Skip to main content

Oocyte Aging: The Role of Cellular and Environmental Factors and Impact on Female Fertility

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1247))

Abstract

Female aging is one of the most important factors that impacts human reproduction. With aging, there is a natural decline in female fertility. The decrease in fertility is slow and steady in women aged 30–35 years; however, this decline is accelerated after the age of 35 due to decreases in the ovarian reserve and oocyte quality. Human oocyte aging is affected by different environmental factors, such as dietary habits and lifestyle. The ovarian microenvironment contributes to oocyte aging and longevity. The immediate oocyte microenvironment consists of the surrounding cells. Crosstalk between the oocyte and microenvironment is mediated by direct contact with surrounding cells, the extracellular matrix, and signalling molecules, including hormones, growth factors, and metabolic products. In this review, we highlight the different microenvironmental factors that accelerate human oocyte aging and decrease oocyte function. The ovarian microenvironment and the stress that is induced by environmental pollutants and a poor diet, along with other factors, impact oocyte quality and function and contribute to accelerated oocyte aging and diseases of infertility.

Graphical Abstract

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AGEs:

Advanced glycation end products

AKT:

Protein kinase B

BCL2:

B-cell lymphoma-2

CaMKII:

Calmodulin-dependent protein kinase II

CAT:

Catalase

CCs:

Cumulus cells

cGMP:

Cyclic guanosine monophosphate

COC:

Cumulus-oocyte complex

COIII:

Cytochrome oxidase subunit 3

CoQ10:

Coenzyme Q10

Cx-43:

Connexin 43

EGF:

Epidermal growth factor

EGFR:

EGF receptor

FADD:

Fas-Associated protein with a Death Domain

FAS:

Free α-subunit

FasL:

Fas/Fas ligand

FoxO:

Forkhead box O

FSH:

Follicle-stimulating hormone

GCs:

Granulosa cells

GnRH:

Gonadotropin-releasing hormone

GSSPx:

Glutathione peroxidase

GST:

Glutathione S transferase

GTP:

Guanosine triphosphate

HMGA2:

High-mobility group AT-hook 2

HPG axis:

Hypothalamic-pituitary-gonadal axis

IKBKG:

Inhibitor nuclear factor kappa B kinase subunit gamma

IR:

Insulin resistance

IVF:

In vitro fertilization

LH:

Luteinising hormone

LINE-1:

Long interspersed element

MAPKs:

Mitogen-activated protein kinases

MII:

Meiotic metaphase II

MnSOD:

Mitochondrial SOD

MPF:

Maturation-promoting factor

mtDNA:

Mitochondrial DNA

NAC:

N-acetyl-L-cysteine

NAD+:

Nicotinamide adenine dinucleotide

NF-κB:

Nuclear factor kappa B

ORFs:

Open reading frame

PCOS:

Polycystic ovary syndrome

PDE3A:

Phosphodiesterase 3A

PGC-1 α :

Proliferator-activated receptor coactivator-1α

PGCs:

Primordial germ cells

PI3K:

Phosphatidylinositol 3-kinase

PTEN:

Phosphatase and tensin homolog

RAB5B:

Ras-related protein Rab-5B

RAGE:

Receptor for advanced glycation end products

ROS:

Reactive oxygen species

SDHA:

Subunit A of succinate dehydrogenase

sFasL:

Soluble fasl

SIRT1:

Silent information regulator-1

SOD1:

Superoxide dismutase

References

  • Agarwal A, Gupta S, Sharma RK (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 3(1):28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albertini DF et al (2001) Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121(5):647–653

    Article  CAS  PubMed  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1995) Mitochondrial decay in aging. Biochim Biophys Acta (BBA) - Mol Basis Dis 1271(1):165–170

    Article  Google Scholar 

  • Amicarelli F et al (1999) Age-dependent ultrastructural alterations and biochemical response of rat skeletal muscle after hypoxic or hyperoxic treatments. Biochim Biophys Acta (BBA) - Mol Basis Dis 1453(1):105–114

