scholar 

  79. Kamil SK, Pinarli V, Salihoglu G (2007) Solar drying in sludge management in Turkey. Renewable Energy 32:1661–1675

    Article  Google Scholar 

  80. ECE (2001) Environment DG and UKWIR (UK Water Industry Research): A conference on sludge 30 and 31 October 2001 in Brussels. http://www.ukwir.org/site/web/content/home

  81. Rippen G (2001) Handbuch Umwelt-Chemikalien, Stoffdaten - Prüfverfahren - Vorschriften, Loseblattsammlung.-ecomed Verlag, Landsberg/Lech, 2000

    Google Scholar 

  82. Clarke B, Porter N, Symons R, Marriott P, Ades P, Stevenson G, Blackbeard J (2008) Polybrominated diphenyl ethers and polybrominated biphenyls in Australian sewage sludge. Chemosphere 73:980–989

    Article  CAS  Google Scholar 

  83. Eljarrat E, Marsh G, Labandeira A, Barcelo D (2008) Effect of sewage sludges contaminated with polybrominated diphenylethers on agricultural soils. Chemosphere 71:1079–1086

    Article  CAS  Google Scholar 

  84. Singer H, Muller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998–5004

    Article  CAS  Google Scholar 

  85. US EPA (2004) Region 9 (The Pacific Southwest): Superfund Preliminary Remediation Goals; US EPA, Region 9: San Francisco, CA

    Google Scholar 

  86. Lundin M, Olofsson M, Pettersson GT, Zetterlund H (2004) Environmental and economic assessment of sewage sludge handling options. Resources, Conservation and Recycling 41:255–278

    Article  Google Scholar 

  87. Sabaliunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS (2003) Environmental fate of Triclosan in the River Aire Basin, UK. Water Res 37:3145–3154.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fuerhacker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuerhacker, M., Haile, T.M. (2010). Treatment and Reuse of Sludge. In: Barceló, D., Petrovic, M. (eds) Waste Water Treatment and Reuse in the Mediterranean Region. The Handbook of Environmental Chemistry, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2010_60

Download citation

Publish with us

Policies and ethics