Skip to main content

The “Optimum Volume” of Acrylic Cement Filling for Treating Vertebral Compression Fractures: A Morphometric Study of Thoracolumbar Vertebrae

  • Chapter
  • First Online:
Book cover Advancements and Innovations in Health Sciences

Abstract

Percutaneous vertebroplasty is a treatment option in vertebral compression fractures (VCF). The aim of the study was to propose the mathematical calculation of the “optimum volume” of acrylic cement filling of the vertebral body, depending on the severity of a fracture. Two hundred computed tomography (CT) scans of vertebral columns in healthy adult Caucasians were analyzed. Vertebral body width (VBW), vertebral body depth (VBD), vertebral body height (VBH), and vertebral body volume (VBV) were measured. The “optimum volume” of cement injections in mild (25% collapse) and moderate (40% collapse) VCF were calculated. We found that moving caudally from Th11 to L2, the mean values of the examined parameters increased: VBH from 22.6 to 26.0 mm, VBW from 34.0 to 39.5 mm, VBD from 28.1 to 30.9 mm, and VBV from 17.1 to 24.8 cm3. The calculated hypothetical “optimum volume” of cement injection increased from 7.4 to 10.0 cm3 in mild VCF and from 5.9 to 7.8 cm3 in moderate VCF, with some variability depending on the vertebral level and gender. These values are akin to those present in other past studies. We conclude that morphometric measurements, based on CT images, are a reliable source of practical anatomical savvy, which may be of help in spine surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuzayed B, Tutunculer B, Kucukyuruk B, Tuzgen S (2010) Anatomic basis of anterior and posterior instrumentation of the spine: morphometric study. Surg Radiol Anat 32:75–85

    PubMed  Google Scholar 

  • Alam MM, Waqas M, Shallwani H, Javed G (2014) Lumbar morphometry: a study of lumbar vertebrae from a Pakistani population using computed tomography scans. Asian Spine J 8:421

    PubMed  PubMed Central  Google Scholar 

  • Aquarius R, van der Zijden AM, Homminga J, Verdonschot N, Tanck E (2013) Does bone cement in percutaneous vertebroplasty act as a stress riser? Spine 38:2092–2097

    PubMed  Google Scholar 

  • Baroud G, Crookshank M, Bohner M (2006) High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: an experimental model and study on cement leakage. Spine 31:2562–2568

    PubMed  Google Scholar 

  • Beall D, Lorio MP, Yun BM, Runa MJ, Ong KL, Warner CB (2018) Review of vertebral augmentation: an updated meta-analysis of the effectiveness. Int J Spine Surg 12:295–321

    PubMed  PubMed Central  Google Scholar 

  • Belkoff SM, Mathis JM, Jasper LE, Deramond H (2001) The biomechanics of vertebroplasty. Spine 26:1537–1541

    CAS  PubMed  Google Scholar 

  • Blasco J, Martinez-Ferrer A, Macho J, San Roman L, Pomés J, Carrasco J, Monegal A, Guañabens N, Peris P (2012) Effect of vertebroplasty on pain relief, quality of life, and the incidence of new vertebral fractures: a 12-month randomized follow-up, controlled trial. J Bone Miner Res 27:1159–1166

    Google Scholar 

  • Bozzo A, Bhandari M (2018) Cochrane in CORR®: percutaneous Vertebroplasty for osteoporotic vertebral compression fracture. Clin Orthop Relat Res 476:1920–1927

    PubMed  PubMed Central  Google Scholar 

  • Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C, Graves S, Staples MP, Murphy B (2009) A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med 361:557–568

    CAS  PubMed  Google Scholar 

  • Calmels V, Vallée J-N, Rose M, Chiras J (2007) Osteoblastic and mixed spinal metastases: evaluation of the analgesic efficacy of percutaneous vertebroplasty. Am J Neuroradiol 28:570–574

    CAS  PubMed  Google Scholar 

  • Che H, Breuil V, Cortet B, Paccou J, Thomas T, Chapuis L, Debiais F, Mehsen-Cetre N, Javier RM, Loiseau Peres S, Roux C, Briot K (2018) Vertebral fractures cascade: potential causes and risk factors. Osteoporos Int 30:555–563

    PubMed  Google Scholar 

  • Chew C, Craig L, Edwards R, Moss J, O’Dwyer PJ (2011) Safety and efficacy of percutaneous vertebroplasty in malignancy: a systematic review. Clin Radiol 66:63–72

    CAS  PubMed  Google Scholar 

  • Clark W, Bird P, Gonski P, Diamond TH, Smerdely P, McNeil HP, Schlaphoff G, Bryant C, Barnes E, Gebski V (2016) Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 388:1408–1416

