Skip to main content

Spreading of MTBE and Chlorinated Hydrocarbons in Groundwater: Comparison of Groundwater Transport and Plume Dimensions

  • Chapter
  • First Online:
  • 21 Accesses

Part of the book series: The Handbook of Environmental Chemistry

Abstract

Based on a physical-chemical-biological database, the behavior of MTBE and CAH (chlorinated aliphatic hydrocarbons) in the subsoil is described and compared. In contrast to MTBE, CAH can form independent phase bodies that can infiltrate deep into aquifers. Due to its striking higher solubility, MTBE spreads much faster in groundwater. The longest CAH plume recorded in literature so far amounts to 10 000 km. The longest reported MTBE plume reaches 1 900 m. Interpreting the available worldwide data, spreading of MTBE groundwater contaminations leads plume lengths that fall rather into the category of the BTEX as into the class of CAH. A substantial reason for comparison with the lower CAH plume expansions might consist of the fact that MTBE plumes—due to high water solubility and thereby the connected fast development of the MTBE source transfer—progress comparatively fast into the stable and/or regressive status of the plume development. Beyond this, MTBE infiltrates as subordinated portion of gasolines (predominantly 1–3 wt % in regular grade fuel and/or premium fuel), in comparatively low quantities into the subsoil, so that these comparatively low quantities do not possess large source strengths over longer periods. Only spills with very large gasoline quantities may longer MTBE plumes develop under certain conditions.

This is a preview of subscription content, log in via an institution.

References

  1. Stupp HD, Bakenhus A, Stauffer R, Lorenz D (2005) Sanierungsoptimierung von CKW-Grundwasserschäden: Möglichkeiten zur Reduzierung der Sanierungskosten. Altlasten Spektrum, 06/2005

    Google Scholar 

  2. Scholz-Muramatsu H, Fleming HC (1991) Unter welchen Milieubedingungen erfolgt ein Abbau leichtflüchtiger chlorierter Kohlenwasserstoffe (LCKW)? In: Wagner R (ed) Wasserkalender 1991, 25. Jahrgang, pp 135–158

    Google Scholar 

  3. Könen R, Püttmann W (2006) Ersatz von MTBE durch ETBE als Oxygenat in Vergaserkraftstoffen: Ein Vorteil für das Grundwasser? Grundwasser, 4/2005, pp 227–236

    Google Scholar 

  4. Stupp D, Paus HL (1999) Migrationsverhalten organischer Grundwasser-Inhaltsstoffe und Ansätze zur Beurteilung von MNA. Terra Tech, 5/1999, pp 32–37

    Google Scholar 

  5. Moyer EE, Kostecki PT (eds) (2004) MTBE remediation handbook. Amherst Scientific Publishers, Amherst, MA

    Google Scholar 

  6. Ministerium für Ernährung, Umwelt und Forsten, Baden-Württemberg (1983) Leitfaden für die Beurteilung und Behandlung von Grundwasserverunreinigungen durch leichtflüchtige Chlorkohlenwasserstoffe. Schriftenreihe CKW-Leitfaden, Heft 13

    Google Scholar 

  7. Wiedemeier TH, Hanadi SR, Newell CJ, Chalres J, Wilson JT (1999) Natural attenuation of fuels and chlorinated solvents in the subsurface. Wiley, New York

    Google Scholar 

  8. Weaver JW, Haas JE, Sosik CB (1999) Characteristics of gasoline releases in the water table aquifer of Long Island. Proceedings of 1999 petroleum hydrocarbons and organic chemicals in ground water. API/NGWA, Houston, Texas

    Google Scholar 

  9. Happel AM, Beckenbach EH et al (1998) An evaluation of MTBE impacts to California groundwater resources. Lawrence Livermore National Laboratory, University of California, pp 1–68

    Google Scholar 

  10. Mace RE (1998) Spatial and temporal variability of MTBE plumes in Texas. American Petroleum Institute, pp 1–44

    Google Scholar 

  11. State Investigation Reports on MTBE (2003) New England Interstate Water Pollution Control Commission (NEIWPCC), http://www.epa.gov/swerust1/mtbe/mtbestat.htm (last visited: 10-2006)

  12. Integrated Science & Technology, 1349 Old Highway 41, Marietta, Georgia (1999) Comparative MTBE versus benzene plume behavior. BP Oil Company Florida Facilities, Tech Report

    Google Scholar 

  13. http://www.epa.gov/ahaazvuc/research/patcogue.html (last visited: 9-2006)

  14. Persönliche Mitteilung Dr. M. Martienssen, Projektleiterin des METLEN-Projektes am Standort Leuna, Umweltforschungszentrum Leipzig-Halle GmbH 04-2006

    Google Scholar 

  15. Stupp HD, Bakenhus A, Stauffer R, Lorenz D (2005) Verfahren zur Reinigung von mit MTBE verunreinigtem Grundwasser unter Einbeziehung der Kosten zur Sanierung. Altlasten Spektrum 3/2005, pp 134–148

    Google Scholar 

  16. Stupp HD, Bakenhus A, Stauffer R, Lorenz D (2005) Grundwasserverunreinigungen durch tertiär-Butyl-Alkohol (TBA) – Migrationsverhalten im Grundwasser und Verfahren zur Sanierung. Altlasten Spektrum 1/2005, pp 13–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Dieter Stupp .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stupp, H.D. (2007). Spreading of MTBE and Chlorinated Hydrocarbons in Groundwater: Comparison of Groundwater Transport and Plume Dimensions. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2007_071

Download citation

  • DOI: https://doi.org/10.1007/698_2007_071

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics