Skip to main content

Photoresponsive Hydrogels with Photoswitchable Stiffness: Emerging Platforms to Study Temporal Aspects of Mesenchymal Stem Cell Responses to Extracellular Stiffness Regulation

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 5

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1144))

Abstract

An extensive number of cell-matrix interaction studies have identified matrix stiffness as a potent regulator of cellular properties and behaviours. Perhaps most notably, matrix stiffness has been demonstrated to regulate mesenchymal stem cell (MSC) phenotype and lineage commitment. Given the therapeutic potential for MSCs in regenerative medicine, significant efforts have been made to understand the molecular mechanisms involved in stiffness regulation. These efforts have predominantly focused on using stiffness-defined polyacrylamide (PA) hydrogels to culture cells in 2D and have enabled elucidation of a number of mechano-sensitive signalling pathways. However, despite proving to be a valuable tool, these stiffness-defined hydrogels do not reflect the dynamic nature of living tissues, which are subject to continuous remodelling during processes such as development, ageing, disease and regeneration. Therefore, in order to study temporal aspects of stiffness regulation, researchers have developed and exploited novel hydrogel substrates with in situ tuneable stiffness. In particular, photoresponsive hydrogels with photoswitchable stiffness are emerging as exciting platforms to study MSC stiffness regulation. This chapter provides an introduction to the use of PA hydrogel substrates, the molecular mechanisms of mechanotransduction currently under investigation and the development of these emerging photoresponsive hydrogel platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MSC:

Mesenchymal stem cell

ECM:

Extracellular matrix

BMPs:

Bone morphogenic proteins

TGF-β:

Transforming growth factor beta

PA:

Polyacrylamide

IAC:

Integrin adhesion complex

FA:

Focal adhesion

MAPK1:

Mitogen-activated protein kinase 1

LIM:

LIN-11, ISl1 and MEC-3

NMII:

Non-muscle myosin-II

RhoA:

Ras homolog gene family, member A

ROCK:

Rho-associated protein kinase

YAP:

Yes-associated protein

TAZ:

Transcriptional coactivator with PDZ-binding motif

LINC:

Linker of nucleo- and cytoskeleton

MKL1:

myocardin-like protein 1

RUNX2:

Runt-related transcription factor 2

SRF:

Serum response factor

PEG:

Poly(ethylene glycol)

PEGdiPDA:

Photodegradable PEG diacrylate

References

  • Abdeen AA, Lee J, Bharadwaj NA et al (2016) Temporal modulation of stem cell activity using magnetoactive hydrogels. Adv Healthc Mater 5:2536–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ajeian JN, Horton ER, Astudillo P et al (2016) Proteomic analysis of integrin-associated complexes from mesenchymal stem cells. Proteomics Clin Appl 10:51–57

    Article  CAS  PubMed  Google Scholar 

  • Assis-Ribas T, Forni MF, Winnischofer SMB et al (2018) Extracellular matrix dynamics during mesenchymal stem cells differentiation. Dev Biol 437:63–74

    Article  CAS  PubMed  Google Scholar 

  • Bara JJ, Richards RG, Alini M, Stoddart MJ (2014) Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 32:1713–1723

    Article  CAS  PubMed  Google Scholar 

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    Article  CAS  PubMed  Google Scholar 

  • Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40:4422

    Article  CAS  PubMed  Google Scholar 

  • Berry MF (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. AJP Hear Circ Physiol 290:H2196–H2203

    Article  CAS  Google Scholar 

  • Brakebusch C, Fässler R (2003) The integrin-actin connection, an eternal love affair. EMBO J 22:2324–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitbach M, Bostani T, Roell W et al (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Hematology 110:1362–1369

    CAS  Google Scholar 

  • Brown TE, Anseth KS (2017) Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem Soc Rev 46:6532–6552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdick JA, Murphy WL (2012) Moving from static to dynamic complexity in hydrogel design. Nat Commun 3:1269

    Article  CAS  PubMed  Google Scholar 

  • Buxboim A, Rajagopal K, Brown AEX, Discher DE (2010) How deeply cells feel: methods for thin gels. J Phys Condens Matter 22:194116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buxboim A, Swift J, Irianto J et al (2014) Matrix elasticity regulates Lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr Biol 24:1909–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calbo J, Weston CE, White AJP et al (2017) Tuning azoheteroarene photoswitch performance through heteroaryl design. J Am Chem Soc 139:1261–1274

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  PubMed  Google Scholar 

  • Choi CK, Vicente-Manzanares M, Zareno J et al (2008) Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 10:1039–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connelly JT, Gautrot JE, Trappmann B et al (2010) Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat Cell Biol 12:711–718

    Article  CAS  PubMed  Google Scholar 

  • Crisp M, Liu Q, Roux K et al (2006) Coupling of the nucleus and cytoplasm. J Cell Biol 172:41–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalby MJ, Gadegaard N, Tare R et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Davis KA, Burke KA, Mather PT, Henderson JH (2011) Dynamic cell behavior on shape memory polymer substrates. Biomaterials 32:2285–2293

    Article  CAS  PubMed  Google Scholar 

  • Di Cio S, Gautrot JE (2016) Cell sensing of physical properties at the nanoscale: mechanisms and control of cell adhesion and phenotype. Acta Biomater 30:26–48

    Article  CAS  PubMed  Google Scholar 

  • Dingal PCDP, Discher DE (2014) Combining insoluble and soluble factors to steer stem cell fate. Nat Mater 13:532–537

    Article  CAS  PubMed  Google Scholar 

  • Dingal PCDP, Bradshaw AM, Cho S et al (2015) Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor. Nat Mater 14:951–960

    Article  CAS  PubMed  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science (80-.) 310:1139–1143

    Article  CAS  Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science (80-.) 324:1673–1677

    Article  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Dong M, Babalhavaeji A, Collins CV et al (2017) Near-infrared photoswitching of azobenzenes under physiological conditions. J Am Chem Soc 139:13483–13486

    Article  CAS  PubMed  Google Scholar 

  • Du J, Chen X, Liang X et al (2011) Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc Natl Acad Sci U S A 108:9466–9471

    Google Scholar 

  • Dupont S, Morsut L, Aragona M et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183

    Article  CAS  PubMed  Google Scholar 

  • Emerman JT, Enami J, Pitelka DR, Nandi S (1977) Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc Natl Acad Sci U S A 74:4466–4470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engler AJ, Griffin MA, Sen S et al (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif 3:393–403

    Article  CAS  Google Scholar 

  • Galarza Torre A, Shaw JE, Wood A et al (2018) An immortalised mesenchymal stem cell line maintains mechano-responsive behaviour and can be used as a reporter of substrate stiffness. Sci Rep 8:8981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Chiu SM, Motan DAL et al (2016) Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 7:e2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger B, Yamada KM (2011) Molecular architecture and function of matrix adhesions. Cold Spring Harb Perspect Biol 3:1–21

    Article  CAS  Google Scholar 

  • Gilbert HTJ, Swift J (2016) Molecular pathways of mechanotransduction. In: Mechanobiology. Wiley, Hoboken, pp 23–42

    Chapter  Google Scholar 

  • Gillette BM, Jensen JA, Wang M et al (2010) Dynamic hydrogels: switching of 3D microenvironments using two-component naturally derived extracellular matrices. Adv Mater 22:686–691

    Article  CAS  PubMed  Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science (80-.) 208:177–179

    Article  CAS  Google Scholar 

  • Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J (2013) Lamin A/C and emerin regulate MKL1–SRF activity by modulating actin dynamics. Nature 497:507–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holle AW, Tang X, Vijayraghavan D et al (2013) In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells 31:2467–2477

    Article  CAS  PubMed  Google Scholar 

  • Horton ER, Byron A, Askari JA et al (2015) Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol 17:1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton ER, Astudillo P, Humphries MJ, Humphries JD (2016) Mechanosensitivity of integrin adhesion complexes: role of the consensus adhesome. Exp Cell Res 343:7–13

    Article  CAS  PubMed  Google Scholar 

  • Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphries JD (2006) Integrin ligands at a glance. J Cell Sci 119:3901–3903

    Article  CAS  PubMed  Google Scholar 

  • Ivanovska IL, Shin JW, Swift J, Discher DE (2015) Stem cell mechanobiology: diverse lessons from bone marrow. Trends Cell Biol 25:523–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivanovska IL, Swift J, Spinler K et al (2017) Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Mol Biol Cell 28:2010–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer KV, Pulford S, Mogilner A, Shivashankar GV (2012) Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport. Biophys J 103:1416–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A 107:4872–4877

    Google Scholar 

  • Klein EA, Yin L, Kothapalli D et al (2009) Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 19:1511–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science (80-.) 324:59–63

    Article  CAS  Google Scholar 

  • Kramann R, Schneider RK, DiRocco DP et al (2015) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66

    Article  CAS  PubMed  Google Scholar 

  • Lee IN, Dobre O, Richards D et al (2018) