Skip to main content

Role of Major Toxin Virulence Factors in Pertussis Infection and Disease Pathogenesis

  • Chapter
  • First Online:
Pertussis Infection and Vaccines

Part of the book series: Advances in Experimental Medicine and Biology ((AMIDPH,volume 1183))

Abstract

Bordetella pertussis produces several toxins that affect host-pathogen interactions. Of these, the major toxins that contribute to pertussis infection and disease are pertussis toxin, adenylate cyclase toxin-hemolysin and tracheal cytotoxin. Pertussis toxin is a multi-subunit protein toxin that inhibits host G protein-coupled receptor signaling, causing a wide array of effects on the host. Adenylate cyclase toxin-hemolysin is a single polypeptide, containing an adenylate cyclase enzymatic domain coupled to a hemolysin domain, that primarily targets phagocytic cells to inhibit their antibacterial activities. Tracheal cytotoxin is a fragment of peptidoglycan released by B. pertussis that elicits damaging inflammatory responses in host cells. This chapter describes these three virulence factors of B. pertussis, summarizing background information and focusing on the role of each toxin in infection and disease pathogenesis, as well as their role in pertussis vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson PB, Hull SS Jr, Vanoli E, De Ferrari GM, Wisler P, Foreman RD, Watanabe AM, Schwartz PJ (1993) Pertussis toxin-induced ADP ribosylation of inhibitor G proteins alters vagal control of heart rate in vivo. Am J Phys 265(2 Pt 2):H734–H740

    CAS  Google Scholar 

  • Agarwal N, Lamichhane G, Gupta R, Nolan S, Bishai WR (2009) Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460(7251):98–102

    CAS  PubMed  Google Scholar 

  • Ahmad JN, Cerny O, Linhartova I, Masin J, Osicka R, Sebo P (2016) cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cell Microbiol 18(3):384–398

    CAS  PubMed  Google Scholar 

  • Andreasen C, Carbonetti NH (2008) Pertussis toxin inhibits early chemokine production to delay neutrophil recruitment in response to Bordetella pertussis respiratory tract infection in mice. Infect Immun 76(11):5139–5148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andreasen C, Carbonetti NH (2009) Role of neutrophils in response to Bordetella pertussis infection in mice. Infect Immun 77(3):1182–1188

    CAS  PubMed  Google Scholar 

  • Andreasen C, Powell DA, Carbonetti NH (2009) Pertussis toxin stimulates IL-17 production in response to Bordetella pertussis infection in mice. PLoS One 4(9):e7079

    PubMed  PubMed Central  Google Scholar 

  • Arimoto H, Tanuma N, Jee Y, Miyazawa T, Shima K, Matsumoto Y (2000) Analysis of experimental autoimmune encephalomyelitis induced in F344 rats by pertussis toxin administration. J Neuroimmunol 104(1):15–21

    CAS  PubMed  Google Scholar 

  • Arp LH, Fagerland JA (1987) Ultrastructural pathology of Bordetella avium infection in turkeys. Vet Pathol 24(5):411–418

    CAS  PubMed  Google Scholar 

  • Bargatze RF, Butcher EC (1993) Rapid G protein-regulated activation event involved in lymphocyte binding to high endothelial venules. J Exp Med 178(1):367–372

    CAS  PubMed  Google Scholar 

  • Basler M, Masin J, Osicka R, Sebo P (2006) Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes. Infect Immun 74(4):2207–2214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassinet L, Gueirard P, Maitre B, Housset B, Gounon P, Guiso N (2000) Role of adhesins and toxins in invasion of human tracheal epithelial cells by Bordetella pertussis. Infect Immun 68(4):1934–1941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beck TC, Gomes AC, Cyster JG, Pereira JP (2014) CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. J Exp Med 211(13):2567–2581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bemis DA (1992) Bordetella and Mycoplasma respiratory infections in dogs and cats. Vet Clin North Am Small Anim Pract 22(5):1173–1186

    CAS  PubMed  Google Scholar 

  • Bennett J, Basivireddy J, Kollar A, Biron KE, Reickmann P, Jefferies WA, McQuaid S (2010) Blood-brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol 229(1–2):180–191

    CAS  PubMed  Google Scholar 

  • Benz R, Maier E, Ladant D, Ullmann A, Sebo P (1994) Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J Biol Chem 269(44):27231–27239

    CAS  PubMed  Google Scholar 

  • Boehm DT, Hall JM, Wong TY, DiVenere AM, Sen-Kilic E, Bevere JR, Bradford SD, Blackwood CB, Elkins CM, DeRoos KA, Gray MC, Cooper CG, Varney ME, Maynard JA, Hewlett EL, Barbier M, Damron FH (2018) Evaluation of adenylate cyclase toxoid antigen in acellular pertussis vaccines by using a Bordetella pertussis challenge model in mice. Infect Immun 86(10)

    Google Scholar 

  • Boothby D, Daneo-Moore L, Higgins ML, Coyette J, Shockman GD (1973) Turnover of bacterial cell wall peptidoglycans. J Biol Chem 248(6):2161–2169

    CAS  PubMed  Google Scholar 

  • Bouchez V, Brun D, Cantinelli T, Dore G, Njamkepo E, Guiso N (2009) First report and detailed characterization of B. pertussis isolates not expressing pertussis toxin or pertactin. Vaccine 27(43):6034–6041

    CAS  PubMed  Google Scholar 

  • Boyd AP, Ross PJ, Conroy H, Mahon N, Lavelle EC, Mills KH (2005) Bordetella pertussis adenylate cyclase toxin modulates innate and adaptive immune responses: distinct roles for acylation and enzymatic activity in immunomodulation and cell death. J Immunol 175(2):730–738

    CAS  PubMed  Google Scholar 

  • Bruss JB, Malley R, Halperin S, Dobson S, Dhalla M, McIver J, Siber GR (1999) Treatment of severe pertussis: a study of the safety and pharmacology of intravenous pertussis immunoglobulin. Pediatr Infect Dis J 18(6):505–511

    CAS  PubMed  Google Scholar 

  • Bumba L, Masin J, Fiser R, Sebo P (2010) Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog 6(5):e1000901

    PubMed  PubMed Central  Google Scholar 

  • Bumba L, Masin J, Macek P, Wald T, Motlova L, Bibova I, Klimova N, Bednarova L, Veverka V, Kachala M, Svergun DI, Barinka C, Sebo P (2016) Calcium-driven folding of RTX domain beta-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol Cell 62(1):47–62

    CAS  PubMed  Google Scholar 

  • Carbonetti NH (2010) Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol 5(3):455–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonetti NH (2016) Pertussis leukocytosis: mechanisms, clinical relevance and treatment. Pathog Dis 74:ftw087. https://doi.org/10.1093/femspd/ftw087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonetti NH, Artamonova GV, Mays RM, Worthington ZE (2003) Pertussis toxin plays an early role in respiratory tract colonization by Bordetella pertussis. Infect Immun 71(11):6358–6366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonetti NH, Artamonova GV, Andreasen C, Dudley E, Mays RM, Worthington ZE (2004) Suppression of serum antibody responses by pertussis toxin after respiratory tract colonization by Bordetella pertussis and identification of an immunodominant lipoprotein. Infect Immun 72(6):3350–3358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonetti NH, Artamonova GV, Andreasen C, Bushar N (2005) Pertussis toxin and adenylate cyclase toxin provide a one-two punch for establishment of Bordetella pertussis infection of the respiratory tract. Infect Immun 73(5):2698–2703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonetti NH, Artamonova GV, Van Rooijen N, Ayala VI (2007) Pertussis toxin targets airway macrophages to promote Bordetella pertussis infection of the respiratory tract. Infect Immun 75(4):1713–1720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerny O, Kamanova J, Masin J, Bibova I, Skopova K, Sebo P (2015) Bordetella pertussis adenylate cyclase toxin blocks induction of bactericidal nitric oxide in macrophages through cAMP-dependent activation of the SHP-1 Phosphatase. J Immunol 194(10):4901–4913

    CAS  PubMed  Google Scholar 

  • Chaloupka J, Strnadova M (1972) Turnover of murein in a diaminopimelic acid dependent mutant of Escherichia coli. Folia Microbiol (Praha) 17(6):446–455

    CAS  Google Scholar 

  • Chattopadhyay R, Mani AM, Singh NK, Rao GN (2018) Resolvin D1 blocks H2O2-mediated inhibitory crosstalk between SHP2 and PP2A and suppresses endothelial-monocyte interactions. Free Radic Biol Med 117:119–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, He Q (2017) Immune persistence after pertussis vaccination. Hum Vaccin Immunother 13(4):744–756. https://doi.org/10.1080/21645515.2016.1259780

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung GY, Xing D, Prior S, Corbel MJ, Parton R, Coote JG (2006) Effect of different forms of adenylate cyclase toxin of Bordetella pertussis on protection afforded by an acellular pertussis vaccine in a murine model. Infect Immun 74(12):6797–6805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Confer DL, Eaton JW (1982) Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217(4563):948–950

    CAS  PubMed  Google Scholar 

  • Connelly CE, Sun Y, Carbonetti NH (2012) Pertussis toxin exacerbates and prolongs airway inflammatory responses during Bordetella pertussis infection. Infect Immun 80(12):4317–4332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cookson BT, Cho HL, Herwaldt LA, Goldman WE (1989a) Biological activities and chemical composition of purified tracheal cytotoxin of Bordetella pertussis. Infect Immun 57(7):2223–2229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cookson BT, Tyler AN, Goldman WE (1989b) Primary structure of the peptidoglycan-derived tracheal cytotoxin of Bordetella pertussis. Biochemistry 28(4):1744–1749

    CAS  PubMed  Google Scholar 

  • Coutte L, Locht C (2015) Investigating pertussis toxin and its impact on vaccination. Future Microbiol 10:241–254

    CAS  PubMed  Google Scholar 

  • Cundell DR, Kanthakumar K, Taylor GW, Goldman WE, Flak T, Cole PJ, Wilson R (1994) Effect of tracheal cytotoxin from Bordetella pertussis on human neutrophil function in vitro. Infect Immun 62(2):639–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalby T, Andersen PH, Hoffmann S (2016) Epidemiology of pertussis in Denmark, 1995 to 2013. Euro Surveill 21(36)

    Google Scholar 

  • Doino JA, McFall-Ngai MJ (1995) A transient exposure to symbiosis-competent bacteria induces light organ morphogenesis in the host squid. Biol Bull 189(3):347–355

    CAS  PubMed  Google Scholar 

  • Dudek SM, Camp SM, Chiang ET, Singleton PA, Usatyuk PV, Zhao Y, Natarajan V, Garcia JG (2007) Pulmonary endothelial cell barrier enhancement by FTY720 does not require the S1P1 receptor. Cell Signal 19(8):1754–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunne A, Ross PJ, Pospisilova E, Masin J, Meaney A, Sutton CE, Iwakura Y, Tschopp J, Sebo P, Mills KH (2010) Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J Immunol 185(3):1711–1719

