Skip to main content

Decolorization of Azo Dyes by Immobilized Bacteria

  • Chapter
  • First Online:
Biodegradation of Azo Dyes

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 9))

Abstract

Synthetic organic dyes are essential for satisfying the ever growing demand in terms of quality, variety, and speed of coloration of large number of substances. Because of the xenobiotic nature of dyes, they are toxicant to biological system and causes serious damage to environment. Ever-increasing concerns about color in the effluent lead to the worldwide efforts to build up effective procedure for color elimination. Biodegradation is gaining popularity to clean up hazardous waste because of the clear picture of the costs and the benefits of microbial degradation. Removal of dyes from waste water is reviewed with respect to biological decolorization. Promising techniques with reference to biological treatment of wastewater are immobilization of microorganisms on different supports. Immobilization increases the stabilities of the enzyme at high pH and tolerance to elevated temperatures and to make the enzyme less vulnerable to inhibitors. Generally the covalent bonds during immobilization enhance stabilities of enzymes due to the limitation of conformational changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6A2NS:

Aminonaphthalene-2-sulfonate

FBR:

Fluidized bed reactor

HPLC:

High pressure liquid chromatography

HRT:

Hydraulic retention time

MY3:

Mordant yellow 3

PVA:

Polyvinyl alcohol

TLC:

Thin layer chromatography

References

  1. Rai HS, Bhattacharyya MS, Singh J et al (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Env Sci Technol 35:219–238

    Article  CAS  Google Scholar 

  2. Austin GT (1994) Shreve’s chemical process industries. McGraw Hill, New York

    Google Scholar 

  3. SBP Board of Consultants and Engineers (1994) Handbook of exported oriented dyes and intermediate industries. SBP Consultants and Engineers Pvt Ltd, India

    Google Scholar 

  4. Vaidya AA, Datye KV (1982) Environmental pollution during chemical processing of synthetic fibers. Colourage 14:3–10

    Google Scholar 

  5. Chung KT, Cerniglia CE (1992) Mutagenicity of azo dyes: structure activity relationship. Mutat Res 277:201–220

    CAS  Google Scholar 

  6. Chung KT, Stevens SE Jr (1993) Decolorization of azo dyes by environmental microorganisms and helminthes. Environ Toxicol Chem 12:2121–2132

    CAS  Google Scholar 

  7. Wong PK, Yuen PY (1996) Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Water Res 30:1736–1744

    Article  CAS  Google Scholar 

  8. Pierce J (1994) Color in textile effluents the origins of the problem. J Soc Dyers Color 110:131–134

    Article  CAS  Google Scholar 

  9. Chung KT, Fulk GE, Egan M (1978) Reduction of azo dyes by intestinal anaerobes. Appl Environ Microbiol 35:558

    CAS  Google Scholar 

  10. Hildenbrand S, Schmahl FW, Wodarz R et al (1999) Azo dyes and carcinogenic aromatic amines in cell culture. Int Arch Occup Environ Health 72:M52

    Article  CAS  Google Scholar 

  11. Seshardi S, Bishop PL, Agha AM (1994) Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manage 14:127–137

    Article  Google Scholar 

  12. Flores ER, Luijten M, Donlon BA et al (1997) Complete biodegradation of the azo dye azo disalicylate under anaerobic conditions. Environ Sci Technol 31:2098–2103

    Article  Google Scholar 

  13. Bonser GM, Bradshaw L, Clayson DB et al (1956) A further study on the carcinogenic properties of ortho-hydroxyamines and related compounds by bladder implantation in the mouse. Br J Cancer 10:539–546

    CAS  Google Scholar 

  14. Collins TFX, McLaughlin J, Gray GC (1972) Teratology studies on food colorings. Part 1: embryo toxicity of Amaranth (FD & C Red no. 2) in rats. Food Cosmet Toxicol 10:619–624

    Article  CAS  Google Scholar 

  15. Andrianova MM (1970) Carcinogenic properties of the red food dyes, amaranth SX Purple and 4R Purple. Vopr Pitaniya 29:61–66

