Skip to main content

Skin Stem Cells, Their Niche and Tissue Engineering Approach for Skin Regeneration

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 6

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1212))

Abstract

Skin is the main organ that covers the human body and acts as a protective barrier between the human body and the environment. Skin tissue as a stem cell source can be used for transplantation in therapeutic application in terms of its properties such as abundant, easy to access, high plasticity and high ability to regenerate. The immunological profile of these cells makes it a suitable resource for autologous and allogeneic applications. The lack of major histo-compatibility complex 1 is also advantageous in its use. Epidermal stem cells are the main stem cells in the skin and are suitable cells in tissue engineering studies for their important role in wound repair. In the last 30 years, many studies have been conducted to develop substitutions that mimic human skin. Stem cell-based skin substitutions have been developed to be used in clinical applications, to support the healing of acute and chronic wounds and as test systems for dermatological and pharmacological applications. In this chapter, tissue specific properties of epidermal stem cells, composition of their niche, regenerative approaches and repair of tissue degeneration have been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three dimensional

ATRA:

All-Trans Retinoic Acid

BM:

Basement Membrane

BM MSC:

Bone Marrow Mesenchymal Stem Cell

BMP:

Bone Morphogenic Protein

CD:

Cluster of Differentiation

DNA:

Deoxyribonucleic acid

DP:

Dermal Papilla

ECM:

Extracellular matrix

EB:

Epidermolysis Bullosa

EGF :

Epidermal Growth Factor

EPU:

Epidermal Proliferative Unit

FDA:

Food and Drug Administration

FGF:

Fibroblast Growth Factor

GAG:

Glycosaminoglycan

hASCs:

Human Adipose Tissue Derived Stem/Stromal Cells

HF:

Hair Follicle Bulge

IFE :

Interfollicular Epidermis

IRS:

Inner Root Sheath

Krt15+:

Keratin15

MRNA:

Messenger RNA

miRNAs:

MicroRNAs

MMP:

Matrix Metalloproteinase

Muse:

Multilineage Differentiating Stress Enduring

ORS:

Outer Root Sheath

Ptch:

Patch

RER:

Rough Endoplasmic Reticulum

RNA:

Ribonucleic acid

Shh:

Sonic Hedgehog

SSEA:

Stage-Spesific Embryonic Antigen

TGF-β :

Transforming Growth Factor-beta

UCPC:

Umbilical cord pericyte cell

References

  • Abbas O, Mahalingam M (2009) Epidermal stem cells: practical perspectives and potential uses. Br J Dermatol 161(2):228–236

    CAS  PubMed  Google Scholar 

  • Alonso L, Fuchs E (2003) Stem cells in the skin: waste not, Wnt not. Genes Dev 17(10):1189–1200

    CAS  Google Scholar 

  • Altman AM et al (2008) Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials 29(10):1431–1442

    CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    CAS  PubMed  Google Scholar 

  • Amoh Y et al (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 102(49):17734–17738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amoh Y et al (2008) Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle 7(12):1865–1869

    CAS  PubMed  Google Scholar 

  • Andl T et al (2004) Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development 131(10):2257–2268

    CAS  PubMed  Google Scholar 

  • Andl T et al (2006) The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol 16(10):1041–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andreassi L et al (1998) A new model of epidermal culture for the surgical treatment of vitiligo. Int J Dermatol 37(8):595–598

    CAS  PubMed  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523

    CAS  PubMed  Google Scholar 

  • Arwert EN, Hoste E, Watt FM (2012) Epithelial stem cells, wound healing and cancer. Nat Rev Cancer 12(3):170–180

    CAS  PubMed  Google Scholar 

  • Avolio E et al (2017) Perivascular cells and tissue engineering: current applications and untapped potential. Pharmacol Ther 171:83–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badiavas EV, Falanga V (2003) Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 139(4):510–516

    PubMed  Google Scholar 

  • Bartkova J et al (2003) Cell-cycle regulatory proteins in human wound healing. Arch Oral Biol 48(2):125–132