    CAS  PubMed  Google Scholar 

  • Eby JC, Ciesla WP, Hamman W, Donato GM, Pickles RJ, Hewlett EL, Lencer WI (2010) Selective translocation of the Bordetella pertussis adenylate cyclase toxin across the basolateral membranes of polarized epithelial cells. J Biol Chem 285(14):10662–10670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eby JC, Gray MC, Hewlett EL (2014) Cyclic AMP-mediated suppression of neutrophil extracellular trap formation and apoptosis by the Bordetella pertussis adenylate cyclase toxin. Infect Immun 82(12):5256–5269

    PubMed  PubMed Central  Google Scholar 

  • el Baya A, Linnemann R, von Olleschik-Elbheim L, Robenek H, Schmidt MA (1997) Endocytosis and retrograde transport of pertussis toxin to the Golgi complex as a prerequisite for cellular intoxication. Eur J Cell Biol 73(1):40–48

    PubMed  Google Scholar 

  • Endoh M, Takezawa T, Nakase Y (1980) Adenylate cyclase activity of Bordetella organisms. I. Its production in liquid medium. Microbiol Immunol 24(2):95–104

    CAS  PubMed  Google Scholar 

  • Endoh M, Amitani M, Nakase Y (1986) Purification and characterization of heat-labile toxin from Bordetella bronchiseptica. Microbiol Immunol 30(7):659–673

    CAS  PubMed  Google Scholar 

  • Ernst K, Eberhardt N, Mittler AK, Sonnabend M, Anastasia A, Freisinger S, Schiene-Fischer C, Malesevic M, Barth H (2018) Pharmacological cyclophilin inhibitors prevent intoxication of mammalian cells with Bordetella pertussis toxin. Toxins 10(5)

    PubMed Central  Google Scholar 

  • Fedele G, Spensieri F, Palazzo R, Nasso M, Cheung GY, Coote JG, Ausiello CM (2010) Bordetella pertussis commits human dendritic cells to promote a Th1/Th17 response through the activity of adenylate cyclase toxin and MAPK-pathways. PLoS One 5(1):e8734

    PubMed  PubMed Central  Google Scholar 

  • Fedele G, Bianco M, Debrie AS, Locht C, Ausiello CM (2011) Attenuated Bordetella pertussis vaccine candidate BPZE1 promotes human dendritic cell CCL21-induced migration and drives a Th1/Th17 response. J Immunol 186(9):5388–5396

    CAS  PubMed  Google Scholar 

  • Feunou PF, Kammoun H, Debrie AS, Mielcarek N, Locht C (2010) Long-term immunity against pertussis induced by a single nasal administration of live attenuated B. pertussis BPZE1. Vaccine 28(43):7047–7053

    CAS  PubMed  Google Scholar 

  • Finck-Barbancon V, Barbieri JT (1996) Preferential processing of the S1 subunit of pertussis toxin that is bound to eukaryotic cells. Mol Microbiol 22(1):87–95

    CAS  PubMed  Google Scholar 

  • Fiser R, Masin J, Basler M, Krusek J, Spulakova V, Konopasek I, Sebo P (2007) Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J Biol Chem 282(5):2808–2820

    CAS  PubMed  Google Scholar 

  • Fiser R, Masin J, Bumba L, Pospisilova E, Fayolle C, Basler M, Sadilkova L, Adkins I, Kamanova J, Cerny J, Konopasek I, Osicka R, Leclerc C, Sebo P (2012) Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog 8(4):e1002580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flak TA, Goldman WE (1999) Signalling and cellular specificity of airway nitric oxide production in pertussis. Cell Microbiol 1(1):51–60

    CAS  PubMed  Google Scholar 

  • Flak TA, Heiss LN, Engle JT, Goldman WE (2000) Synergistic epithelial responses to endotoxin and a naturally occurring muramyl peptide. Infect Immun 68(3):1235–1242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Folkening WJ, Nogami W, Martin SA, Rosenthal RS (1987) Structure of Bordetella pertussis peptidoglycan. J Bacteriol 169(9):4223–4227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman RL, Fiederlein RL, Glasser L, Galgiani JN (1987) Bordetella pertussis adenylate cyclase: effects of affinity-purified adenylate cyclase on human polymorphonuclear leukocyte functions. Infect Immun 55(1):135–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gentry-Weeks CR, Cookson BT, Goldman WE, Rimler RB, Porter SB, Curtiss R 3rd (1988) Dermonecrotic toxin and tracheal cytotoxin, putative virulence factors of Bordetella avium. Infect Immun 56(7):1698–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser P, Ladant D, Sezer O, Pichot F, Ullmann A, Danchin A (1988a) The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol Microbiol 2(1):19–30

    CAS  PubMed  Google Scholar 

  • Glaser P, Sakamoto H, Bellalou J, Ullmann A, Danchin A (1988b) Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J 7(12):3997–4004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman WE, Cookson BT (1988) Structure and functions of the Bordetella tracheal cytotoxin. Tokai J Exp Clin Med 13(Suppl):187–191

    PubMed  Google Scholar 

  • Goldman WE, Klapper DG, Baseman JB (1982) Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect Immun 36(2):782–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Bullon D, Uribe KB, Martin C, Ostolaza H (2017) Phospholipase A activity of adenylate cyclase toxin mediates translocation of its adenylate cyclase domain. Proc Natl Acad Sci U S A 114(33):E6784–E6793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodell EW (1985) Recycling of murein by Escherichia coli. J Bacteriol 163(1):305–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodell EW, Fazio M, Tomasz A (1978) Effect of benzylpenicillin on the synthesis and structure of the cell envelope of Neisseria gonorrhoeae. Antimicrob Agents Chemother 13(3):514–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin MS, Weiss AA (1990) Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect Immun 58(10):3445–3447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon VM, Young WW Jr, Lechler SM, Gray MC, Leppla SH, Hewlett EL (1989) Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells. J Biol Chem 264(25):14792–14796