    CAS  Google Scholar 

  16. Zollinger H (1987) Color chemistry – syntheses properties and applications of organic dyes pigments. VCH, New York

    Google Scholar 

  17. Grover IS, Kaur A, Mahajan RK (1996) Mutagenicity of some dye effluents. Nat Acad Sci Lett India 19(7–8):149–158

    Google Scholar 

  18. Levine WG (1991) Metabolism of azo dyes: implications for detoxification and activation drug. Metabol Rev 23(3–4):253–309

    Article  CAS  Google Scholar 

  19. Rosenkranz HS, Klopman G (1990) Structural basis of the mutagenicity of 1-amino-2-naphthol-based azo dyes. Mutagenesis 5(2):137–146

    Article  CAS  Google Scholar 

  20. Donlon BA, Razo-Flores E, Luijten M et al (1997) Detoxification and partial mineralization of the azo dye mordant orange 1 in a continuous upflow anaerobic sludge blanket reactor. Appl Microbiol Biotechnol 47:83

    Article  CAS  Google Scholar 

  21. Chung KT, Fluk GE, Andrews AE (1981) Mutagenicity testing of some commonly used dyes. Appl Environ Microbiol 42(4):641–648

    CAS  Google Scholar 

  22. Reid TM, Morton KC, Wang CY et al (1984) Mutangencity of azo dyes following metabolism by different reductive/oxidative systems. Environ Mutagen 6:705–717

    Article  CAS  Google Scholar 

  23. Rosenkranz HS, Klopman G (1989) Structural basis of the mutagenicity of phenylazoaniline dyes. Mutat Res 221(3):217–234

    CAS  Google Scholar 

  24. Cooper P (1995) Removing color from dye house wastewater. Asian Textile J 3:52–56

    Google Scholar 

  25. Chen KC, Huang WT, Wu JY et al (1999) Microbial decolorization of azo dyes by Proteus mirabilis. J Ind Microbiol Biotech 23:686–690

    Article  CAS  Google Scholar 

  26. Liu Y (1995) Advancement of sono chemically degrade organic pollutants in waters. Adv Environ Sci (in Chinese) 3(4):77

    CAS  Google Scholar 

  27. Haug W, Schmidt A, Nortermann B et al (1991) Mineralization of the sulfonated azo dye mordant yellow3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Appl Environ Microbiol 57:3144

    CAS  Google Scholar 

  28. Gingell R, Walker R (1971) Mechanisms of azo reduction by Streptococcus faecalis II The role of soluble flavins. Xenobiotica 1:231

    Article  CAS  Google Scholar 

  29. Wuhrmann K, Menscher K, Kappeler T (1980) Investigation on rate determining factors in the microbial reduction of azo dyes. Eur J Appl Microbiol Biotechnol 9:325

    Article  CAS  Google Scholar 

  30. Carliell CM, Barclay SJ, Naidoo N et al (1995) Microbial decolorization of a reactive azo dye under anaerobic conditions. Water 21:61

    CAS  Google Scholar 

  31. Nam S, Renganathan V (2000) Non-enzymatic reduction of azo dyes by NADH. Chemosphere 40:351–357

    Article  CAS  Google Scholar 

  32. Yemashova N, Telegina A, Kotova I et al (2004) Decolorization and partial degradation of selected azo dyes by methanogenic sludge. Appl Biochem Biotechnol 119:31–40

    Article  CAS  Google Scholar 

  33. Yoo ES (2002) Kinetics of chemical decolorization of the azo dye C.I Reactive Orange 96 by sulfide. Chemosphere 47:925–931

    Article  CAS  Google Scholar 

  34. dos Santos AB, Bisschops IAE, Cervantes FJ et al (2004) Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30oC) and thermophilic (55oC) treatment for decolorization of textile wastewaters. Chemosphere 55:1149–1157

    Article  Google Scholar 

  35. Zimmermann T, Kulla H, Leisinger T (1982) Properties of purified Orange II azo reductase the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 129:197–203

    Article  CAS  Google Scholar 

  36. Moutaouakkil A, Zeroual Y, Dzairi FZ et al (2003) Purification and partial chareterization of azoreductase from Enterobacter agglomerans. Arch Biochem Biophys 413:139–146