    Article  CAS  Google Scholar 

  • Aporntewan C et al (2011) Hypomethylation of intragenic LINE-1 represses transcription in cancer cells through AGO2. PLoS One 6(3):e17934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashby J et al (2002) The effects of atrazine on the sexual maturation of female rats. Regul Toxicol Pharmacol 35(3):468–473

    Article  CAS  PubMed  Google Scholar 

  • Assou S et al (2013) MicroRNAs: new candidates for the regulation of the human cumulus–oocyte complex. Hum Reprod 28(11):3038–3049

    Article  CAS  PubMed  Google Scholar 

  • Attaran A, Maharaj R (2000) Ethical debate: doctoring malaria, badly: the global campaign to ban DDT. BMJ (Clin Res Ed) 321(7273):1403–1405

    Article  CAS  Google Scholar 

  • Barbieri RL (2014) The endocrinology of the menstrual cycle. In: Human fertility. Springer, New York, pp 145–169

    Google Scholar 

  • Barja G (2002) Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Aging Res Rev 1(3):397–411

    Article  CAS  Google Scholar 

  • Barja G (2004) Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism? Biol Rev Camb Philos Soc 79(2):235–251

    Article  PubMed  Google Scholar 

  • Ben-Meir A et al (2015) Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 14(5):887–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boirie Y (2003) Insulin regulation of mitochondrial proteins and oxidative phosphorylation in human muscle. Trends Endocrinol Metab 14(9):393–394

    Article  CAS  PubMed  Google Scholar 

  • Boucret L et al (2015) Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum Reprod 30(7):1653–1664

    Article  CAS  PubMed  Google Scholar 

  • Bretveld RW et al (2006) Pesticide exposure: the hormonal function of the female reproductive system disrupted? Reprod Biol Endocrinol 4(1):30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820

    Article  CAS  PubMed  Google Scholar 

  • Brunet A et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V et al (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13(11):1763–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbone M et al (2003) Antioxidant enzymatic defences in human follicular fluid: characterization and age-dependent changes. MHR Basic Sci Reprod Med 9(11):639–643

    Article  CAS  Google Scholar 

  • Chadwick RW et al (1988) Possible antiestrogenic activity of lindane in female rats. J Biochem Toxicol 3(3):147–158

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Blasco MA, Serrano MJC (2007) Cellular senescence in cancer and aging. Cell 130(2):223–233

    Article  CAS  PubMed  Google Scholar 

  • da Silveira JC et al (2012) Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod 86(3):71

    Article  PubMed  CAS  Google Scholar 

  • Dale PO et al (1998) The impact of insulin resistance on the outcome of ovulation induction with low-dose follicle stimulating hormone in women with polycystic ovary syndrome. Hum Reprod 13(3):567–570

    Article  CAS  PubMed  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  CAS  PubMed  Google Scholar 

  • Danilovich N, Sairam MR (2002) Haploinsufficiency of the follicle-stimulating hormone receptor accelerates oocyte loss inducing early reproductive senescence and biological aging in mice. Biol Reprod 67(2):361–369

    Article  CAS  PubMed  Google Scholar 

  • de Haan N, Spelt M, Göbel R (2010) Reproductive medicine: a textbook for paramedics. Elsevier gezondheidszorg, Amsterdam

    Google Scholar 

  • Dhein J et al (1995) Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373(6513):438–441

    Article  CAS  PubMed  Google Scholar 

  • Dumollard R, Duchen M, Carroll J (2007) The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 77:21–49

    Article  CAS  PubMed  Google Scholar 

  • Dupont J, Scaramuzzi RJ (2016) Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J 473(11):1483–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenlaub-Ritter U et al (2004) Spindles, mitochondria and redox potential in aging oocytes. Reprod BioMed Online 8(1):45–58

    Article  CAS  PubMed  Google Scholar 

  • Eichenlaub-Ritter U et al (2011) Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion 11(5):783–796

