Skip to main content

Large-Scale Dynamics of Hypoxia in the Baltic Sea

  • Chapter
  • First Online:
Chemical Structure of Pelagic Redox Interfaces

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 22))

Abstract

Large-scale hypoxia is an inherent natural property of the Baltic Sea caused by geographically and climatically determined insufficiency of oxygen supply to the deep water layers. During 1961–2005, the hypoxic zone covered by waters with oxygen concentration less than 2 mL L–1 extended on average over a huge area of about 50,000 km2, albeit with large seasonal (a few thousand km2) and, especially inter-annual (dozens of thousand km2) variations, the later caused by an irregular ventilation with sporadic inflows of saline oxygen-enriched waters. The expansion of hypoxia induces a reduction of dissolved inorganic nitrogen pool due to denitrification and an increase of dissolved phosphate pool by internal loading, these changes reaching hundred thousand tonnes of N and P. The resulting excess of phosphate pool over the “Redfield” demand by phytoplankton is favourable for the dinitrogen fixation by cyanobacteria in amounts sufficient to compensate for denitrification and to counteract possible reductions of the nitrogen land loads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BED:

Baltic environmental database

DAS:

Data assimilation system

DIN:

Dissolved inorganic nitrogen

DIP:

Dissolved inorganic phosphorus

HELCOM:

Helsinki commission

OM:

Organic matter

References

  1. Conley DJ, Carstensen J, Raquer-Sunyer R, Duarte CM (2009) Ecosystem thresholds with hypoxia. Hydrobiologia 629:21–29

    Article  CAS  Google Scholar 

  2. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  CAS  Google Scholar 

  3. Rabalais NN, Turner RE, Diaz RJ, Justić D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66:1528–1537

    Article  Google Scholar 

  4. Stramma L, Johson GC, Sprintall J, Mohrholz V (2008) Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–658

    Article  CAS  Google Scholar 

  5. Richards FA (1965) Anoxic basins and fjords. In: Riley JP, Skirrow G (eds) Chemical oceanography, Vol I. Acad Press, London

    Google Scholar 

  6. Fonselius SH (1969) Hydrography of the Baltic deep basins. III. Fish Bd Sweden, Ser Hydrogr 23

    Google Scholar 

  7. Grasshoff K, Voipio A (1981) Chemical oceanography. In: Voipio A (ed) The Baltic Sea. Elsevier, Amsterdam

    Google Scholar 

  8. Feistel R, Nausch G, Wasmund N (eds) (2008) State and evolution of the Baltic Sea, 1952–2005. Wiley, New Jersey

    Google Scholar 

  9. Fonselius S, Valderrama J (2003) One hundred years of hydrographic measurements in the Baltic Sea. J Sea Res 49:229–241

    Article  Google Scholar 

  10. Conley DJ, Carstensen J, Ærtebjerg G, Christensen PB, Dalsgaard T, Hansen JLS, Josefson AB (2007) Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol Appl 17(Suppl):S165–S184

    Article  Google Scholar 

  11. Karlson K, Rosenberg R, Bonsdorff E (2002) Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters – a review. Oceanogr Mar Biol Ann Rev 40:427–489

    Google Scholar 

  12. Maximov AA (2006) Causes of the bottom hypoxia in the eastern part of the Gulf of Finland in the Baltic Sea. Oceanology 46:185–191

    Article  Google Scholar 

  13. Fonselius SH (1981) Oxygen and hydrogen sulphide conditions in the Baltic Sea. Mar Poll Bull 12:187–194

    Article  CAS  Google Scholar 

  14. Conley DJ, Björck S, Bonsdorff E, Carstensen J, Destouni G, Gustafsson BG, Hietanen S, Kortekaas M, Kuosa H, Meier HEM, Müller-Karulis B, Nordberg K, Norkko A, Nürnberg G, Pitkänen H, Rabalais NN, Rosenberg R, Savchuk OP, Slomp CP, Voss M, Wulff F, Zillén L (2009) Hypoxia-related processes in the Baltic Sea. Environ Sci Technol 43:3412–3420

    Article  CAS  Google Scholar 

  15. Kalejs M (1989) Oxygen. In: Davidan IN, Savchuk OP (eds) Problems of studies and mathematical modelling of the Baltic Sea ecosystem. 4. Main tendencies of the ecosystem’s evolution. Gidrometeoizdat, Leningrad (In Russian)