    PubMed  Google Scholar 

  • Deramond H, Depriester C, Galibert P, Le Gars D (1998) Percutaneous vertebroplasty with polymethylmethacrylate: technique, indications, and results. Radiol Clin N Am 36:533–546

    CAS  PubMed  Google Scholar 

  • Diacinti D, Pisani D, Del Fiacco R, Francucci CM, Fiore CE, Frediani B, Barone A, Bartalena T, Cattaruzza MS, Guglielmi G, Diacinti D, Romagnoli E, Minisola S (2011) Vertebral morphometry by X-ray absorptiometry: which reference data for vertebral heights? Bone 49(3):526–536

    PubMed  Google Scholar 

  • Dzierżanowski J, Szarmach A, Słoniewski P, Czapiewski P, Piskunowicz M, Bandurski T, Szmuda T (2014) The posterior communicating artery: morphometric study in 3D angio-computed tomography reconstruction. The proof of the mathematical definition of the hypoplasia. Folia Morphol (Warsz) 73:286–291

    Google Scholar 

  • Dzierzanowski J, Skotarczyk M, Baczkowska-Waliszewska Z, Krakowiak M, Radkowski M, Łuczkiewicz P, Czapiewski P, Szmuda T, Słoniewski P, Szurowska E, Winklewski PJ, Demkow U, Szarmach A (2019) Morphometric analysis of the lumbar vertebrae concerning the optimum screw selection for transpedicular stabilization. Adv Exp Med Biol 1133:83–96

    PubMed  Google Scholar 

  • Esses SI, McGuire R, Jenkins J, Finkelstein J, Woodard E, Watters WC 3rd, Goldberg MJ, Keith M, Turkelson CM, Wies JL, Sluka P, Boyer KM, Hitchcock K, Raymond L (2011) American Academy of Orthopaedic Surgeons clinical practice guideline on: the treatment of osteoporotic spinal compression fractures. J Bone Joint Surg Am 93:1934–1196

    PubMed  Google Scholar 

  • Fadili Hassani S, Cormier E, Shotar E, Drir M, Spano JP, Morardet L, Collet JP, Chiras J, Clarençon F (2018) Intracardiac cement embolism during percutaneous vertebroplasty: incidence, risk factors and clinical management. Eur Radiol 29:663–673

    PubMed  Google Scholar 

  • Firanescu CE, de Vries J, Lodder P, Venmans A, Schoemaker MC, Smeets AJ, Donga E, Juttmann JR, Klazen CAH, Elgersma OEH, Jansen FH, Tielbeek AV, Boukrab I, Schonenberg K, van Rooij WJJ, Hirsch JA, Lohle PNM (2018) Vertebroplasty versus sham procedure for painful acute osteoporotic vertebral compression fractures (VERTOS IV): randomised sham controlled clinical trial. BMJ 361:k1551

    PubMed  PubMed Central  Google Scholar 

  • Fu Z, Hu X, Wu Y, Zhou Z (2016) Is there a dose–response relationship of cement volume with cement leakage and pain relief after vertebroplasty? Dose-Response 14(4):1559325816682867

    PubMed  PubMed Central  Google Scholar 

  • Galibert P, Deramond H, Rosat P, Le Gars D (1987) Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie 33:166–168

    CAS  PubMed  Google Scholar 

  • Gangi A, Guth S, Imbert JP, Marin H, Dietemann JL (2003) Percutaneous vertebroplasty: indications, technique, and results. Radiographics 23(2):e10

    PubMed  Google Scholar 

  • Genant HK, Wu CY, van Kuijk C, Nevitt MC (2009) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Google Scholar 

  • Han SL, Wan SL, Li QT, Xu DT, Zang HM, Chen NJ, Chen LY, Zhang WP, Luan C, Yang F, Xu ZW (2014) Is vertebroplasty a risk factor for subsequent vertebral fracture, meta-analysis of published evidence? Osteoporos Int 26:113–122

    PubMed  Google Scholar 

  • Hiwatashi A, Moritani T, Numaguchi Y, Westesson PL (2003) Increase in vertebral body height after vertebroplasty. AJNR Am J Neuroradiol 24:185–189

    PubMed  Google Scholar 

  • Hou Y, Yao Q, Zhang G, Ding L, Huang H (2018) Polymethylmethacrylate distribution is associated with recompression after vertebroplasty or kyphoplasty for osteoporotic vertebral compression fractures: a retrospective study. PLoS One 13:e0198407

    PubMed  PubMed Central  Google Scholar 

  • Jin YJ, Yoon SH, Park KW, Chung SK, Kim KJ, Yeom JS, Kim HJ (2011) The volumetric analysis of cement in vertebroplasty: relationship with clinical outcome and complications. Spine 36:E761–E772