    Article  CAS  PubMed  Google Scholar 

  • Farr SL et al (2004) Pesticide use and menstrual cycle characteristics among premenopausal women in the agricultural health study. Am J Epidemiol 160(12):1194–1204

    Article  CAS  PubMed  Google Scholar 

  • Filali M et al (2009) Oocyte in-vitro maturation: BCL2 mRNA content in cumulus cells reflects oocyte competency. Reprod BioMed Online 19:71–84

    Article  Google Scholar 

  • Fragouli E, Wells D (2015) Mitochondrial DNA assessment to determine oocyte and embryo viability. In: Seminars in reproductive medicine. Thieme Medical Publishers, New York

    Google Scholar 

  • Fujino Y et al (1996) Ovary and ovulation: DNA fragmentation of oocytes in aged mice. Hum Reprod 11(7):1480–1483

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Galiano D, Allen SJ, Elias CF (2014) Role of the adipocyte-derived hormone leptin in reproductive control. Horm Mol Biol Clin Invest 19(3):141–149

    CAS  Google Scholar 

  • Ge Z-J et al (2015) Oocyte aging and epigenetics. Reproduction 149(3):R103–R114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhart-Hines Z et al (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J 26(7):1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gougeon A (1986) Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod 1(2):81–87

    Article  CAS  PubMed  Google Scholar 

  • Gougeon A (2005) The biological aspects of risks of infertility due to age: the female side. Rev Epidemiol Sante Publique 53:37–45

    Article  Google Scholar 

  • Grabowski SR, Tortora GJ (2000) Principles of anatomy and physiology. Wiley, New York/Chichester

    Google Scholar 

  • Grøndahl M et al (2010) Gene expression profiles of single human mature oocytes in relation to age. Hum Reprod 25(4):957–968

    Article  PubMed  CAS  Google Scholar 

  • Hall JE et al (2000) Decrease in gonadotropin-releasing hormone (GnRH) pulse frequency with aging in postmenopausal women. J Clin Endocrinol Metab 85(5):1794–1800

    CAS  PubMed  Google Scholar 

  • Hamatani T et al (2004) Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet 13(19):2263–2278

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K et al (2008) Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem Biophys Res Commun 372(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • He W et al (2010) Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 120(4):1056–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori YS et al (2013) Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One 8(9):e73875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J-C et al (2007) Changes in histone acetylation during postovulatory aging of mouse oocyte. Biol Reprod 77(4):666–670

    Article  CAS  PubMed  Google Scholar 

  • Itoh N et al (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66(2):233–243

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto M et al (2005) Effects of caffeine treatment on aged porcine oocytes: parthenogenetic activation ability, chromosome condensation and development to the blastocyst stage after somatic cell nuclear transfer. Zygote 13(4):335–345

    Article  CAS  PubMed  Google Scholar 

  • Janny L, Menezo YJ (1996) Maternal age effect on early human embryonic development and blastocyst formation. Mol Reprod Dev 45(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Jensen TK et al (1999) Fecundability in relation to body mass and menstrual cycle patterns. Epidemiology 10(4):422–428

    Article  CAS  PubMed  Google Scholar 

  • Johnson MH, Everitt BJ (2000) Essential reproduction. Blackwell Science, Oxford, pp 69–87

    Google Scholar 

  • Ju ST et al (1995) Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373(6513):444–448

    Article  CAS  PubMed  Google Scholar 

  • Jungheim ES, Moley KH (2010) Current knowledge of obesity's effects in the pre-and periconceptional periods and avenues for future research. Am J Obstet Gynecol 203(6):525–530

    Article  PubMed  PubMed Central  Google Scholar 

  • Kao C-L et al (2010) Resveratrol protects human endothelium from H2O2-induced oxidative stress and senescence via SirT1 activation. J Atheroscler Thromb 17(9):970–979

    Article  CAS  PubMed  Google Scholar 

  • Kauppinen A et al (2013) Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 25(10):1939–1948

    Article  CAS  PubMed  Google Scholar 

  • Kayagaki N et al (1995) Metalloproteinase-mediated release of human Fas ligand. J Exp Med 182(6):1777–1783

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood T (1998) Ovarian aging and the general biology of senescence. Maturitas 30(2):105–111

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa T et al (1993) Rapid accumulation of deleted mitochondrial deoxyribonucleic acid in postmenopausal ovaries. Biol Reprod 49(4):730–736

    Article  CAS  PubMed  Google Scholar 

  • Kujjo LL, Perez GI (2012) Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction 143(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Lander HM et al (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272(28):17810–17814

    Article  CAS  PubMed  Google Scholar 

  • Lee H et al (2015) Prognostic and predictive values of EGFR overexpression and EGFR copy number alteration in HER2-positive breast cancer. Br J Cancer 112(1):103

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2017) Feedback inhibition of CREB signaling by p38 MAPK contributes to the negative regulation of steroidogenesis. Reprod Biol Endocrinol 15(1):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang H, Ward WF (2006) PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ 30(4):145–151

    Article  PubMed  Google Scholar 

  • Lim J, Luderer U (2011) Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biol Reprod 84(4):775–782

    Article  CAS  PubMed  Google Scholar 

  • Liu J et al (2012) Delay in oocyte aging in mice by the antioxidant N-acetyl-L-cysteine (NAC). Hum Reprod 27(5):1411–1420

    Article  CAS  PubMed  Google Scholar 

  • Lombard DB, Tishkoff DX, Bao J (2011) Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation. In: Histone Deacetylases: the Biology and Clinical Implication. Springer, Berlin, pp 163–188

    Chapter  Google Scholar 

  • Louhio H et al (2000) The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Mol Hum Reprod 6(8):694–698

    Article  CAS  PubMed  Google Scholar 

  • Luisi S et al (2005) Inhibins in female and male reproductive physiology: role in gametogenesis, conception, implantation and early pregnancy. Hum Reprod Update 11(2):123–135

    Article  CAS  PubMed  Google Scholar 

  • MacNaughton J et al (1992) Age related changes in follicle stimulating hormone, luteinizing hormone, oestradiol and immunoreactive inhibin in women of reproductive age. Clin Endocrinol 36(4):339–345

    Article  CAS  Google Scholar 

  • Mamsen LS et al (2011) Germ cell numbers in human embryonic and fetal gonads during the first two trimesters of pregnancy: analysis of six published studies. Hum Reprod 26(8):2140–2145

    Article  PubMed  Google Scholar 

  • Manda K, Ueno M, Anzai K (2007) AFMK, a melatonin metabolite, attenuates X-ray-induced oxidative damage to DNA, proteins and lipids in mice. J Pineal Res 42(4):386–393

    Article  CAS  PubMed  Google Scholar 

  • Matsui M et al (1996) Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178(1):179–185

    Article  CAS  PubMed  Google Scholar 

  • Matsumura R et al (1998) Glandular and extraglandular expression of the Fas-Fas ligand and apoptosis in patients with Sjogren’s syndrome. Clin Exp Rheumatol 16(5):561–568

    CAS  PubMed  Google Scholar 

  • McReynolds S et al (2012) Impact of maternal aging on the molecular signature of human cumulus cells. Fertil Steril 98(6):1574–1580. e5

    Article  CAS  PubMed  Google Scholar 

  • Mehlmann LM (2005) Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 130(6):791–799

    Article  CAS  PubMed  Google Scholar 

  • Metwally M, Li T, Ledger WL (2007) The impact of obesity on female reproductive function. Obes Rev 8(6):515–523

    Article  CAS  PubMed  Google Scholar 

  • Mitsiades N et al (1998) Fas/Fas ligand up-regulation and Bcl-2 down-regulation may be significant in the pathogenesis of Hashimoto’s thyroiditis. J Clin Endocrinol Metab 83(6):2199–2203

    CAS  PubMed  Google Scholar 

  • Monnot S et al (2013) Mutation dependance of the mitochondrial DNA copy number in the first stages of human embryogenesis. Hum Mol Genet 22(9):1867–1872