    Google Scholar 

  16. Matthäus W, Nehring D, Feistel R, Nausch G, Mohrholz LH-U (2008) The inflow of highly saline water into the Baltic. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea. Wiley, New Jersey, pp 1952–2005

    Google Scholar 

  17. Conley DJ, Humborg C, Rahm L, Savchuk OP, Wulff F (2002) Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environ Sci Technol 36:5315–5320

    Article  CAS  Google Scholar 

  18. Savchuk OP (2005) Resolving the Baltic Sea into seven subbasins: N and P budgets for 1991–1999. J Mar Syst 56:1–15

    Article  Google Scholar 

  19. Savchuk OP (2005) Studies of the Baltic Sea eutrophication. Proc Russ State Oceanogr Inst 209:272–285 (In Russian)

    Google Scholar 

  20. Savchuk OP, Wulff F (2007) Modeling the Baltic Sea eutrophication in a decision support system. Ambio 36:141–148

    Article  CAS  Google Scholar 

  21. Savchuk OP, Wulff F (2009) Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea. Hydrobiologia 629:209–224

    Article  CAS  Google Scholar 

  22. Savchuk OP, Wulff F, Hille S, Humborg C, Pollehne F (2008) The Baltic Sea a century ago – a reconstruction from model simulations, verified by observations. J Mar Syst 74:485–494

    Article  Google Scholar 

  23. Vahtera E, Conley DJ, Gustafsson BG, Kuosa H, Pitkänen H, Savchuk OP, Tamminen T, Viitasalo M, Voss M, Wasmund N, Wulff F (2007) Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36:186–194

    Article  CAS  Google Scholar 

  24. Witek Z, Humborg C, Savchuk O, Grelowski A, Lysiak-Pastuszak E (2003) Nitrogen and phosphorus budgets of the Gulf of Gdansk (Baltic Sea). Estuar Coast Shelf Sci 57:239–248

    Article  CAS  Google Scholar 

  25. Sokolov A, Andrejev O, Wulff F, Rodriguez Medina M (1997) The data assimilation system for data analysis in the Baltic Sea. Systems Ecology Contributions 3, Stockholm University, Stockholm

    Google Scholar 

  26. HELCOM (1984) Guidelines for the Baltic Monitoring Programme for the second stage. Balt Sea Environ Proc 12:1–249

    Google Scholar 

  27. HELCOM (2008) Manual for marine monitoring in the COMBINE programme of HELCOM. http://www.helcom.fi/groups/monas/CombineManual/en_GB/main. Accessed 21 May 2009

  28. Sokolov A, Wulff F (1999) SwingStations: a web-based client tool for the Baltic environmental database. Comput Geosci 25:863–871

    Article  Google Scholar 

  29. Johansson S, Wulff F, Bonsdorff E (2007) The MARE Research Programme 1999–2006: reflections on program management. Ambio 36:119–122

    Article  Google Scholar 

  30. Nest – an information environment for decision support system at the Baltic Nest Institute, Stockholm University. http://nest.su.se/nest. Accessed on 2 Dec 2009

  31. Sokolov A (2002) Information environment and architecture of decision support system for nutrient reduction in the Baltic Sea. http://nest.su.se/nest. Accessed 22 May 2009

  32. DAS – Data Assimilation System and Baltic Environment Database at the Baltic Nest Institute, Stockholm University. http://nest.su.se/das Accessed 2 Dec 2009

  33. Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading, Mass

    Google Scholar 

  34. MacKenzie BR, Hinrichsen H-H, Plikshs M, Wieland K, Zezera A (2000) Quantifying environmental heterogeneity: estimating the size of habitat for successful cod Gadus morhua egg development in the Baltic Sea. Mar Ecol Progr Ser 193:143–156

    Article  Google Scholar 

  35. Diaz RJ (2001) Overview of hypoxia around the world. J Environ Qual 30:275–281

    Article  CAS  Google Scholar 

  36. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Nat Acad Sci 105:15452–15457

    Article  CAS  Google Scholar 

  37. Rahm L (1987) Oxygen consumption in the Baltic proper. Limnol Oceanogr 32:973–978

    Article  CAS  Google Scholar 

  38. Rahm L, Svensson U (1989) On the mass transfer properties of the benthic boundary layer with an application to oxygen fluxes. Neth J Sea Res 24:27–35