    CAS  PubMed  Google Scholar 

  • Beele H et al (2005) A prospective multicenter study of the efficacy and tolerability of cryopreserved allogenic human keratinocytes to treat venous leg ulcers. Int J Low Extrem Wounds 4(4):225–233

    CAS  PubMed  Google Scholar 

  • Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blanpain C et al (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118(5):635–648

    CAS  PubMed  Google Scholar 

  • Boa O et al (2013) Prospective study on the treatment of lower-extremity chronic venous and mixed ulcers using tissue-engineered skin substitute made by the self-assembly approach. Adv Skin Wound Care 26(9):400–409

    PubMed  Google Scholar 

  • Bodnar RJ et al (2016) Pericytes: a newly recognized player in wound healing. Wound Repair Regen 24(2):204–214

    PubMed  PubMed Central  Google Scholar 

  • Brizzi MF, Tarone G, Defilippi P (2012) Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 24(5):645–651

    CAS  PubMed  Google Scholar 

  • Byrne C, Tainsky M, Fuchs E (1994) Programming gene expression in developing epidermis. Development 120(9):2369–2383

    CAS  PubMed  Google Scholar 

  • Carrier P et al (2009) Impact of cell source on human cornea reconstructed by tissue engineering. Invest Ophthalmol Vis Sci 50(6):2645–2652

    PubMed  Google Scholar 

  • Chermnykh E, Kalabusheva E, Vorotelyak E (2018) Extracellular matrix as a regulator of epidermal stem cell fate. Int J Mol Sci 19(4)

    PubMed Central  Google Scholar 

  • Choi HR et al (2015) Niche interactions in epidermal stem cells. World J Stem Cells 7(2):495–501

    PubMed  PubMed Central  Google Scholar 

  • Chu GY et al (2018) Stem cell therapy on skin: mechanisms, recent advances and drug reviewing issues. J Food Drug Anal 26(1):14–20

    CAS  PubMed  Google Scholar 

  • Clark RA, Ghosh K, Tonnesen MG (2007) Tissue engineering for cutaneous wounds. J Invest Dermatol 127(5):1018–1029

    CAS  PubMed  Google Scholar 

  • Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346(6205):1248012

    PubMed  Google Scholar 

  • Corselli M et al (2010) Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol 30(6):1104–1109

    CAS  PubMed  Google Scholar 

  • Davidoff MS et al (2009) The neuroendocrine Leydig cells and their stem cell progenitors, the pericytes. Adv Anat Embryol Cell Biol 205:1–107

    PubMed  Google Scholar 

  • De Rosa L et al (2014) Long-term stability and safety of transgenic cultured epidermal stem cells in gene therapy of junctional epidermolysis bullosa. Stem Cell Rep 2(1):1–8

    Google Scholar 

  • Demarchez M et al (1987) Wound healing of human skin transplanted onto the nude mouse. II An immunohistological and ultrastructural study of the epidermal basement membrane zone reconstruction and connective tissue reorganization. Dev Biol 121(1):119–129

    CAS  PubMed  Google Scholar 

  • Doucet YS et al (2013) The touch dome defines an epidermal niche specialized for mechanosensory signaling. Cell Rep 3(6):1759–1765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Driskell RR et al (2013) Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504(7479):277–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dulmovits BM, Herman IM (2012) Microvascular remodeling and wound healing: a role for pericytes. Int J Biochem Cell Biol 44(11):1800–1812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler MJ, Carlson MA (2006) Modeling dermal granulation tissue with the linear fibroblast-populated collagen matrix: a comparison with the round matrix model. J Dermatol Sci 41(2):97–108

    CAS  PubMed  Google Scholar 

  • Falabella R, Escobar C, Borrero I (1992) Treatment of refractory and stable vitiligo by transplantation of in vitro cultured epidermal autografts bearing melanocytes. J Am Acad Dermatol 26(2. Pt 1):230–236

    CAS  PubMed  Google Scholar 

  • Fuchs E (2007) Scratching the surface of skin development. Nature 445(7130):834–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspard N, Vanderhaeghen P (2010) Mechanisms of neural specification from embryonic stem cells. Curr Opin Neurobiol 20(1):37–43