    Article  CAS  Google Scholar 

  37. Loidl M, Hinteregger C, Ditzelmuller G et al (1990) Degradation of aniline and mono chlorinated anilines by siol born Pseudomonas acidovorans strains. Arch Microbiol 155:56

    Article  CAS  Google Scholar 

  38. Spadaro JT, Gold MH, Renganathan V (1992) Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:2397–2401

    CAS  Google Scholar 

  39. Pasti-Grigsby MB, Paszczynski A, Goszczynski S et al (1992) Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605–3613

    CAS  Google Scholar 

  40. Paszczynski A, Pasti-Grigsby MB, Goszczynski S et al (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl Environ Microbiol 58:3598–3604

    CAS  Google Scholar 

  41. Rogalski J, Jozwik E, Hatakka A et al (1995) Immobilization of laccase from Phlebia radiata on controlled porosity glass. J Mol Catal A Enzym 95:99–108

    Article  CAS  Google Scholar 

  42. Ohta T, Ogbonna JC, Tanaka H et al (1994) Development of a fermentation method using immobilized cells under unsterile conditions ethanol and L-lactic acid production without heat and filter sterilization. Appl Microbiol Biotechnol 42:246–260

    Article  CAS  Google Scholar 

  43. Chang YC, Chou CC (2002) Growth and production of cholesterol oxidase by alginate-immobilized cells of Rhodococcus equi No 23. Biotechnol Appl Biochem 35:69–74

    Article  CAS  Google Scholar 

  44. Gardea-Torresdey JL, Arenas NMC, Francisco KJ et al (1998) Ability of immobilized cyanobacteria to remove metal ions from solution and demonstration of the presence of metallothionein genes in various strains. J Hazard Subst Res 1:1–8

    Google Scholar 

  45. Chen KC, Chen JJ, Houng JY (2000) Improvement of nitrogen removal efficiency using immobilized microorganisms with oxidation-reduction potential monitoring. J Ind Microbiol Biotechnol 25:229–234

    Article  CAS  Google Scholar 

  46. Wang CC, Lee CM, Lu CJ et al (2000) Biodegradation of 2, 4, 6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41:1873–1879

    Article  CAS  Google Scholar 

  47. Chibata I, Tosa T (1981) Use of immobilized cells. Annu Rev Biophys Bioeng 10:197–216

    Article  CAS  Google Scholar 

  48. Hyde FW, Hunt GR, Errede LA (1991) Immobilization of bacteria and Saccharomyces cerevisiae in poly (tetrafluoroethylene) membranes. Appl Environ Microbiol 57:219–222

    CAS  Google Scholar 

  49. Zeroual Y, Moutaouakkil A, Blaghen M (2001) Volatilization of mercury by immobilized bacteria (Klebsiella pneumoniae) in different support by using fluidized bed bioreactor. Curr Microbiol 43:322–327

    Article  CAS  Google Scholar 

  50. Isaka K, Yoshie S, Sumino T et al (2007) Nitrification of landfill leachate using immobilized nitifying bacteria at low temperatures. Biochem Eng J 37:49–55

    Article  CAS  Google Scholar 

  51. Monsan P (1982) Les methodes immobilisation enzymes. In: Durand G, Monsan P (eds) Les enzymes, productions utilizations industrielles. Gauthier-Villards, Paris, pp 81–118

    Google Scholar 

  52. Fang H, Wenrong H, Yuezhong L (2004) Investigation of isolation and immobilization of a microbial consortium for decoloring of azo dye 4BS. Water Res 38:3596–3604

    Article  Google Scholar 

  53. Kudlich M, Bishop PL, Knackmuss HJ et al (1996) Simultaneous anaerobic and aerobic degradation of the sulfonated azo dye mordant yellow 3 by immobilized cells from naphthalenesulfonate degrading mixed culture. Appl Microbiol Biotechnol 46:597–603

    Article  CAS  Google Scholar 

  54. Zille A, Tzanov T, Gubitz GM et al (2003) Immobilized laccase for decolorization of reactive black 5 dyeing effluent. Biotechnol Lett 25:1473–1477

