Skip to main content

New Techniques to Study Intracellular Receptors in Living Cells: Insights Into RIG-I-Like Receptor Signaling

  • Chapter
  • First Online:
Protein Reviews – Purinergic Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 1111))

Abstract

This review discusses new developments in Förster resonance energy transfer (FRET) microscopy and its application to cellular receptors. The method is based on the kinetic theory of FRET, which can be used to predict FRET not only in dimers, but also higher order oligomers of donor and acceptor fluorophores. Models based on such FRET predictions can be fit to observed FRET efficiency histograms (also called FRET spectrograms) and used to estimate intracellular binding constants, free energy values, and stoichiometries. These “FRET spectrometry” methods have been used to analyze oligomers formed by various receptors in cell signaling pathways, but until recently such studies were limited to receptors residing on the cell surface. To study complexes residing inside the cell, a technique called Quantitative Micro-Spectroscopic Imaging (Q-MSI) was developed. Q-MSI combines determination of quaternary structure from pixel-level apparent FRET spectrograms with the determination of both donor and acceptor concentrations at the organelle level. This is done by resolving and analyzing the spectrum of a third fluorescent marker, which does not participate in FRET. Q-MSI was first used to study the interaction of a class of cytoplasmic receptors that bind viral RNA and signal an antiviral response via complexes formed mainly on mitochondrial membranes. Q-MSI revealed previously unknown RNA mitochondrial receptor orientations, and the interaction between the viral RNA receptor called LGP2 with the RNA helicase encoded by the hepatitis virus. The biological importance of these new observations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CARD:

Capsase activation and recruitment domain

CFP:

Cyan fluorescent protein

FP:

Fluorescent protein

FRET:

Förster resonance energy transfer

FSI:

Fully quantitative spectral imaging

GFP:

Green fluorescent protein

HCV:

Hepatitis C virus

LGP2:

Laboratory of genetics and physiology-2

MAVS:

Mitochondrial antiviral signaling protein

MDA5:

Melanoma differentiated antigen-5

NS3:

Non-structural protein 3

NS4A:

Non-structural protein 4A

PAMP:

Pathogen associated molecular pattern

Poly(I:C):

Polyinosinic: polycytidylic acid

Q-MSI:

Quantitative micro-spectroscopic imaging

RIG-I:

Retinoic inducible gene-I

RLR:

RIG-I like receptor

ROI:

Region of interest

YFP:

Yellow fluorescent protein

References

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    CAS  PubMed  Google Scholar 

  • Aydin C, Mukherjee S, Hanson AM, Frick DN, Schiffer CA (2013) The interdomain interface in bifunctional enzyme protein 3/4A (NS3/4A) regulates protease and helicase activities. Protein Sci 22:1786–1798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bajar BT, Wang ES, Zhang S, Lin MZ, Chu J (2016) A guide to fluorescent protein FRET Pairs. Sensors (Basel) 16:1488. https://doi.org/10.3390/s16091488

    Article  CAS  Google Scholar 

  • Banerjee R, Dasgupta A (2001) Specific interaction of hepatitis C virus protease/helicase NS3 with the 3′-terminal sequences of viral positive- and negative-strand RNA. J Virol 75:1708–1721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartenschlager R, Ahlborn-Laake L, Mous J, Jacobsen H (1994) Kinetic and structural analyses of hepatitis C virus polyprotein processing. J Virol 68:5045–5055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belgnaoui SM, Paz S, Hiscott J (2011) Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol 23:564–572

    CAS  PubMed  Google Scholar 

  • Beran RK, Pyle AM (2008) Hepatitis C viral NS3-4A protease activity is enhanced by the NS3 helicase. J Biol Chem 283:29929–29937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beran RK, Serebrov V, Pyle AM (2007) The serine protease domain of hepatitis C viral NS3 activates RNA helicase activity by promoting the binding of RNA substrate. J Biol Chem 282:34913–34920

    CAS  PubMed  Google Scholar 

  • Berke IC, Modis Y (2012) MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J 31:1714–1726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biener G, Stoneman MR, Acbas G, Holz JD, Orlova M, Komarova L, Kuchin S, Raicu V (2013) Development and experimental testing of an optical micro-spectroscopic technique incorporating true line-scan excitation. Int J Mol Sci 15:261–276