    CAS  PubMed  Google Scholar 

  • Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 1840(8):2506–2519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie SR, Owens DM (2018) Isolation and characterization of cutaneous epithelial stem cells. Methods Mol Biol

    Google Scholar 

  • Green H, Kehinde O, Thomas J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A 76(11):5665–5668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy MH (1992) The secret life of the hair follicle. Trends Genet 8(2):55–61

    CAS  PubMed  Google Scholar 

  • Heneidi S et al (2013) Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS One 8(6):e64752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrand J et al (2011) A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol 131(1):20–29

    CAS  PubMed  Google Scholar 

  • Hsu YC, Li L, Fuchs E (2014) Emerging interactions between skin stem cells and their niches. Nat Med 20(8):847–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MS et al (2018) Embryonic skin development and repair. Organogenesis 14(1):46–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354

    CAS  PubMed  Google Scholar 

  • Itoh M et al (2011) Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci U S A 108(21):8797–8802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson CJ, Tonseth KA, Utheim TP (2017) Cultured epidermal stem cells in regenerative medicine. Stem Cell Res Ther 8(1):155

    PubMed  PubMed Central  Google Scholar 

  • Ji J et al (2017) Aging in hair follicle stem cells and niche microenvironment. J Dermatol 44(10):1097–1104

    PubMed  Google Scholar 

  • Jimenez F et al (2012) A pilot clinical study of hair grafting in chronic leg ulcers. Wound Repair Regen 20(6):806–814

    PubMed  Google Scholar 

  • Kinoshita K et al (2015) Therapeutic potential of adipose-derived SSEA-3-positive muse cells for treating diabetic skin ulcers. Stem Cells Transl Med 4(2):146–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobielak K et al (2003) Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol 163(3):609–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopan R, Weintraub H (1993) Mouse notch: expression in hair follicles correlates with cell fate determination. J Cell Biol 121(3):631–641

    CAS  PubMed  Google Scholar 

  • Koster MI et al (2004) p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 18(2):126–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kratochwil K et al (1996) Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev 10(11):1382–1394

    CAS  PubMed  Google Scholar 

  • Krawczyk WS (1971) A pattern of epidermal cell migration during wound healing. J Cell Biol 49(2):247–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kretzschmar K, Watt FM (2014) Markers of epidermal stem cell subpopulations in adult mammalian skin. Cold Spring Harb Perspect Med 4(10)

    PubMed  PubMed Central  Google Scholar 

  • Kumar A, Placone JK, Engler AJ (2017) Understanding the extracellular forces that determine cell fate and maintenance. Development 144(23):4261–4270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda Y et al (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A 107(19):8639–8643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lapouge G, Blanpain C (2008) Medical applications of epidermal stem cells. In: StemBook. Harvard Stem Cell Institute, Cambridge, MA

    Google Scholar 

  • Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1–2):1–22

    CAS  PubMed  Google Scholar 

  • Lee LF et al (2011) A simplified procedure to reconstitute hair-producing skin. Tissue Eng Part C Methods 17(4):391–400

    PubMed  PubMed Central  Google Scholar 

  • Lee V et al (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20(6):473–484

    CAS  PubMed  Google Scholar 

  • Levy V et al (2007) Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21(7):1358–1366

    CAS  PubMed  Google Scholar 

  • Lo Cicero A et al (2015) Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat Commun 6:7506

    CAS  PubMed  Google Scholar 

  • Lyons KM, Pelton RW, Hogan BL (1989) Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev 3(11):1657–1668

    CAS  PubMed  Google Scholar 

  • Lyons KM, Pelton RW, Hogan BL (1990) Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development 109(4):833–844

    CAS  PubMed  Google Scholar 

  • Mascre G et al (2012) Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489(7415):257–262

    CAS  PubMed  Google Scholar 

  • Mavilio F et al (2006) Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med 12(12):1397–1402

    CAS  PubMed  Google Scholar 

  • Michno K et al (2003) Shh expression is required for embryonic hair follicle but not mammary gland development. Dev Biol 264(1):153–165

    CAS  PubMed  Google Scholar 

  • Ming Kwan K et al (2004) Essential roles of BMPR-IA signaling in differentiation and growth of hair follicles and in skin tumorigenesis. Genesis 39(1):10–25

