Skip to main content

Biodegradable Polymers: Properties, Possibilities, and Limits Considering the Synthesis, Processing, and Application of Poly(2-Hydroxypropionic Acid) and Poly(3-Hydroxybutyric Acid)

  • Chapter
  • First Online:
Polymers - Opportunities and Risks II

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 12))

Abstract

Biodegradable polymers, like poly(2-hydroxypropionic acid) (PLA) and poly(3-hydroxybutyric acid) (PHB), are described with respect to possibilities and limits of their synthesis, degradation, processing, and application. The chemical structure and the processing as well as their influence on property spectrum are especially discussed for PLA and PHB multifilaments spun by an on-line spin-drawing process. This processing route was chosen, since it poses extremely high demands on the deformation ability of polymer melts, and the high deformation rates lead to a broad spectrum of different structures. Structure–property relationships are discussed including stress-induced crystallization, influence of differently crystalline modifications and various physical properties. Finally, economic aspects of PLA and PHB are addressed with respect to medical and technical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α :

Crystallinity

ω :

Shear frequency

η*:

Complex melt viscosity function

γ a :

Density of the amorphous part

γ c :

Density of the crystalline part

ε H :

Elongation at break

ΔH Mo :

Equilibrium heat of fusion

3HB:

3-Hydroxybutyric acid

3HV:

3-Hydroxypentanic acid

AFM:

Atomic force microscopy

d-LA,d-2-Hydroxypropionic acid:

(d-Lactic acid)

DR:

Draw ratio

DSC:

Differential scanning calorimetry

E :

E-Modulus

G′:

Storage modulus

G″:

Loss modulus

LA:

2-Hydroxypropionic acid, (Lactic acid)

l-LA:

l-2-Hydroxy propionic acid, (l-Lactic acid)

M w :

Weight-average molecular weight

P2HA:

Poly(2-hydroxyalkanoic acids)

P3HA:

Poly(3-hydroxyalkanoic acids)

PEO:

Poly(ethyleneoxide)

PET:

Poly(ethylene terephthalate)

PHA:

Poly(hydroxyalkanoic acid)

PHB:

Poly(3-hydroxybutyric acid)

PHB/PHV:

Copolymer based on 3HB and 3HV

PLA:

Poly(2-hydroxypropionic acid), Poly(lactic acid)

PL-LA:

Poly(L-2-hydroxypropionic acid), Poly(L-lactic acid)

PVAc:

Poly(vinylacetate)

PVC:

Poly(vinylchloride)

R H :

Tenacity at break

t :

Time of conditioning

T G :

Glass transition temperature

T Mo :

Equilibrium melting temperature of an infinite crystal

WAXS:

Wide-angle X-ray scattering

References

  1. Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  2. Hocking PJ, Marchessault RH (1994) Biopolyesters. In: Griffin GJL (ed) Chemistry and technology of biodegradable polymers. Blackie Academic and Professional, New York, p 48

    Chapter  Google Scholar 

  3. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219

    Article  Google Scholar 

  4. Fritz G-H, Seidenstücker T, Bölz U, Juza M (1994) Study on production of thermo-bioplastics and fibres based mainly on biological materials, EUR 16102, Directorate-General XII Science, Research and Development

    Google Scholar 

  5. Witt U, Müller R-J, Klein J (1997) Biologisch abbaubare Polymere, Franz-Patat-Zentrum Braunschweig

    Google Scholar 

  6. Kaplan DL (1998) Biopolymers from renewable resources. Springer, Berlin

    Book  Google Scholar 

  7. Tänzer W (1999) Biologisch abbaubare Polymere. Deutscher Verlag für Grundstoffindustrie, Stuttgart

    Google Scholar 

  8. Wise DL, Fellmann TD (1979) Lactic/glycolic acid polymers. In: Gregoriadis (ed) Drug carriers in medicine, vol 23. Academic Press, London