    PubMed  PubMed Central  Google Scholar 

  • Bruns AM, Horvath CM (2014) Antiviral RNA recognition and assembly by RLR family innate immune sensors. Cytokine Growth Factor Rev 25:507–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruns AM, Horvath CM (2015) LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling. Cytokine 74:198–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruns AM, Leser GP, Lamb RA, Horvath CM (2014) The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly. Mol Cell 55:771–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrd AK, Raney KD (2012) Superfamily 2 helicases. Front Biosci (Landmark Ed) 17:2070–2088

    Google Scholar 

  • Cao X, Ding Q, Lu J, Tao W, Huang B, Zhao Y, Niu J, Liu YJ, Zhong J (2015) MDA5 plays a critical role in interferon response during hepatitis C virus infection. J Hepatol 62:771–778

    CAS  PubMed  Google Scholar 

  • Chen Y, Mauldin JP, Day RN, Periasamy A (2007) Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. J Microsc 228:139–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Childs KS, Randall RE, Goodbourn S (2013) LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA. PLoS One 8:e64202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M (1989) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244:359–362

    CAS  PubMed  Google Scholar 

  • Corby MJ, Stoneman MR, Biener G, Paprocki JD, Kolli R, Raicu V, Frick DN (2017) Quantitative microspectroscopic imaging reveals viral and cellular RNA helicase interactions in live cells. J Biol Chem 292:11165–11177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Li M, Walton KD, Sun K, Hanover JA, Furth PA, Hennighausen L (2001) The Stat3/5 locus encodes novel endoplasmic reticulum and helicase-like proteins that are preferentially expressed in normal and neoplastic mammary tissue. Genomics 78:129–134

    CAS  PubMed  Google Scholar 

  • Cui S, Eisenächer K, Kirchhofer A, Brzózka K, Lammens A, Lammens K, Fujita T, Conzelmann KK, Krug A, Hopfner KP (2008) The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol Cell 29:169–179

    CAS  PubMed  Google Scholar 

  • Cunninghame Graham DS, Morris DL, Bhangale TR, Criswell LA, Syvänen AC, Rönnblom L, Behrens TW, Graham RR, Vyse TJ (2011) Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet 7:e1002341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devarkar SC, Wang C, Miller MT, Ramanathan A, Jiang F, Khan AG, Patel SS, Marcotrigiano J (2016) Structural basis for m7G recognition and 2’-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc Natl Acad Sci U S A 113:596–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668–681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Errett JS, Gale M (2015) Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity. Virol Sin 30:163–173

    CAS  PubMed  Google Scholar 

  • Ferrage F, Dutta K, Nistal-Villán E, Patel JR, Sánchez-Aparicio MT, De Ioannes P, Buku A, Aseguinolaza GG, García-Sastre A, Aggarwal AK (2012) Structure and dynamics of the second CARD of human RIG-I provide mechanistic insights into regulation of RIG-I activation. Structure 20:2048–2061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrao R, Wu H (2012) Helical assembly in the death domain (DD) superfamily. Curr Opin Struct Biol 22:241–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forster T (1946) Energiewanderung und fluoreszenz. Naturwissenschaften 33:166–175

    CAS  Google Scholar 

  • Foy E, Li K, Wang C, Sumpter R, Ikeda M, Lemon SM, Gale M (2003) Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 300:1145–1148

    CAS  PubMed  Google Scholar 

  • Frick DN, Rypma RS, Lam AM, Gu B (2004) The nonstructural protein 3 protease/helicase requires an intact protease domain to unwind duplex RNA efficiently. J Biol Chem 279:1269–1280

    CAS  PubMed  Google Scholar 

  • Frick DN, Banik S, Rypma RS (2007) Role of divalent metal cations in ATP hydrolysis catalyzed by the hepatitis C virus NS3 helicase: magnesium provides a bridge for ATP to fuel unwinding. J Mol Biol 365:1017–1032

    CAS  PubMed  Google Scholar 

  • Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916–920

    CAS  PubMed  Google Scholar 

  • Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429

    CAS  Google Scholar 

  • Goubau D, Deddouche S, Reis E Sousa C (2013) Cytosolic sensing of viruses. Immunity 38:855–869

    CAS  PubMed  Google Scholar 

  • Gu M, Rice CM (2013) Structures of hepatitis C virus nonstructural proteins required for replicase assembly and function. Curr Opin Virol 3:129–136