    PubMed  Google Scholar 

  • Moustafa M et al (2007) Randomized, controlled, single-blind study on use of autologous keratinocytes on a transfer dressing to treat nonhealing diabetic ulcers. Regen Med 2(6):887–902

    PubMed  Google Scholar 

  • Muller-Rover S et al (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117(1):3–15

    CAS  PubMed  Google Scholar 

  • Nikaido M et al (1999) In vivo analysis using variants of zebrafish BMPR-IA: range of action and involvement of BMP in ectoderm patterning. Development 126(1):181–190

    CAS  PubMed  Google Scholar 

  • Nowak JA et al (2008) Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3(1):33–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odland G, Ross R (1968) Human wound repair. I. Epidermal regeneration. J Cell Biol 39(1):135–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura F et al (2014) Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev 23(7):717–728

    CAS  PubMed  Google Scholar 

  • Ojeh N et al (2015) Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci 16(10):25476–25501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okuyama R et al (2004) High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. Dev Cell 6(4):551–562

    CAS  PubMed  Google Scholar 

  • Oro AE, Higgins K (2003) Hair cycle regulation of Hedgehog signal reception. Dev Biol 255(2):238–248

    CAS  PubMed  Google Scholar 

  • Ortega-Zilic N et al (2010) EpiDex(R) Swiss field trial 2004-2008. Dermatology 221(4):365–372

    PubMed  Google Scholar 

  • Page ME et al (2013) The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell 13(4):471–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paladini RD et al (2005) Modulation of hair growth with small molecule agonists of the hedgehog signaling pathway. J Invest Dermatol 125(4):638–646

    CAS  PubMed  Google Scholar 

  • Pan Y et al (2004) Gamma-secretase functions through notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev Cell 7(5):731–743

    CAS  PubMed  Google Scholar 

  • Paquet-Fifield S et al (2009) A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J Clin Invest 119(9):2795–2806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powell HM, Supp DM, Boyce ST (2008) Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials 29(7):834–843

    CAS  PubMed  Google Scholar 

  • Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072

    PubMed  Google Scholar 

  • Purba TS et al (2014) Human epithelial hair follicle stem cells and their progeny: current state of knowledge, the widening gap in translational research and future challenges. BioEssays 36(5):513–525

    CAS  PubMed  Google Scholar 

  • Rajkumar VS et al (2006) Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol 169(6):2254–2265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rangarajan A et al (2001) Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 20(13):3427–3436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reya T et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    CAS  Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6(3):331–343

    CAS  PubMed  Google Scholar 

  • Riddle CV (1986) Focal tight junctions between mesenchymal cells of fetal dermis. Anat Rec 214(2):113–117

    CAS  PubMed  Google Scholar 

  • Rigal C et al (1991) Healing of full-thickness cutaneous wounds in the pig. I. Immunohistochemical study of epidermo-dermal junction regeneration. J Invest Dermatol 96(5):777–785

    CAS  PubMed  Google Scholar 

  • Rompolas P, Greco V (2014) Stem cell dynamics in the hair follicle niche. Semin Cell Dev Biol 25-26:34–42

    PubMed  Google Scholar 

  • Rubin AI, Chen EH, Ratner D (2005) Basal-cell carcinoma. N Engl J Med 353(21):2262–2269

    CAS  PubMed  Google Scholar 

  • Saarialho-Kere UK et al (1995) Interstitial collagenase is expressed by keratinocytes that are actively involved in reepithelialization in blistering skin disease. J Invest Dermatol 104(6):982–988

    CAS  PubMed  Google Scholar 

  • Sadowski T et al (2017) Large-scale human skin lipidomics by quantitative, high-throughput shotgun mass spectrometry. Sci Rep 7:43761

    PubMed  PubMed Central  Google Scholar 

  • Shabbir A et al (2015) Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 24(14):1635–1647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Vargas V et al (2005) Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell 9(1):121–131

    CAS  PubMed  Google Scholar 

  • Smith LT, Holbrook KA (1986) Embryogenesis of the dermis in human skin. Pediatr Dermatol 3(4):271–280