    Article  Google Scholar 

  39. Fonselius S (1962) Hydrography of the Baltic Deep Basins. Fish Bd Sweden, Ser. Hydrogr 13

    Google Scholar 

  40. Jonsson P, Carman R, Wulff F (1990) Laminated sediments in the Baltic – a tool for evaluating nutrient mass balances. Ambio 19:152–157

    Google Scholar 

  41. Hallberg RO (1974) Paleoredox conditions in the Eastern Gotland Basin during the recent centuries. Merentuttkimuslait Julk 238:3–16

    CAS  Google Scholar 

  42. Sohlenius G, Emies KC, Andrén E, Andrén T, Kohly A (2001) Development of anoxia during the Holocene fresh – brackish water transition in the Baltic Sea. Mar Geol 177:221–242

    Article  CAS  Google Scholar 

  43. Sternbeck J, Sohlenius G, Hallberg RO (2000) Sedimentary trace elements as proxies to depositional changes induced by a Holocene fresh-brackish transition. Aquat Geochem 6:325–345

    Article  CAS  Google Scholar 

  44. Swarzenski PW, Campbell PL, Osterman LE, Poore RZ (2008) A 1000-year sediment record of recurring hypoxia off the Mississippi River: the potential role of terrestrially-derived organic matter inputs. Mar Chem 109:130–142

    Article  CAS  Google Scholar 

  45. Hille S, Leipe T, Seifert T (2006) Spatial variability of recent sedimentation rates in the Eastern Gotland Basin (Baltic Sea). Oceanologia 48:297–317

    Google Scholar 

  46. Zillén L, Conley DJ, Andrén T, Andrén E, Björck S (2008) Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. Earth-Sci Rev 91:77–92

    Article  Google Scholar 

  47. Ignatius H, Axberg S, Niemistö L, Winterhalter B (1981) Quaternary geology of the Baltic Sea. In: Voipio A (ed) The Baltic Sea. Elsevier, Amsterdam

    Google Scholar 

  48. Matthäus W (2006) The history of investigation of salt water inflows into the Baltic Sea – from the early beginning to recent results. Mar Sci Rep 65:1–73

    Google Scholar 

  49. Schinke H, Matthäus W (1998) On the causes of major Baltic inflows – an analysis of long time series. Cont Shelf Res 18:67–97

    Article  Google Scholar 

  50. Stigebrandt A (2001) Physical Oceanography of the Baltic Sea. In: Wulff F, Rahm L, Larsson P (eds) A systems analysis of the changing Baltic Sea. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  51. Fischer H, Matthäus W (1996) The importance of the Drogden Sill in the sound for major Baltic inflows. J Mar Res 9:137–157

    Google Scholar 

  52. Stigebrandt A, Gustafsson BG (2003) The response of the Baltic Sea to climate change – theory and observations. J Sea Res 49:243–256

    Article  Google Scholar 

  53. Conley DJ, Bonsdorff E, Carstensen J, Destouni G, Gustafsson BG, Hansson L-A, Rabalais NA, Voss M, Zillén L (2009) Tackling hypoxia in the Baltic Sea: is engineering a solution? Environ Sci Technol 43:3407–3411

    Article  CAS  Google Scholar 

  54. Elmgren R (2001) Understanding human impact on the Baltic ecosystem: changing views in recent decades. Ambio 30:222–231

    CAS  Google Scholar 

  55. Kuparinen J, Tuominen L (2001) Eutrophication and self-purufication: counteractions forced by large-scale cycles and hydrodynamic processes. Ambio 30:190–194

    CAS  Google Scholar 

  56. Nehring D, Matthäus W (1991) Current trends in hydrographic and chemical parameters and eutrophication in the Baltic Sea. Int Rev Gesamten Hydrobiol 76:297–316

    Article  CAS  Google Scholar 

  57. Savchuk OP (1989) On relative significance of natural and anthropogenic factors of eutrophication. In: Davidan IN, Savchuk OP (eds) “Baltica” Project. Problems of research and modelling of the Baltic Sea ecosystem. Issue 4. Main tendencies of the ecosystem’s evolution. Hydrometeoizdat, Leningrad (In Russian)