    Article  CAS  PubMed  Google Scholar 

  • Morris BJ (2013) Seven sirtuins for seven deadly diseases ofaging. Free Radic Biol Med 56:133–171

    Article  CAS  PubMed  Google Scholar 

  • Moschos S, Chan JL, Mantzoros CS (2002) Leptin and reproduction: a review. Fertil Steril 77(3):433–444

    Article  PubMed  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J Biol Chem 280(16):16456–16460

    Article  CAS  PubMed  Google Scholar 

  • Nestler JE (1997) Insulin regulation of human ovarian androgens. Hum Reprod 12(suppl_1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Oktem O, Oktay K (2008) The ovary. Ann N Y Acad Sci 1127(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Oktem O, Urman B (2010) Understanding follicle growth in vivo. Hum Reprod 25(12):2944–2954

    Article  PubMed  Google Scholar 

  • Organization, W.H, W.H.O.M.o.S.A. Unit (2014) Global status report on alcohol and health, 2014. World Health Organization, Geneva

    Google Scholar 

  • Ottolenghi C et al (2004) Aging of oocyte, ovary, and human reproduction. Ann N Y Acad Sci 1034(1):117–131

    Article  CAS  PubMed  Google Scholar 

  • Pacella L et al (2012) Women with reduced ovarian reserve or advanced maternal age have an altered follicular environment. Fertil Steril 98(4):986–994. e2

    Article  PubMed  Google Scholar 

  • Pacella-Ince L, Zander-Fox D, Lane M (2014) Mitochondrial SIRT3 and its target glutamate dehydrogenase are altered in follicular cells of women with reduced ovarian reserve or advanced maternal age. Hum Reprod 29(7):1490–1499

    Article  CAS  PubMed  Google Scholar 

  • Perez GI, Tilly JL (1997) Cumulus cells are required for the increased apoptotic potential in oocytes of aged mice. Hum Reprod (Oxford, England) 12(12):2781–2783

    Article  CAS  Google Scholar 

  • Perez GI et al (2000) Mitochondria and the death of oocytes. Nature 403(6769):500–501

    Article  CAS  PubMed  Google Scholar 

  • Perez GI et al (2005) A central role for ceramide in the age-related acceleration of apoptosis in the female germline. FASEB J 19(7):860–862

    Article  CAS  PubMed  Google Scholar 

  • Poulaki V, Mitsiades CS, Mitsiades N (2001) The role of Fas and FasL as mediators of anticancer chemotherapy. Drug Resist Updat 4(4):233–242

    Article  CAS  PubMed  Google Scholar 

  • Razi S et al (2016) Exposure to pistachio pesticides and stillbirth: a case-control study. Epidemiol Health 38:e2016016

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter T, von Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42(11):1039–1042

    Article  CAS  PubMed  Google Scholar 

  • Robker RL et al (2009) Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J Clin Endocrinol Metab 94(5):1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Robker RL, Wu LL-Y, Yang X (2011) Inflammatory pathways linking obesity and ovarian dysfunction. J Reprod Immunol 88(2):142–148

    Article  CAS  PubMed  Google Scholar 

  • Ruman J, Klein J, Sauer M (2003) Understanding the effects of age on female fertility. Minerva Ginecol 55(2):117–127

    CAS  PubMed  Google Scholar 

  • Salmon AB, Richardson A, Pérez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48(5):642–655

    Article  CAS  PubMed  Google Scholar 

  • Sang Q et al (2013a) Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab 98(7):3068–3079

    Article  CAS  PubMed  Google Scholar 

  • Sang Q et al (2013b) Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab 98(7):3068–3079

    Article  CAS  PubMed  Google Scholar 

  • Santonocito M et al (2014) Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril 102(6):1751–1761. e1

    Article  CAS  PubMed  Google Scholar 

  • Santoro N et al (1998) Effects of aging and gonadal failure on the hypothalamic-pituitary axis in women. Am J Obstet Gynecol 178(4):732–741