    CAS  PubMed  Google Scholar 

  • Hei L, Zhong J (2017) Laboratory of genetics and physiology 2 (LGP2) plays an essential role in hepatitis C virus infection-induced interferon responses. Hepatology 65:1478–1491

    PubMed  Google Scholar 

  • Hoppe A, Christensen K, Swanson JA (2002) Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys J 83:3652–3664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horner SM, Liu HM, Park HS, Briley J, Gale M (2011) Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci U S A 108:14590–14595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horner SM, Park HS, Gale M (2012) Control of innate immune signaling and membrane targeting by the Hepatitis C virus NS3/4A protease are governed by the NS3 helix α0. J Virol 86:3112–3120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Li Z, Biener G, Xiong E, Malik S, Eaton N, Zhao CZ, Raicu V, Kong H, Zhao D (2017) Carbonic anhydrases function in anther cell differentiation downstream of the receptor-like kinase EMS1. Plant Cell 29:1335–1356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang MA, Kim EK, Now H, Nguyen NT, Kim WJ, Yoo JY, Lee J, Jeong YM, Kim CH, Kim OH, Sohn S, Nam SH, Hong Y, Lee YS, Chang SA, Jang SY, Kim JW, Lee MS, Lim SY, Sung KS, Park KT, Kim BJ, Lee JH, Kim DK, Kee C, Ki CS (2015) Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet 96:266–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    CAS  PubMed  Google Scholar 

  • Jiang F, Ramanathan A, Miller MT, Tang GQ, Gale M, Patel SS, Marcotrigiano J (2011) Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479:423–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JL, Morgenstern KA, Lin C, Fox T, Dwyer MD, Landro JA, Chambers SP, Markland W, Lepre CA, O’Malley ET, Harbeson SL, Rice CM, Murcko MA, Caron PR, Thomson JA (1996) Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87:343–355

    CAS  PubMed  Google Scholar 

  • King C, Stoneman M, Raicu V, Hristova K (2016) Fully quantified spectral imaging reveals in vivo membrane protein interactions. Integr Biol (Camb) 8:216–229

    CAS  Google Scholar 

  • King C, Raicu V, Hristova K (2017) Understanding the FRET signatures of interacting membrane proteins. J Biol Chem 292:5291–5310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J, Grigorov B, Gerlier D, Cusack S (2011) Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147:423–435

    CAS  PubMed  Google Scholar 

  • Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt KW, Johnson M (1992) Fluorescence lifetime imaging. Anal Biochem 202:316–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leavesley SJ, Britain AL, Cichon LK, Nikolaev VO, Rich TC (2013) Assessing FRET using spectral techniques. Cytometry A 83:898–912

    PubMed  PubMed Central  Google Scholar 

  • Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, Ray SC, Gale M, Lemon SM (2005) Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A 102:2992–2997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linehan MM, Dickey TH, Molinari ES, Fitzgerald ME, Potapova O, Iwasaki A, Pyle AM (2018) A minimal RNA ligand for potent RIG-I activation in living mice. Sci Adv 4:e1701854

    PubMed  PubMed Central  Google Scholar 

  • Liu HM, Gale M (2010) Hepatitis C virus evasion from RIG-I-dependent hepatic innate immunity. Gastroenterol Res Pract 2010:548390

    PubMed  Google Scholar 

  • Loo YM, Owen DM, Li K, Erickson AK, Johnson CL, Fish PM, Carney DS, Wang T, Ishida H, Yoneyama M, Fujita T, Saito T, Lee WM, Hagedorn CH, Lau DT, Weinman SA, Lemon SM, Gale M (2006) Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci U S A 103:6001–6006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, García-Sastre A, Katze MG, Gale M (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82:335–345

    CAS  PubMed  Google Scholar 

  • Louber J, Brunel J, Uchikawa E, Cusack S, Gerlier D (2015) Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. BMC Biol 13:54

    PubMed  PubMed Central  Google Scholar 

  • Lu C, Xu H, Ranjith-Kumar CT, Brooks MT, Hou TY, Hu F, Herr AB, Strong RK, Kao CC, Li P (2010) The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18:1032–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM (2011) Structural insights into RNA recognition by RIG-I. Cell 147:409–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mannan MA, Shadrick WR, Biener G, Shin BS, Anshu A, Raicu V, Frick DN, Dey M (2013) An ire1-phk1 chimera reveals a dispensable role of autokinase activity in endoplasmic reticulum stress response. J Mol Biol 425:2083–2099