    CAS  PubMed  Google Scholar 

  • Gray M, Szabo G, Otero AS, Gray L, Hewlett E (1998) Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J Biol Chem 273(29):18260–18267

    CAS  PubMed  Google Scholar 

  • Gray MC, Ross W, Kim K, Hewlett EL (1999) Characterization of binding of adenylate cyclase toxin to target cells by flow cytometry. Infect Immun 67(9):4393–4399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray MC, Donato GM, Jones FR, Kim T, Hewlett EL (2004) Newly secreted adenylate cyclase toxin is responsible for intoxication of target cells by Bordetella pertussis. Mol Microbiol 53(6):1709–1719

    CAS  PubMed  Google Scholar 

  • Grimm M, Gsell S, Mittmann C, Nose M, Scholz H, Weil J, Eschenhagen T (1998) Inactivation of (Gialpha) proteins increases arrhythmogenic effects of beta-adrenergic stimulation in the heart. J Mol Cell Cardiol 30(10):1917–1928. https://doi.org/10.1006/jmcc.1998.0769

    Article  CAS  PubMed  Google Scholar 

  • Gross MK, Au DC, Smith AL, Storm DR (1992) Targeted mutations that ablate either the adenylate cyclase or hemolysin function of the bifunctional cyaA toxin of Bordetella pertussis abolish virulence. Proc Natl Acad Sci U S A 89(11):4898–4902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gueirard P, Druilhe A, Pretolani M, Guiso N (1998) Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect Immun 66(4):1718–1725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guermonprez P, Khelef N, Blouin E, Rieu P, Ricciardi-Castagnoli P, Guiso N, Ladant D, Leclerc C (2001) The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med 193(9):1035–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Q, Shen Y, Lee YS, Gibbs CS, Mrksich M, Tang WJ (2005) Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J 24(18):3190–3201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett M, Guo L, Shabanowitz J, Hunt DF, Hewlett EL (1994) Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science 266(5184):433–435

    CAS  PubMed  Google Scholar 

  • Hackett M, Walker CB, Guo L, Gray MC, Van Cuyk S, Ullmann A, Shabanowitz J, Hunt DF, Hewlett EL, Sebo P (1995) Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J Biol Chem 270(35):20250–20253

    CAS  PubMed  Google Scholar 

  • Hanski E, Farfel Z (1985) Bordetella pertussis invasive adenylate cyclase. Partial resolution and properties of its cellular penetration. J Biol Chem 260(9):5526–5532

    CAS  PubMed  Google Scholar 

  • Harvill ET, Cotter PA, Yuk MH, Miller JF (1999) Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. Infect Immun 67(3):1493–1500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hazes B, Boodhoo A, Cockle SA, Read RJ (1996) Crystal structure of the pertussis toxin-ATP complex: a molecular sensor. J Mol Biol 258(4):661–671

    CAS  PubMed  Google Scholar 

  • Hebeler BH, Young FE (1976) Chemical composition and turnover of peptidoglycan in Neisseria gonorrhoeae. J Bacteriol 126(3):1180–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt M, Canning BJ (2010) Coughing precipitated by Bordetella pertussis infection. Lung 188(Suppl 1):S73–S79

    PubMed  Google Scholar 

  • Hewlett EL, Urban MA, Manclark CR, Wolff J (1976) Extracytoplasmic adenylate cyclase of Bordetella pertussis. Proc Natl Acad Sci U S A 73(6):1926–1930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hewlett EL, Manclark CR, Wolff J (1977) Adenyl cyclase in Bordetella pertussis vaccines. J Infect Dis 136(Suppl):S216–S219

    PubMed  Google Scholar 

  • Hewlett EL, Donato GM, Gray MC (2006) Macrophage cytotoxicity produced by adenylate cyclase toxin from Bordetella pertussis: more than just making cyclic AMP! Mol Microbiol 59(2):447–459

    CAS  PubMed  Google Scholar 

  • Hinds PW 2nd, Yin C, Salvato MS, Pauza CD (1996) Pertussis toxin induces lymphocytosis in rhesus macaques. J Med Primatol 25(6):375–381

    CAS  PubMed  Google Scholar 

  • Hodge G, Hodge S, Markus C, Lawrence A, Han P (2003) A marked decrease in L-selectin expression by leucocytes in infants with Bordetella pertussis infection: leucocytosis explained? Respirology 8(2):157–162

    PubMed  Google Scholar 

  • Hudnall SD, Molina CP (2000) Marked increase in L-selectin-negative T cells in neonatal pertussis. The lymphocytosis explained? Am J Clin Pathol 114(1):35–40

    CAS  PubMed  Google Scholar 

  • Jacobs C, Huang LJ, Bartowsky E, Normark S, Park JT (1994) Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J 13(19):4684–4694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jo YY, Lee JY, Park CK (2016) Resolvin E1 inhibits substance P-Induced potentiation of TRPV1 in primary sensory neurons. Mediat Inflamm 2016:5259321

    Google Scholar 

  • Kamanova J, Kofronova O, Masin J, Genth H, Vojtova J, Linhartova I, Benada O, Just I, Sebo P (2008) Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J Immunol 181(8):5587–5597

    CAS  PubMed  Google Scholar 

  • Kapil P, Papin JF, Wolf RF, Zimmerman LI, Wagner LD, Merkel TJ (2018) Maternal vaccination with a monocomponent pertussis toxoid vaccine is sufficient to protect infants in a baboon model of whooping cough. J Infect Dis 217(8):1231–1236