    Article  CAS  PubMed  Google Scholar 

  • Sastre J et al (2002) Mitochondrial damage in aging and apoptosis. Ann N Y Acad Sci 959(1):448–451

    Article  CAS  PubMed  Google Scholar 

  • Scaglia H et al (1976) Pituitary LH and FSH secretion and responsiveness in women of old age. Acta Endocrinol 81(3):673–679

    Article  CAS  PubMed  Google Scholar 

  • Schettler T et al (1997) Generations at risk: how environmental toxicants may affect reproductive health in California. In: Generations at risk: how environmental toxicants may affect reproductive health in California. PSR. CALPIRG Charitable Trust, San Francisco

    Google Scholar 

  • Selesniemi K et al (2011) Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proc Natl Acad Sci U S A 108(30):12319–12324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah DK et al (2011) Effect of obesity on oocyte and embryo quality in women undergoing in vitro fertilization. Obstet Gynecol 118(1):63–70

    Article  PubMed  Google Scholar 

  • Sliwowska JH et al (2014) Insulin: its role in the central control of reproduction. Physiol Behav 133:197–206

    Article  CAS  PubMed  Google Scholar 

  • Song C et al (2016) Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice. Sci Rep 6:35165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sørensen AE et al (2016) MicroRNA species in follicular fluid associating with polycystic ovary syndrome and related intermediary phenotypes. J Clin Endocrinol Metab 101(4):1579–1589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanford JS et al (2003) Regulation of the G2/M transition in oocytes of Xenopus tropicalis. Dev Biol 260(2):438–448

    Article  CAS  PubMed  Google Scholar 

  • Sukapan P et al (2014) Types of DNA methylation status of the interspersed repetitive sequences for LINE-1, Alu, HERV-E and HERV-K in the neutrophils from systemic lupus erythematosus patients and healthy controls. J Hum Genet 59(4):178

    Article  CAS  PubMed  Google Scholar 

  • Takeo S et al (2017) Age-associated deterioration in follicular fluid induces a decline in bovine oocyte quality. Reprod Fertil Dev 29(4):759–767

    Article  PubMed  Google Scholar 

  • Tamura H et al (2008) Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res 44(3):280–287

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M et al (1995) Expression of the functional soluble form of human fas ligand in activated lymphocytes. EMBO J 14(6):1129–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarlatzis BC, Zepiridis L (2003) Perimenopausal conception. Ann N Y Acad Sci 997(1):93–104

    Article  PubMed  Google Scholar 

  • Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299(5611):1346–1351

    Article  CAS  PubMed  Google Scholar 

  • Tatone C, Amicarelli F (2013) The aging ovary—the poor granulosa cells. Fertil Steril 99(1):12–17

    Article  CAS  PubMed  Google Scholar 

  • Tatone C et al (2008a) Cellular and molecular aspects of ovarian follicle aging. Hum Reprod Update 14(2):131–142

    Article  CAS  PubMed  Google Scholar 

  • Tatone C et al (2008b) Cellular and molecular aspects of ovarian follicle aging. Hum Reprod Update 14(2):131–142

    Article  CAS  PubMed  Google Scholar 

  • Tatone C et al (2010) Female reproductive dysfunction during aging: role of methylglyoxal in the formation of advanced glycation endproducts in ovaries of reproductively-aged mice. J Biol Regul Homeost Agents 24(1):63–72

    CAS  PubMed  Google Scholar 

  • Tortoriello DV, McMinn J, Chua SC (2004) Dietary-induced obesity and hypothalamic infertility in female DBA/2J mice. Endocrinology 145(3):1238–1247

    Article  CAS  PubMed  Google Scholar 

  • Trikudanathan S (2015) Polycystic ovarian syndrome. Med Clin North Am 99(1):221–235

    Article  PubMed  Google Scholar 

  • Tumaneng K et al (2012) YAP mediates crosstalk between the Hippo and PI (3) K–TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14(12):1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Birgelen AP et al (1999) Toxicity of 3, 3′, 4, 4′-tetrachloroazoxybenzene in rats and mice. Toxicol Appl Pharmacol 156(3):206–221