    PubMed  Google Scholar 

  • Kallmes DF, Comstock BA, Heagerty PJ, Turner JA, Wilson DJ, Diamond TH, Edwards R, Gray LA, Stout L, Owen S, Hollingworth W, Ghdoke B, Annesley-Williams DJ, Ralston SH, Jarvik JG (2009) A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med 361:569–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karabekir HS, Gocmen-Mas N, Edizer M, Ertekin T, Yazici C, Atamturk D (2011) Lumbar vertebra morphometry and stereological assesment of intervertebral space volumetry: a methodological study. Ann Anat Anat Anzeiger 193:231–236

    Google Scholar 

  • Kaur K, Singh R, Prasath V, Magu S, Tanwar M (2016) Computed tomographic-based morphometric study of thoracic spine and its relevance to anaesthetic and spinal surgical procedures. J Clin Orthop Trauma 7:101–108

    PubMed  PubMed Central  Google Scholar 

  • Klazen CA, Verhaar HJ, Lampmann LE, Juttmann JR, Blonk MC, Jansen FH, Tielbeek AV, Schoemaker MC, Buskens E, van der Graaf Y, Janssens X, Fransen H, van Everdingen KJ, Muller AF, Mali WP, Lohle PN (2007) VERTOS II: percutaneous vertebroplasty versus conservative therapy in patients with painful osteoporotic vertebral compression fractures; rationale, objectives and design of a multicenter randomized controlled trial. Trials 8:33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel ME, Schmidt H, Wilke HJ (2010) Prediction equations for human thoracic and lumbar vertebral morphometry. J Anat 216:320–328

    PubMed  Google Scholar 

  • Kwon HM, Lee SP, Baek JW, Kim SH (2016) Appropriate cement volume in vertebroplasty: a multivariate analysis with short-term follow-up. Korean J Neurotrauma 12:128

    PubMed  PubMed Central  Google Scholar 

  • Limthongkul W, Karaikovic EE, Savage JW, Markovic A (2010) Volumetric analysis of thoracic and lumbar vertebral bodies. Spine J 10:153–158

    PubMed  Google Scholar 

  • Lin WC, Lee YC, Lee CH, Kuo YL, Cheng YF, Lui CC, Cheng TT (2008) Refractures in cemented vertebrae after percutaneous vertebroplasty: a retrospective analysis. Eur Spine J 17:592–599

    PubMed  PubMed Central  Google Scholar 

  • Lin D, Hao J, Li L, Wang L, Zhang H, Zou W, Lian K (2017) Effect of bone cement volume fraction on adjacent vertebral fractures after unilateral percutaneous kyphoplasty. Clin Spine Surg 30:E270–E275

    PubMed  Google Scholar 

  • Mahato NK (2011) Disc spaces, vertebral dimensions, and angle values at the lumbar region: a radioanatomical perspective in spines with L5–S1 transitions. J Neurosurg Spine 15:371–379

    PubMed  Google Scholar 

  • Mansoorinasab M, Abdolhoseinpour H (2018) A review and update of vertebral fractures due to metastatic tumors of various sites to the spine: percutaneous vertebroplasty. Interv Med Appl Sci 10:1–6

    PubMed  PubMed Central  Google Scholar 

  • Martinčič D, Brojan M, Kosel F, Štern D, Vrtovec T, Antolič V, Vengust R (2014) Minimum cement volume for vertebroplasty. Int Orthop 39:727–733

    PubMed  Google Scholar 

  • Molloy S, Mathis JM, Belkoff SM (2003) The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty. Spine 28:1549–1554

    PubMed  Google Scholar 

  • Molloy S, Riley LH 3rd, Belkoff SM (2005) Effect of cement volume and placement on mechanical-property restoration resulting from vertebroplasty. AJNR Am J Neuroradiol 26:401–404

    PubMed  Google Scholar 

  • Morosano ME, Menoyo I, Caferra DA, Sánchez A, Tomat MF, Bocanera R, Pezzotto SM, Masoni AM (2011) Vulnerability of healthy vertebrae in patients with and without previous vertebral fracture. Bone 48:820–827

    PubMed  Google Scholar 

  • Mousavi P, Roth S, Finkelstein J, Cheung G, Whyne C (2003) Volumetric quantification of cement leakage following percutaneous vertebroplasty in metastatic and osteoporotic vertebrae. J Neurosurg 99:56–59

    PubMed  Google Scholar 

  • Pflugmacher R, Schleicher P, Schröder RJ, Melcher I, Klostermann CK (2006) Maintained pain reduction in five patients with multiple myeloma 12 months after treatment of the involved cervical vertebrae with vertebroplasty. Acta Radiol 47:823–829