    PubMed  PubMed Central  Google Scholar 

  • Katada T (2012) The inhibitory G protein G(i) identified as pertussis toxin-catalyzed ADP-ribosylation. Biol Pharm Bull 35(12):2103–2111

    CAS  PubMed  Google Scholar 

  • Khelef N, Sakamoto H, Guiso N (1992) Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Microb Pathog 12(3):227–235

    CAS  PubMed  Google Scholar 

  • Khelef N, Zychlinsky A, Guiso N (1993) Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase-hemolysin. Infect Immun 61(10):4064–4071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khelef N, Bachelet CM, Vargaftig BB, Guiso N (1994) Characterization of murine lung inflammation after infection with parental Bordetella pertussis and mutants deficient in adhesins or toxins. Infect Immun 62(7):2893–2900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirimanjeswara GS, Agosto LM, Kennett MJ, Bjornstad ON, Harvill ET (2005) Pertussis toxin inhibits neutrophil recruitment to delay antibody-mediated clearance of Bordetella pertussis. J Clin Invest 115(12):3594–3601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotani S, Tsujimoto M, Koga T, Nagao S, Tanaka A, Kawata S (1986) Chemical structure and biological activity relationship of bacterial cell walls and muramyl peptides. Fed Proc 45(11):2534–2540

    CAS  PubMed  Google Scholar 

  • Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, Petasis NA, Serhan CN (2010) Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci U S A 107(4):1660–1665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger JM, Karnovsky ML (1987) Sleep and the immune response. Ann N Y Acad Sci 496:510–516

    CAS  PubMed  Google Scholar 

  • Krueger JM, Pappenheimer JR, Karnovsky ML (1982) Sleep-promoting effects of muramyl peptides. Proc Natl Acad Sci U S A 79(19):6102–6106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levy BD, Serhan CN (2014) Resolution of acute inflammation in the lung. Annu Rev Physiol 76:467–492

    CAS  PubMed  Google Scholar 

  • Lim JH, Kim MS, Kim HE, Yano T, Oshima Y, Aggarwal K, Goldman WE, Silverman N, Kurata S, Oh BH (2006) Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J Biol Chem 281(12):8286–8295

    CAS  PubMed  Google Scholar 

  • Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN (1997) Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem 272(11):6972–6978

    CAS  PubMed  Google Scholar 

  • Magalhaes JG, Philpott DJ, Nahori MA, Jehanno M, Fritz J, Le Bourhis L, Viala J, Hugot JP, Giovannini M, Bertin J, Lepoivre M, Mengin-Lecreulx D, Sansonetti PJ, Girardin SE (2005) Murine Nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin. EMBO Rep 6(12):1201–1207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maher SA, Dubuis ED, Belvisi MG (2011) G-protein coupled receptors regulating cough. Curr Opin Pharmacol 11(3):248–253

    CAS  PubMed  Google Scholar 

  • Mangmool S, Kurose H (2011) G(i/o) protein-dependent and -independent actions of pertussis toxin (PTX). Toxins 3(7):884–899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin SA, Karnovsky ML, Krueger JM, Pappenheimer JR, Biemann K (1984) Peptidoglycans as promoters of slow-wave sleep. I. Structure of the sleep-promoting factor isolated from human urine. J Biol Chem 259(20):12652–12658

    CAS  PubMed  Google Scholar 

  • Martin C, Requero MA, Masin J, Konopasek I, Goni FM, Sebo P, Ostolaza H (2004) Membrane restructuring by Bordetella pertussis adenylate cyclase toxin, a member of the RTX toxin family. J Bacteriol 186(12):3760–3765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masin J, Osicka R, Bumba L, Sebo P (2015) Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog Dis 73(8):ftv075

    PubMed  PubMed Central  Google Scholar 

  • Masin J, Osicka R, Bumba L, Sebo P (2018) Phospholipase A activity of adenylate cyclase toxin? Proc Natl Acad Sci U S A 115(11):E2489–E2490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mauck J, Chan L, Glaser L (1971) Turnover of the cell wall of Gram-positive bacteria. J Biol Chem 246(6):1820–1827

    CAS  PubMed  Google Scholar 

  • Melly MA, McGee ZA, Rosenthal RS (1984) Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J Infect Dis 149(3):378–386

    CAS  PubMed  Google Scholar 

  • Mielcarek N, Riveau G, Remoue F, Antoine R, Capron A, Locht C (1998) Homologous and heterologous protection after single intranasal administration of live attenuated recombinant Bordetella pertussis. Nat Biotechnol 16(5):454–457

    CAS  PubMed  Google Scholar 

  • Mielcarek N, Debrie AS, Raze D, Bertout J, Rouanet C, Younes AB, Creusy C, Engle J, Goldman WE, Locht C (2006) Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough. PLoS Pathog 2(7):e65

    PubMed  PubMed Central  Google Scholar 

  • Mobberley-Schuman PS, Connelly B, Weiss AA (2003) Phagocytosis of Bordetella pertussis incubated with convalescent serum. J Infect Dis 187(10):1646–1653

    PubMed  Google Scholar 

  • Montgomery MK, McFall-Ngai M (1994) Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes. Development 120(7):1719–1729

    CAS  PubMed  Google Scholar 

  • Morse SI, Morse JH (1976) Isolation and properties of the leukocytosis- and lymphocytosis-promoting factor of Bordetella pertussis. J Exp Med 143(6):1483–1502