    Article  CAS  Google Scholar 

  55. Idaka E, Ogawa T, Horitzu H et al (1979) Isolation and identification of an azo assimilating bacterium Il Pseudomonas pseudomallei 13NA. Res Rept Fac Eng Gifu Univ 29:68–70

    Google Scholar 

  56. Idaka E, Ogawa T, Sakaguchi M et al (1980) Characteristics of Bacillus subtilis azoreductase. Res Rept Fac Eng Gifu Univ 30:53–58

    Google Scholar 

  57. Idaka E, Ogawa T, Sakaguchi M et al (1979) Isolation and identification of an azo dye assimilating bacterium I Aeromonas hydrophila var 24B. Res Rept Fac Eng Gifu Univ 29:65–67

    Google Scholar 

  58. Georgiou D, Hatiras J, Aivasidis A (2005) Microbial immobilization in a two stage fixed bed reactor pilot plant for onsite anaerobic decolorization of textile wastewater. Enzyme Microb Technol 37:597–605

    Article  CAS  Google Scholar 

  59. Resmi CS, Shaffiqu TS, Roy JJ et al (2008) Aerobic degradation of a mixture of azo dyes in a packed bed reactor having bacteria coated laterite pebbles. Biotechnol Prog 19:647–651

    Google Scholar 

  60. Binkley J, Kandelbauer A (2003) Effluent treatment-enzymes in activated sludge. In: Cavaco-Paulo A, Guebitz GM (eds) Textile processing with enzymes. Woodhead, Cambridge UK, pp 199–221

    Google Scholar 

  61. Keharia H, Madamvar D (2003) Bioremediation concept for treatment of dye containing wastewater: a review. Indian J Exp Biol 41:1068–1075

    CAS  Google Scholar 

  62. Sharma DK, Saini HS, Singh M et al (2004) Biodegradation of acid blue-15 a textile dye by an upflow immobilized cell bioreactor. J Ind Microbiol Biotechnol 31:109–114

    Article  CAS  Google Scholar 

  63. Wua JY, Hwang SCJ, Chen CT et al (2005) Decolorization of azo dye in a FBR reactor using immobilized bacteria. Enzyme Microb Technol 37:102–112

    Article  Google Scholar 

  64. Azmi W, Banerjee UC (2002) Biological stabilization of textile and dye stuff industrial waste. Indian Chem Eng Sec A 44:230–234

    CAS  Google Scholar 

  65. Zitomer DH, Speece RH (1993) Sequential environments for enhanced biotransformation of aqueous contaminants. Environ Sci Technol 27:227

    Article  Google Scholar 

  66. Beunink J, Rehm HJ (1988) Synchronous anaerobic and aerobic degradation of DDT by an immobilized mixed culture system. Appl Microbiol Biotechnol 29:72–80

    Article  CAS  Google Scholar 

  67. Beunink J, Rehm HJ (1990) Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system. Appl Microbiol Biotechnol 34:108–115

    Article  CAS  Google Scholar 

  68. Donlon BA, Razo-Flores E, Field J et al (1995) Toxicity of N Substituted aromatics to acetoclastic methanogenic activity in granular sludge. Appl Environ Microbiol 61:3889

    CAS  Google Scholar 

  69. Soares GMB, Costa-Ferreira M, Pessoa de Amorim MT (2001) Decolorization of an anthraquinone type dye using a laccase formulation. Bioresour Technol 79:171

    Article  CAS  Google Scholar 

  70. Dwyer DF, Krumme ML, Boyd SA et al (1986) Kinetics of phenol biodegradation by an immobilized methanogenic consortium. Appl Environ Microbiol 52:345

    CAS  Google Scholar 

  71. Pagga U, Brown D (1986) The degradation of dyestuffs: Part II. Behavior of dye stuffs in aerobic biodegradation tests. Chemosphere 15:479

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttam Chand Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khan, R., Banerjee, U.C. (2010). Decolorization of Azo Dyes by Immobilized Bacteria. In: Atacag Erkurt, H. (eds) Biodegradation of Azo Dyes. The Handbook of Environmental Chemistry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2009_45

Download citation

Publish with us

Policies and ethics