    CAS  PubMed  Google Scholar 

  • Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, Fujita T, Behlke MA, Williams BR (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 24:559–565

    CAS  PubMed  Google Scholar 

  • Mattheyses AL, Hoppe AD, Axelrod D (2004) Polarized fluorescence resonance energy transfer microscopy. Biophys J 87:2787–2797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra AK, Mavlyutov T, Singh DR, Biener G, Yang J, Oliver JA, Ruoho A, Raicu V (2015) The sigma-1 receptors are present in monomeric and oligomeric forms in living cells in the presence and absence of ligands. Biochem J 466:263–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra AK, Gragg M, Stoneman MR, Biener G, Oliver JA, Miszta P, Filipek S, Raicu V, Park PS (2016) Quaternary structures of opsin in live cells revealed by FRET spectrometry. Biochem J 473:3819–3836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murali A, Li X, Ranjith-Kumar CT, Bhardwaj K, Holzenburg A, Li P, Kao CC (2008) Structure and function of LGP2, a DEX(D/H) helicase that regulates the innate immunity response. J Biol Chem 283:15825–15833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myong S, Cui S, Cornish PV, Kirchhofer A, Gack MU, Jung JU, Hopfner KP, Ha T (2009) Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA. Science 323:1070–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    CAS  PubMed  Google Scholar 

  • Oda H, Nakagawa K, Abe J, Awaya T, Funabiki M, Hijikata A, Nishikomori R, Funatsuka M, Ohshima Y, Sugawara Y, Yasumi T, Kato H, Shirai T, Ohara O, Fujita T, Heike T (2014) Aicardi-Goutières syndrome is caused by IFIH1 mutations. Am J Hum Genet 95:121–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla-Parra S, Tramier M (2012) FRET microscopy in the living cell: different approaches, strengths and weaknesses. BioEssays 34:369–376

    PubMed  Google Scholar 

  • Patowary S, Pisterzi LF, Biener G, Holz JD, Oliver JA, Wells JW, Raicu V (2015) Experimental verification of the kinetic theory of FRET using optical microspectroscopy and obligate oligomers. Biophys J 108:1613–1622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peisley A, Lin C, Wu B, Orme-Johnson M, Liu M, Walz T, Hur S (2011) Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc Natl Acad Sci U S A 108:21010–21015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peisley A, Wu B, Yao H, Walz T, Hur S (2013) RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol Cell 51:573–583

    CAS  PubMed  Google Scholar 

  • Pippig DA, Hellmuth JC, Cui S, Kirchhofer A, Lammens K, Lammens A, Schmidt A, Rothenfusser S, Hopfner KP (2009) The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37:2014–2025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32:407–414

    CAS  PubMed  Google Scholar 

  • Raicu V (2007) Efficiency of resonance energy transfer in homo-oligomeric complexes of proteins. J Biol Phys 33:109–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raicu V, Schmidt WF (2017) Advanced microscopy techniques. In: Herrick-Davis K, Milligan G, Di Giovanni G (eds) G-protein-coupled receptor dimers. Humana Press, Cham

    Google Scholar 

  • Raicu V, Singh DR (2013) FRET spectrometry: a new tool for the determination of protein quaternary structure in living cells. Biophys J 105:1937–1945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raicu V, Jansma DB, Miller RJ, Friesen JD (2005) Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Biochem J 385:265–277

    CAS  PubMed  Google Scholar 

  • Raicu V, Stoneman MR, Fung R, Melnichuk M, Jansma DB, Pisterzi LF, Rath S, Fox M, Wells JW, Saldin DK (2009) Determination of supramolecular structure and spatial distribution of protein complexes in living cells. Nat Photonics 3:107–113

    CAS  Google Scholar 

  • Rodriguez KR, Bruns AM, Horvath CM (2014) MDA5 and LGP2: accomplices and antagonists of antiviral signal transduction. J Virol 88:8194–8200

    PubMed  PubMed Central  Google Scholar 

  • Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M (2008) Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454:523–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, Matsushita K, Tsujimura T, Fujita T, Akira S, Takeuchi O (2010) LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A 107:1512–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlee M (2013) Master sensors of pathogenic RNA - RIG-I like receptors. Immunobiology 218:1322–1335

    CAS  PubMed  Google Scholar 

  • Schnell G, Loo YM, Marcotrigiano J, Gale M (2012) Uridine composition of the poly-U/UC tract of HCV RNA defines non-self recognition by RIG-I. PLoS Pathog 8:e1002839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    CAS  PubMed  Google Scholar 

  • Singh DR, Raicu V (2010) Comparison between whole distribution- and average-based approaches to the determination of fluorescence resonance energy transfer efficiency in ensembles of proteins in living cells. Biophys J 98:2127–2135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh DR, Mohammad MM, Patowary S, Stoneman MR, Oliver JA, Movileanu L, Raicu V (2013) Determination of the quaternary structure of a bacterial ATP-binding cassette (ABC) transporter in living cells. Integr Biol (Camb) 5:312–323

    CAS  Google Scholar 

  • Stoneman MR, Paprocki JD, Biener G, Yokoi K, Shevade A, Kuchin S, Raicu V (2017) Quaternary structure of the yeast pheromone receptor Ste2 in living cells. Biochim Biophys Acta 1859:1456–1464

    CAS  Google Scholar 

  • Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A 58:719–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sumpter R, Loo YM, Foy E, Li K, Yoneyama M, Fujita T, Lemon SM, Gale M (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79:2689–2699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomei L, Failla C, Vitale RL, Bianchi E, De Francesco R (1996) A central hydrophobic domain of the hepatitis C virus NS4A protein is necessary and sufficient for the activation of the NS3 protease. J Gen Virol 77:1065–1070

    CAS  PubMed  Google Scholar 

  • Tramier M, Zahid M, Mevel JC, Masse MJ, Coppey-Moisan M (2006) Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res Tech 69:933–939

    CAS  PubMed  Google Scholar 

  • Uchikawa E, Lethier M, Malet H, Brunel J, Gerlier D, Cusack S (2016) Structural analysis of dsRNA binding to anti-viral pattern recognition receptors LGP2 and MDA5. Mol Cell 62:586–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Stetten D, Noirclerc-Savoye M, Goedhart J, Gadella TW, Royant A (2012) Structure of a fluorescent protein from Aequorea victoria bearing the obligate-monomer mutation A206K. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:878–882

    Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ludwig J, Schuberth C, Goldeck M, Schlee M, Li H, Juranek S, Sheng G, Micura R, Tuschl T, Hartmann G, Patel DJ (2010) Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat Struct Mol Biol 17:781–787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Hur S (2015) How RIG-I like receptors activate MAVS. Curr Opin Virol 12:91–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, Chu F, Walz T, Hur S (2013) Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152:276–289

    CAS  PubMed  Google Scholar 

  • Wu B, Peisley A, Tetrault D, Li Z, Egelman EH, Magor KE, Walz T, Penczek PA, Hur S (2014) Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol Cell 55:511–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Liu Y (2001) Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 81:2395–2402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng W, Sun L, Jiang X, Chen X, Hou F, Adhikari A, Xu M, Chen ZJ (2010) Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141:315–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HX, Liu ZX, Sun YP, Zhu J, Lu SY, Liu XS, Huang QH, Xie YY, Zhu HB, Dang SY, Chen HF, Zheng GY, Li YX, Kuang Y, Fei J, Chen SJ, Chen Z, Wang ZG (2013) Rig-I regulates NF-κB activity through binding to Nf-κb1 3’-UTR mRNA. Proc Natl Acad Sci U S A 110:6459–6464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann T, Rietdorf J, Girod A, Georget V, Pepperkok R (2002) Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett 531:245–249

    CAS  PubMed  Google Scholar 

  • Zimmermann T, Rietdorf J, Pepperkok R (2003) Spectral imaging and its applications in live cell microscopy. FEBS Lett 546:87–92

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the National Institutes of Health (Grant No. RO1AI088001 awarded to DNF), UWM Research Growth Innitiative (Grant No. 101X333 awarded to DNF and VR) and the National Science Foundation, Major Research Instrumentation Program (Grants No. PHY-1126386 and PHY-1626450 awarded to V.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valerica Raicu or David N. Frick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corby, M.J., Raicu, V., Frick, D.N. (2018). New Techniques to Study Intracellular Receptors in Living Cells: Insights Into RIG-I-Like Receptor Signaling. In: Atassi, M. (eds) Protein Reviews – Purinergic Receptors. Advances in Experimental Medicine and Biology(), vol 1111. Springer, Cham. https://doi.org/10.1007/5584_2018_297

Download citation

Publish with us

Policies and ethics