    Google Scholar 

  58. Gustafsson BG, Stigebrandt A (2007) Dynamics of nutrients and oxygen/hydrogensulfide in the Baltic Sea deep water. J Geophys Res 112:G02023

    Article  Google Scholar 

  59. Pers C, Rahm L (2000) Changes in apparent oxygen removal rate in the Baltic Proper deep water. J Mar Syst 25:421–429

    Article  Google Scholar 

  60. Andersin A-B, Lassig J, Parkkonen L, Sandler H (1978) The decline of macrofauna in the deeper parts of the Baltic proper and the Gulf of Finland. Kieler Meeresforsch Sonderhft 4:23–52

    Google Scholar 

  61. Laine AO, Sandler H, Andersin A-B, Stigzelius J (1997) Long-term changes of macrozoobenthos in the Eastern Gotland Basin and the Gulf of Finland (Baltic Sea) in relation to the hydrographical regime. J Sea Res 38:135–159

    Article  Google Scholar 

  62. Zmudzinski L (1975) The Baltic Sea pollution. Pol Arch Hydrobiol 22:601–614

    CAS  Google Scholar 

  63. Gustafsson BG, Meier HEM, Savchuk OP, Eilola OP, Axell L, Almroth E (2008) Simulation of some engineering measures aiming at reducing effects from eutrophication of the Baltic Sea. Earth Sci Rep Ser, C82, Göteborg University

    Google Scholar 

  64. Eilola K, Meier HEM, Almroth E (2009) On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea; a model study. J Mar Syst 75:163–184

    Article  Google Scholar 

  65. Kuznetsov I, Neumann T, Burchard H (2008) Model study on the ecosystem impact of a variable C:N:P ratio for cyanobacteria in the Baltic Proper. Ecol Mod 219:107–114

    Article  CAS  Google Scholar 

  66. Savchuk O, Wulff F (1996) Biogeochemical transformations of nitrogen and phosphorus in the marine environment, Systems Ecology Contributions 2. Stockholm University, Stockholm, Sweden

    Google Scholar 

  67. Stigebrandt A, Wulff F (1987) A model for the dynamics of nutrients and oxygen in the Baltic Sea. J Mar Res 45:729–759

    Article  CAS  Google Scholar 

  68. Yakushev EV, Pollehne F, Jost G, Kuznetsov I, Schneider B, Umlauf L (2007) Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar Chem 107:388–410

    Article  CAS  Google Scholar 

  69. Blomqvist S, Gunnars A, Elmgren R (2004) Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: a matter of salt. Limnol Oceanogr 49:2236–2241

    Article  Google Scholar 

  70. Caraco N, Cole J, Likens GE (1990) A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9:277–290

    Article  CAS  Google Scholar 

  71. Golterman HL (2001) Phosphate release from anoxic sediments or ‘What did Mortimer really write?’. Hydrobiologia 450:99–106

    Article  CAS  Google Scholar 

  72. Lehtoranta J, Ekholm P, Pitkänen H (2008) Eutrophication-driven sediment microbial processes can explain the regional variation in phosphorus concentrations between Baltic Sea sub-basins. J Mar Syst 74:495–504

    Article  Google Scholar 

  73. Lukkari K, Leivuori VH, Kotilainen A (2009) The chemical character and burial of phosphorus in shallow coastal sediments in the northeastern Baltic Sea. Biogeochemistry 94:141–162

    Article  CAS  Google Scholar 

  74. Mortimer CH (1971) Chemical exchanges between sediments and water in the Great Lakes – speculations on probable regulatory mechanisms. Limnol Oceanogr 16:387–404

    Article  CAS  Google Scholar 

  75. Nehring D (1987) Temporal variations of phosphate and inorganic nitrogen compounds in central Baltic deep waters. Limnol Oceanogr 32:494–499

    Article  CAS  Google Scholar 

  76. Santschi P, Hohener P, Benoit G, Buchholtz-ten Brink M (1990) Chemical processes at the sediment-water interface. Mar Chem 30:269–315

    Article  CAS  Google Scholar 

  77. Sundby B, Gobeil C, Siverberg N, Mucci A (1992) The phosphorus cycle in coastal marine sediments. Limnol Oceanogr 37:1129–1145

    Article  CAS  Google Scholar 

  78. Emeis K-C, Struck U, Leipe T, Pollehne F, Kunzendorf H, Christiansen C (2000) Changes in the burial rates and C:N:P ratios in the Baltic Sea sediments over the last 150 years. Mar Geol 167:43–59

    Article  CAS  Google Scholar 

  79. Hille S, Nausch G, Leipe T (2005) Sedimentary deposition and reflux of phosphorus (P) in the Eastern Gotland Basin and their coupling with P concentrations in the water column. Oceanologia 17:663–679

    Google Scholar 

  80. HELCOM (2009) Eutrophication in the Baltic Sea – an intergrated thematic assessement of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Balt Sea Environ Proc 115B:1–152

    Google Scholar 

  81. Devol AH (2008) Denitrification including anammox. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in the marine environment, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  82. Finni T, Kononen K, Olsonen R, Wallström K (2001) The history of cyanobacterial blooms in the Baltic Sea. Ambio 30:172–178

    CAS  Google Scholar 

  83. Kahru M, Horstmann U, Rud O (1994) Satellite detection of increased cyanobacteria blooms in the Baltic Sea: natural fluctuation or ecosystem change? Ambio 23:469–472

    Google Scholar 

  84. Kahru M, Savchuk OP, Elmgren R (2007) Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Mar Ecol Progr Ser 343:15–23

    Article  Google Scholar 

  85. Niemi Å (1979) Blue-green algal blooms and N:P ratio in the Baltic Sea. Acta Bot Fenn 110:57–61

    CAS  Google Scholar 

  86. Bianchi TS, Engelhaupt E, Westman P, Andren T, Rolff C, Elmgren R (2000) Cyanobacterial blooms in the Baltic Sea: natural or human-induced? Limnol Oceanogr 45:716–726

    Article  CAS  Google Scholar 

  87. Larsson U, Hajdu S, Walve J, Elmgren R (2001) Estimating Baltic nitrogen fixation from the summer increase in upper mixed layer total nitrogen. Limnol Oceanogr 46:811–820

    Article  CAS  Google Scholar 

  88. Wasmund N, Nausch G, Schneider B, Nagel K, Voss M (2005) Comparison of nitrogen fixation rates determined with different methods: a study in the Baltic Proper. Mar Ecol Progr Ser 297:23–31

    Article  CAS  Google Scholar 

  89. Savchuk O, Wulff F (1999) Modelling regional and large-scale response of Baltic Sea ecosystems to nutrient load reductions. Hydrobiologia 393:35–43

    Article  CAS  Google Scholar 

  90. Lyakhin Ju A, Makarova SV, Maximov AA, Savchuk OP, Silina NI (1997) Ecological situation in the Eastern Gulf of Finland in July 1996. In: Davidan IN, Savchuk OP (eds) “Baltica” Project. Problems of research and modelling of the Baltic Sea ecosystem. Issue 5. Ecosystem models. Assessement of the modern state of the Gulf of Finland. Hydrometeoizdat, St Petersburg (In Russian)

    Google Scholar 

  91. Laine AO, Andersin A-B, Leiniö S, Zuur AF (2007) Stratification-induced hypoxia as a structuring factor of macrozoobenthos in the open Gulf of Finland (Baltic Sea). J Sea Res 57:65–77

    Article  Google Scholar 

  92. Lehtoranta J (2003) Dynamics of sediment phosphorus in the brackish Gulf of Finland. Monogr Boreal Environ Res 24:1–58

    Google Scholar 

  93. Kononen K (1992) Dynamics of the toxic cyanobacterial blooms in the Baltic Sea. Finn Mar Res 261:3–36

    Google Scholar 

  94. Kononen K, Kuparinen J, Mäkelä K (1996) Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland, Baltic Sea. Limnol Oceanogr 40:98–112

    Article  Google Scholar 

  95. Kahru M, Leppänen J-M, Rud O, Savchuk OP (2000) Cyanobacteria blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea. Mar Ecol Progr Ser 207:13–18

    Article  Google Scholar 

  96. Stigebrandt A, Gustafsson BG (2007) Improvement of Baltic Proper water quality using large-scale ecological engineering. Ambio 36:280–286

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg P. Savchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Savchuk, O.P. (2010). Large-Scale Dynamics of Hypoxia in the Baltic Sea. In: Yakushev, E. (eds) Chemical Structure of Pelagic Redox Interfaces. The Handbook of Environmental Chemistry, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2010_53

Download citation

Publish with us

Policies and ethics