    CAS  PubMed  Google Scholar 

  • Rabei R, Patel K, Ginsburg M, Patel MV, Turba UC, Arslan B, Ahmed O (2019) Percutaneous vertebral augmentation for vertebral compression fractures: national trends in the medicare population (2005-2015). Spine 44:123–133

    PubMed  Google Scholar 

  • Scheuter C, Wertli MM, Haynes AG, Panczak R, Chiolero A, Perrier A, Rodondi N, Aujesky D (2018) Unwarranted regional variation in vertebroplasty and kyphoplasty in Switzerland: a population-based small area variation analysis. PLoS One 13:e0208578

    PubMed  PubMed Central  Google Scholar 

  • Štern D, Njagulj V, Likar B, Pernuš F, Vrtovec T (2012) Quantitative vertebral morphometry based on parametric modeling of vertebral bodies in 3D. Osteoporos Int 24:1357–1368

    PubMed  Google Scholar 

  • Sun H-B, Jing X-S, Liu Y-Z, Qi M, Wang X-K, Hai Y (2018) The optimum volume fraction in percutaneous vertebroplasty evaluated by pain relief, cement dispersion, and cement leakage: a prospective cohort study of 130~patients with painful osteoporotic vertebral compression fracture in the thoracolumbar vertebra. World Neurosurg 114:e677–e688

    PubMed  Google Scholar 

  • Tan SH, Teo EC, Chua HC (2004) Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur Spine J 13:137–146

    CAS  PubMed  Google Scholar 

  • Uppin AA, Hirsch JA, Centenera LV, Pfiefer BA, Pazianos AG, Choi IS (2003) Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 226:119–124

    PubMed  Google Scholar 

  • Wang X, Kou J-M, Yue Y, Weng X-S, Qiu Z-Y, Zhang X-F (2018) Clinical outcome comparison of polymethylmethacrylate bone cement with and without mineralized collagen modification for osteoporotic vertebral compression fractures. Medicine 97:e12204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf A, Shoham M, Michael S, Moshe R (2001) Morphometric study of the human lumbar spine for operation-workspace specifications. Spine 26:2472–2477

    CAS  PubMed  Google Scholar 

  • Xie W, Jin D, Wan C, Ding J, Zhang S, Jiang X, Xu J (2015) The incidence of new vertebral fractures following vertebral augmentation: a meta-analysis of randomized controlled trials. Medicine 94:e1532

    PubMed  PubMed Central  Google Scholar 

  • Yang CC, Chien JT, Tsai TY, Yeh KT, Lee RP, Wu WT (2018) Earlier vertebroplasty for osteoporotic thoracolumbar compression fracture may minimize the subsequent development of adjacent fractures: a retrospective study. Pain Physician 21:E483–E491

    PubMed  Google Scholar 

  • Yang W, Yang J, Liang M (2019) Percutaneous vertebroplasty does not increase the incidence of new fractures in adjacent and nonadjacent vertebral bodies. Clin Spine Surg 32:E99–E106

    PubMed  Google Scholar 

  • Yu WB, Jiang XB, Liang D, Xu WX, Ye LQ, Wang J (2019) Risk factors and score for recollapse of the augmented vertebrae after percutaneous vertebroplasty in osteoporotic vertebral compression fractures. Osteoporos Int 30:423–430

    CAS  PubMed  Google Scholar 

  • Zhang L, Wang Q, Wang L, Shen J, Zhang Q, Sun C (2017) Bone cement distribution in the vertebral body affects chances of recompression after percutaneous vertebroplasty treatment in elderly patients with osteoporotic vertebral compression fractures. Clin Interv Aging 12:431–436

    PubMed  PubMed Central  Google Scholar 

  • Zhu SY, Zhong ZM, Wu Q, Chen JT (2016) Risk factors for bone cement leakage in percutaneous vertebroplasty: a retrospective study of four hundred and eighty five patients. Int Orthop 40:1205–1210

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical University of Gdansk and Warsaw Medical University in Poland.

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study protocol was approved by the Independent Ethics Committee of the Medical University of Gdansk, Poland.

Informed Consent

Written informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Demkow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dzierżanowski, J. et al. (2019). The “Optimum Volume” of Acrylic Cement Filling for Treating Vertebral Compression Fractures: A Morphometric Study of Thoracolumbar Vertebrae. In: Pokorski, M. (eds) Advancements and Innovations in Health Sciences. Advances in Experimental Medicine and Biology(), vol 1211. Springer, Cham. https://doi.org/10.1007/5584_2019_417

Download citation

Publish with us

Policies and ethics