    CAS  PubMed  Google Scholar 

  • Munoz JJ, Arai H, Bergman RK, Sadowski PL (1981) Biological activities of crystalline pertussigen from Bordetella pertussis. Infect Immun 33(3):820–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz JJ, Bernard CC, Mackay IR (1984) Elicitation of experimental allergic encephalomyelitis (EAE) in mice with the aid of pertussigen. Cell Immunol 83(1):92–100

    CAS  PubMed  Google Scholar 

  • Nguyen AW, Wagner EK, Laber JR, Goodfield LL, Smallridge WE, Harvill ET, Papin JF, Wolf RF, Padlan EA, Bristol A, Kaleko M, Maynard JA (2015) A cocktail of humanized anti-pertussis toxin antibodies limits disease in murine and baboon models of whooping cough. Sci Transl Med 7(316):316ra195

    PubMed  PubMed Central  Google Scholar 

  • Njamkepo E, Pinot F, Francois D, Guiso N, Polla BS, Bachelet M (2000) Adaptive responses of human monocytes infected by Bordetella pertussis: the role of adenylate cyclase hemolysin. J Cell Physiol 183(1):91–99

    CAS  PubMed  Google Scholar 

  • Nogimori K, Ito K, Tamura M, Satoh S, Ishii S, Ui M (1984) Chemical modification of islet-activating protein, pertussis toxin. Essential role of free amino groups in its lymphocytosis-promoting activity. Biochim Biophys Acta 801(2):220–231

    CAS  PubMed  Google Scholar 

  • Orr B, Douce G, Baillie S, Parton R, Coote J (2007) Adjuvant effects of adenylate cyclase toxin of Bordetella pertussis after intranasal immunisation of mice. Vaccine 25(1):64–71

    CAS  PubMed  Google Scholar 

  • Osickova A, Osicka R, Maier E, Benz R, Sebo P (1999) An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J Biol Chem 274(53):37644–37650

    CAS  PubMed  Google Scholar 

  • Osickova A, Masin J, Fayolle C, Krusek J, Basler M, Pospisilova E, Leclerc C, Osicka R, Sebo P (2010) Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol Microbiol 75(6):1550–1562

    CAS  PubMed  Google Scholar 

  • Oskouizadeh K, Selk-Ghafari M, Zahraei-Salehi T, Dezfolian O (2011) Isolation of Bordetella bronchiseptica in a dog with tracheal collapse. Comp Clin Pathol 20(5):153–158

    Google Scholar 

  • Ostolaza H (2018) Reply to Masin et al: to be or not to be a phospholipase A. Proc Natl Acad Sci U S A 115(11):E2491

    PubMed  PubMed Central  Google Scholar 

  • Ostolaza H, Martin C, Gonzalez-Bullon D, Uribe KB, Etxaniz A (2017) Understanding the mechanism of translocation of adenylate cyclase toxin across biological membranes. Toxins (Basel) 9(10)

    PubMed Central  Google Scholar 

  • Paddock CD, Sanden GN, Cherry JD, Gal AA, Langston C, Tatti KM, Wu KH, Goldsmith CS, Greer PW, Montague JL, Eliason MT, Holman RC, Guarner J, Shieh WJ, Zaki SR (2008) Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin Infect Dis 47(3):328–338

    PubMed  Google Scholar 

  • Paik D, Monahan A, Caffrey DR, Elling R, Goldman WE, Silverman N (2017) SLC46 family transporters facilitate cytosolic innate immune recognition of monomeric peptidoglycans. J Immunol 199(1):263–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pande AH, Moe D, Jamnadas M, Tatulian SA, Teter K (2006) The pertussis toxin S1 subunit is a thermally unstable protein susceptible to degradation by the 20S proteasome. Biochemistry 45(46):13734–13740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parton R, Hall E, Wardlaw AC (1994) Responses to Bordetella pertussis mutant strains and to vaccination in the coughing rat model of pertussis. J Med Microbiol 40(5):307–312

    CAS  PubMed  Google Scholar 

  • Pearson RD, Symes P, Conboy M, Weiss AA, Hewlett EL (1987) Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin. J Immunol 139(8):2749–2754

    CAS  PubMed  Google Scholar 

  • Pham TH, Okada T, Matloubian M, Lo CG, Cyster JG (2008) S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity 28(1):122–133

    CAS  PubMed  Google Scholar 

  • Pierce C, Klein N, Peters M (2000) Is leukocytosis a predictor of mortality in severe pertussis infection? Intensive Care Med 26(10):1512–1514

    CAS  PubMed  Google Scholar 

  • Plaut RD, Carbonetti NH (2008) Retrograde transport of pertussis toxin in the mammalian cell. Cell Microbiol 10(5):1130–1139

    CAS  PubMed  Google Scholar 

  • Plaut RD, Scanlon KM, Taylor M, Teter K, Carbonetti NH (2016) Intracellular disassembly and activity of pertussis toxin require interaction with ATP. Pathog Dis 74(6):ftw065

    PubMed  PubMed Central  Google Scholar 

  • Rogel A, Meller R, Hanski E (1991) Adenylate cyclase toxin from Bordetella pertussis. The relationship between induction of cAMP and hemolysis. J Biol Chem 266(5):3154–3161

    CAS  PubMed  Google Scholar 

  • Rose T, Sebo P, Bellalou J, Ladant D (1995) Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J Biol Chem 270(44):26370–26376