    CAS  PubMed  Google Scholar 

  • Sorg H et al (2017) Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res 58(1–2):81–94

    PubMed  Google Scholar 

  • Stanley JR et al (1981) Detection of basement membrane zone antigens during epidermal wound healing in pigs. J Invest Dermatol 77(2):240–243

    CAS  PubMed  Google Scholar 

  • St-Jacques B et al (1998) Sonic hedgehog signaling is essential for hair development. Curr Biol 8(19):1058–1068

    CAS  PubMed  Google Scholar 

  • Sun X et al (2013) Epidermal stem cells: an update on their potential in regenerative medicine. Expert Opin Biol Ther 13(6):901–910

    CAS  PubMed  Google Scholar 

  • Tadeu AM, Horsley V (2014) Epithelial stem cells in adult skin. Curr Top Dev Biol 107:109–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terskikh VV, Vasiliev AV, Vorotelyak EA (2012) Label retaining cells and cutaneous stem cells. Stem Cell Rev 8(2):414–425

    Google Scholar 

  • Tomic-Canic M et al (1998) Epidermal signal transduction and transcription factor activation in activated keratinocytes. J Dermatol Sci 17(3):167–181

    CAS  PubMed  Google Scholar 

  • Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    CAS  PubMed  Google Scholar 

  • Vauclair S et al (2005) Notch1 is essential for postnatal hair follicle development and homeostasis. Dev Biol 284(1):184–193

    CAS  PubMed  Google Scholar 

  • Viticchie G et al (2012) MicroRNA-203 contributes to skin re-epithelialization. Cell Death Dis 3:e435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wakao S et al (2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci U S A 108(24):9875–9880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wakao S et al (2014) Muse cells, newly found non-tumorigenic pluripotent stem cells, reside in human mesenchymal tissues. Pathol Int 64(1):1–9

    CAS  PubMed  Google Scholar 

  • Wang LC et al (2000) Regular articles: conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration. J Invest Dermatol 114(5):901–908

    CAS  PubMed  Google Scholar 

  • Watt FM, Lo Celso C, Silva-Vargas V (2006) Epidermal stem cells: an update. Curr Opin Genet Dev 16(5):518–524

    CAS  PubMed  Google Scholar 

  • Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376(6538):331–333

    CAS  PubMed  Google Scholar 

  • Wong VW et al (2012) Stem cell niches for skin regeneration. Int J Biomater 2012:926059

    PubMed  PubMed Central  Google Scholar 

  • Yamauchi T et al (2017) The potential of muse cells for regenerative medicine of skin: procedures to reconstitute skin with muse cell-derived keratinocytes, fibroblasts, and melanocytes. J Invest Dermatol 137(12):2639–2642

    CAS  PubMed  Google Scholar 

  • Yamazaki T et al (2017) Tissue myeloid progenitors differentiate into pericytes through TGF-beta signaling in developing skin vasculature. Cell Rep 18(12):2991–3004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi R et al (2006) Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 38(3):356–362

    CAS  PubMed  Google Scholar 

  • Yoshikawa T et al (2008) Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 121(3):860–877

    CAS  PubMed  Google Scholar 

  • Zebardast N, Lickorish D, Davies JE (2010) Human umbilical cord perivascular cells (HUCPVC): a mesenchymal cell source for dermal wound healing. Organogenesis 6(4):197–203

    PubMed  PubMed Central  Google Scholar 

  • Zhuang L et al (2018) Pericytes promote skin regeneration by inducing epidermal cell polarity and planar cell divisions. Life Sci Alliance 1(4):e201700009

    PubMed  PubMed Central  Google Scholar 

  • Zouboulis CC et al (2008) Human skin stem cells and the ageing process. Exp Gerontol 43(11):986–997

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betül Çelebi-Saltik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Çankirili, N.K., Altundag, O., Çelebi-Saltik, B. (2019). Skin Stem Cells, Their Niche and Tissue Engineering Approach for Skin Regeneration. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 6. Advances in Experimental Medicine and Biology(), vol 1212. Springer, Cham. https://doi.org/10.1007/5584_2019_380

Download citation

Publish with us

Policies and ethics