    Article  PubMed  Google Scholar 

  • Van Blerkom J (2004) Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128(3):269–280

    Article  PubMed  CAS  Google Scholar 

  • Van Blerkom J (2011) Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11(5):797–813

    Article  PubMed  CAS  Google Scholar 

  • Van Blerkom J, Cox H, Davis P (2006) Regulatory roles for mitochondria in the peri-implantation mouse blastocyst: possible origins and developmental significance of differential Δψm. Reproduction 131(5):961–976

    Article  PubMed  CAS  Google Scholar 

  • Vanderhyden BC, Armstrong DT (1989) Role of cumulus cells and serum on the in vitro maturation, fertilization, and subsequent development of rat oocytes. Biol Reprod 40(4):720–728

    Article  CAS  PubMed  Google Scholar 

  • Wallace IR et al (2013) Sex hormone binding globulin and insulin resistance. Clin Endocrinol 78(3):321–329

    Article  CAS  Google Scholar 

  • Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15(22):2922–2933

    CAS  PubMed  Google Scholar 

  • Wanichnopparat W et al (2013) Genes associated with the cis-regulatory functions of intragenic LINE-1 elements. BMC Genomics 14(1):205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson LN et al (2012) Heparan sulfate proteoglycans regulate responses to oocyte paracrine signals in ovarian follicle morphogenesis. Endocrinology 153(9):4544–4555

    Article  CAS  PubMed  Google Scholar 

  • Whittingham DG, Siracusa G (1978) The involvement of calcium in the activation of mammalian oocytes. Exp Cell Res 113(2):311–317

    Article  CAS  PubMed  Google Scholar 

  • Wise PM et al (1997) Aging of the female reproductive system: a window into brain aging. Recent Prog Horm Res 52:279–303; discussion 303-5

    CAS  PubMed  Google Scholar 

  • Wu YG et al (2007) The effects of delayed activation and MG132 treatment on nuclear remodeling and preimplantation development of embryos cloned by electrofusion are correlated with the age of recipient cytoplasts. Cloning Stem Cells 9(3):417–431

    Article  CAS  PubMed  Google Scholar 

  • Xu S et al (2011) Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology 152(10):3941–3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagimachi R, Chang MC (1961) Fertilizable life of golden hamster ova and their morphological changes at the time of losing fertilizability. J Exp Zool 148:185–203

    Article  CAS  PubMed  Google Scholar 

  • Yeung F et al (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23(12):2369–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin M et al (2012) Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol 26(7):1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yooyongsatit S et al (2015) Patterns and functional roles of LINE-1 and Alu methylation in the keratinocyte from patients with psoriasis vulgaris. J Hum Genet 60(7):349

    Article  CAS  PubMed  Google Scholar 

  • Younglai EV, Holloway AC, Foster WG (2005) Environmental and occupational factors affecting fertility and IVF success. Hum Reprod Update 11(1):43–57

    Article  PubMed  Google Scholar 

  • Zhao C et al (2011) Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus. PLoS One 6(8):e23925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J et al (2015a) Cumulus cells accelerate oocyte aging by releasing soluble Fas ligand in mice. Sci Rep 5:8683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J et al (2015b) Cumulus cells accelerate oocyte aging by releasing soluble Fas ligand in mice. Sci Rep 5:8683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J et al (2016) The signaling pathways by which the Fas/FasL system accelerates oocyte aging. Aging (Albany NY) 8(2):291–303

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grant # 5300 from the Science and Technology. Development Fund.

Financial Disclosure

The authors report no financial conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagwa El-Badri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, T.A. et al. (2019). Oocyte Aging: The Role of Cellular and Environmental Factors and Impact on Female Fertility. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 8. Advances in Experimental Medicine and Biology(), vol 1247. Springer, Cham. https://doi.org/10.1007/5584_2019_456

Download citation

Publish with us

Policies and ethics