    CAS  PubMed  Google Scholar 

  • Rosenthal RS, Nogami W, Cookson BT, Goldman WE, Folkening WJ (1987) Major fragment of soluble peptidoglycan released from growing Bordetella pertussis is tracheal cytotoxin. Infect Immun 55(9):2117–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross PJ, Lavelle EC, Mills KH, Boyd AP (2004) Adenylate cyclase toxin from Bordetella pertussis synergizes with lipopolysaccharide to promote innate interleukin-10 production and enhances the induction of Th2 and regulatory T cells. Infect Immun 72(3):1568–1579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross PJ, Sutton CE, Higgins S, Allen AC, Walsh K, Misiak A, Lavelle EC, McLoughlin RM, Mills KH (2013) Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog 9(4):e1003264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowlands HE, Goldman AP, Harrington K, Karimova A, Brierley J, Cross N, Skellett S, Peters MJ (2010) Impact of rapid leukodepletion on the outcome of severe clinical pertussis in young infants. Pediatrics 126(4):e816–e827

    PubMed  Google Scholar 

  • Rubin K, Glazer S (2016) The potential role of subclinical Bordetella Pertussis colonization in the etiology of multiple sclerosis. Immunobiology 221(4):512–515

    CAS  PubMed  Google Scholar 

  • Scanlon KM, Gau Y, Zhu J, Skerry C, Wall SM, Soleimani M, Carbonetti NH (2014) Epithelial anion transporter pendrin contributes to inflammatory lung pathology in mouse models of Bordetella pertussis infection. Infect Immun 82(10):4212–4221

    PubMed  PubMed Central  Google Scholar 

  • Scanlon KM, Snyder YG, Skerry C, Carbonetti NH (2017) Fatal pertussis in the neonatal mouse model is associated with pertussis toxin-mediated pathology beyond the airways. Infect Immun 85(11)

    Google Scholar 

  • Schenkel AR, Pauza CD (1999) Pertussis toxin treatment in vivo reduces surface expression of the adhesion integrin leukocyte function antigen-1 (LFA-1). Cell Adhes Commun 7(3):183–193

    CAS  PubMed  Google Scholar 

  • Schneider OD, Weiss AA, Miller WE (2009) Pertussis toxin signals through the TCR to initiate cross-desensitization of the chemokine receptor CXCR4. J Immunol 182(9):5730–5739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sebo P, Ladant D (1993) Repeat sequences in the Bordetella pertussis adenylate cyclase toxin can be recognized as alternative carboxy-proximal secretion signals by the Escherichia coli alpha-haemolysin translocator. Mol Microbiol 9(5):999–1009

    CAS  PubMed  Google Scholar 

  • Skerry CM, Mahon BP (2011) A live, attenuated Bordetella pertussis vaccine provides long-term protection against virulent challenge in a murine model. Clin Vaccine Immunol 18(2):187–193

    CAS  PubMed  Google Scholar 

  • Skerry CM, Cassidy JP, English K, Feunou-Feunou P, Locht C, Mahon BP (2009) A live attenuated Bordetella pertussis candidate vaccine does not cause disseminating infection in gamma interferon receptor knockout mice. Clin Vaccine Immunol 16(9):1344–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skerry C, Goldman WE, Carbonetti NH (2019) Peptidoglycan recognition protein 4 suppresses early inflammatory responses to Bordetella pertussis and contributes to Sphingosine-1-Phosphate receptor agonist-mediated disease attenuation. Infect Immun 87(2)

    Google Scholar 

  • Skopova K, Tomalova B, Kanchev I, Rossmann P, Svedova M, Adkins I, Bibova I, Tomala J, Masin J, Guiso N, Osicka R, Sedlacek R, Kovar M, Sebo P (2017) Cyclic AMP-elevating capacity of adenylate cyclase toxin-hemolysin is sufficient for lung infection but not for full virulence of Bordetella pertussis. Infect Immun 85(6):pii: e00937-16

    Google Scholar 

  • Spensieri F, Fedele G, Fazio C, Nasso M, Stefanelli P, Mastrantonio P, Ausiello CM (2006) Bordetella pertussis inhibition of interleukin-12 (IL-12) p70 in human monocyte-derived dendritic cells blocks IL-12 p35 through adenylate cyclase toxin-dependent cyclic AMP induction. Infect Immun 74(5):2831–2838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surridge J, Segedin ER, Grant CC (2007) Pertussis requiring intensive care. Arch Dis Child 92(11):970–975

    PubMed  PubMed Central  Google Scholar 

  • Svedova M, Masin J, Fiser R, Cerny O, Tomala J, Freudenberg M, Tuckova L, Kovar M, Dadaglio G, Adkins I, Sebo P (2016) Pore-formation by adenylate cyclase toxoid activates dendritic cells to prime CD8+ and CD4+ T cells. Immunol Cell Biol 94(4):322–333

    CAS  PubMed  Google Scholar 

  • Szabo G, Gray MC, Hewlett EL (1994) Adenylate cyclase toxin from Bordetella pertussis produces ion conductance across artificial lipid bilayers in a calcium- and polarity-dependent manner. J Biol Chem 269(36):22496–22499

    CAS  PubMed  Google Scholar 

  • Thierry-Carstensen B, Dalby T, Stevner MA, Robbins JB, Schneerson R, Trollfors B (2013) Experience with monocomponent acellular pertussis combination vaccines for infants, children, adolescents and adults--a review of safety, immunogenicity, efficacy and effectiveness studies and 15 years of field experience. Vaccine 31(45):5178–5191

    CAS  PubMed  Google Scholar 

  • Thorstensson R, Trollfors B, Al-Tawil N, Jahnmatz M, Bergstrom J, Ljungman M, Torner A, Wehlin L, Van Broekhoven A, Bosman F, Debrie AS, Mielcarek N, Locht C (2014) A phase I clinical study of a live attenuated Bordetella pertussis vaccine--BPZE1; a single centre, double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally to healthy adult male volunteers. PLoS One 9(1):e83449