    Google Scholar 

  9. Jendrosek D, Schirmer A, Schlegel HG (1997) Appl Microbiol Biotechnol 46:451

    Article  Google Scholar 

  10. Lemoigne M (1925) Bull Soc Chim Biol 39:144

    Google Scholar 

  11. Barham PJ, Keller A, Otun EL, Holmes PA (1984) J Mater Sci 19:2781

    Article  CAS  Google Scholar 

  12. Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. Mac Millan, Basingstoke, p 123

    Google Scholar 

  13. De Koning GJM, van Bilsen HHM, Lemstra PL, Hazenberg W, Witholt B, Preusting H, van der Galien JG, Schirmer A, Jendrossek D (1994) Polymer 35:2090

    Article  Google Scholar 

  14. Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1992) Macromolecules 25:3723

    Article  CAS  Google Scholar 

  15. Schmack G, Gorenflo V, Steinbüchel A (1998) Macromolecules 31:644

    Article  CAS  Google Scholar 

  16. Müller HM, Seebach D (1993) Angew Chem 105:483

    Article  Google Scholar 

  17. DE 197 21 234, PCT/EP 98/02716, 10 May 2000

    Google Scholar 

  18. Jacobsen S, Fritz HG, Degee P, Dubois P, J’erome R (2000) Polymer 41:3395

    Article  CAS  Google Scholar 

  19. Yamamoto T, Kimizu M, Kikutani T, Furuhashi Y, Cakmak M (1997) Int Polym Process 12:29

    CAS  Google Scholar 

  20. Orts WJ, Marchessault RH, Bluhm TL, Hamer GK (1990) Macromolecules 23:5368

    Article  CAS  Google Scholar 

  21. De Santis P, Kovacs A (1968) Biopolymers 6:299

    Article  Google Scholar 

  22. Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G, Zugenmaier P (1990) Macromolecules 23:634

    Article  CAS  Google Scholar 

  23. Holmes PA (1988) In: Bassett DC (ed) Developments in crystalline polymers, vol 2. Elsevier Applied Science, London

    Google Scholar 

  24. Mezghani K, Williams MW, Spruiell JE (2001) PPS 17, Montreal

    Google Scholar 

  25. Beyreuther R, Vogel R (1996) Int Polym Process 11(2):154

    CAS  Google Scholar 

  26. Kusaka S, Iwata T, Doi Y (1998) J Macromol Sci Pure Appl Chem A 35:319

    Article  Google Scholar 

  27. Fambri L, Pegoretti A, Fenner R, Incardona SD, Migliaresi C (1997) Polymer 38:79

    Article  CAS  Google Scholar 

  28. Vogel R, Voigt D, Tändler B, Gohs U, Häußler L, Brünig H (2008) Macromol Biosci 8:426

    Article  CAS  Google Scholar 

  29. Vogel R, Tändler B, Voigt D, Jehnichen D, Häußler L, Peitzsch L, Brünig H (2007) Macromol Biosci 7:820

    Article  CAS  Google Scholar 

  30. Eling B, Gogolewski S, Pennings AJ (1982) Polymer 23:1587

    Article  CAS  Google Scholar 

  31. Schmack G, Tändler B, Vogel R, Beyreuther B, Jacobsen S, Fritz HG (1999) J Appl Polym Sci 73:2785

    Article  CAS  Google Scholar 

  32. Schmack G, Jehnichen D, Vogel R, Tändler B, Beyreuther R, Jacobsen S, Fritz HG (2001) J Biotechnol 86:151

    Article  CAS  Google Scholar 

  33. Schmack G, Jehnichen D, Vogel R, Tändler B (2000) J Polym Sci B 38:2841

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Schmack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmack, G. (2009). Biodegradable Polymers: Properties, Possibilities, and Limits Considering the Synthesis, Processing, and Application of Poly(2-Hydroxypropionic Acid) and Poly(3-Hydroxybutyric Acid). In: Eyerer, P., Weller, M., Hübner, C. (eds) Polymers - Opportunities and Risks II. The Handbook of Environmental Chemistry(), vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2009_18

Download citation

Publish with us

Policies and ethics