    PubMed  PubMed Central  Google Scholar 

  • Uehara T, Park JT (2008) Peptidoglycan recycling. EcoSal Plus 3(1)

    Google Scholar 

  • Uribe KB, Etxebarria A, Martin C, Ostolaza H (2013) Calpain-mediated processing of adenylate cyclase toxin generates a cytosolic soluble catalytically active n-terminal domain. PLoS One 8(6):e67648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valdez HA, Oviedo JM, Gorgojo JP, Lamberti Y, Rodriguez ME (2016) Bordetella pertussis modulates human macrophage defense gene expression. Pathog Dis 74(6):ftw073

    PubMed  Google Scholar 

  • Vojtova J, Kamanova J, Sebo P (2006) Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr Opin Microbiol 9(1):69–75

    CAS  PubMed  Google Scholar 

  • Wainford RD, Kurtz K, Kapusta DR (2008) Central G-alpha subunit protein-mediated control of cardiovascular function, urine output, and vasopressin secretion in conscious Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol 295(2):R535–R542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Gray MC, Hewlett EL, Maynard JA (2015) The Bordetella adenylate cyclase repeat-in-toxin (RTX) domain is immunodominant and elicits neutralizing antibodies. J Biol Chem 290(6):3576–3591

    CAS  PubMed  Google Scholar 

  • Warfel JM, Merkel TJ (2014) The baboon model of pertussis: effective use and lessons for pertussis vaccines. Expert Rev Vaccines 13(10):1241–1252

    CAS  PubMed  Google Scholar 

  • Warfel JM, Beren J, Kelly VK, Lee G, Merkel TJ (2012) Nonhuman primate model of pertussis. Infect Immun 80(4):1530–1536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warnock RA, Askari S, Butcher EC, von Andrian UH (1998) Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J Exp Med 187(2):205–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weingart CL, Weiss AA (2000) Bordetella pertussis virulence factors affect phagocytosis by human neutrophils. Infect Immun 68(3):1735–1739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weingart CL, Mobberley-Schuman PS, Hewlett EL, Gray MC, Weiss AA (2000) Neutralizing antibodies to adenylate cyclase toxin promote phagocytosis of Bordetella pertussis by human neutrophils. Infect Immun 68(12):7152–7155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss AA, Goodwin MS (1989) Lethal infection by Bordetella pertussis mutants in the infant mouse model. Infect Immun 57(12):3757–3764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss AA, Hewlett EL, Myers GA, Falkow S (1983) Tn5-induced mutations affecting virulence factors of Bordetella pertussis. Infect Immun 42(1):33–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winter K, Zipprich J, Harriman K, Murray EL, Gornbein J, Hammer SJ, Yeganeh N, Adachi K, Cherry JD (2015) Risk factors associated with infant deaths from pertussis: a case-control study. Clin Infect Dis 61(7):1099–1106

    PubMed  Google Scholar 

  • Witvliet MH, Burns DL, Brennan MJ, Poolman JT, Manclark CR (1989) Binding of pertussis toxin to eucaryotic cells and glycoproteins. Infect Immun 57(11):3324–3330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff J, Cook GH, Goldhammer AR, Berkowitz SA (1980) Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci U S A 77(7):3841–3844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong WS, Rosoff PM (1996) Pharmacology of pertussis toxin B-oligomer. Can J Physiol Pharmacol 74(5):559–564

    CAS  PubMed  Google Scholar 

  • Worthington ZE, Carbonetti NH (2007) Evading the proteasome: absence of lysine residues contributes to pertussis toxin activity by evasion of proteasome degradation. Infect Immun 75(6):2946–2953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yajima M, Hosoda K, Kanbayashi Y, Nakamura T, Nogimori K, Mizushima Y, Nakase Y, Ui M (1978) Islets-activating protein (IAP) in Bordetella pertussis that potentiates insulin secretory responses of rats. Purification and characterization. J Biochem 83(1):295–303

    CAS  PubMed  Google Scholar 

  • Zaretzky FR, Gray MC, Hewlett EL (2002) Mechanism of association of adenylate cyclase toxin with the surface of Bordetella pertussis: a role for toxin-filamentous haemagglutinin interaction. Mol Microbiol 45(6):1589–1598

    CAS  PubMed  Google Scholar 

  • Zhao CB, Coons SW, Cui M, Shi FD, Vollmer TL, Ma CY, Kuniyoshi SM, Shi J (2008) A new EAE model of brain demyelination induced by intracerebroventricular pertussis toxin. Biochem Biophys Res Commun 370(1):16–21

    CAS  PubMed  Google Scholar 

  • Zheng M, Zhu W, Han Q, Xiao RP (2005) Emerging concepts and therapeutic implications of beta-adrenergic receptor subtype signaling. Pharmacol Ther 108(3):257–268

    CAS  PubMed  Google Scholar 

  • Zocchi MR, Contini P, Alfano M, Poggi A (2005) Pertussis toxin (PTX) B subunit and the nontoxic PTX mutant PT9K/129G inhibit Tat-induced TGF-beta production by NK cells and TGF-beta-mediated NK cell apoptosis. J Immunol 174(10):6054–6061

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Carbonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scanlon, K., Skerry, C., Carbonetti, N. (2019). Role of Major Toxin Virulence Factors in Pertussis Infection and Disease Pathogenesis. In: Fedele, G., Ausiello, C. (eds) Pertussis Infection and Vaccines. Advances in Experimental Medicine and Biology(), vol 1183. Springer, Cham. https://doi.org/10.1007/5584_2019_403

Download citation

Publish with us

Policies and ethics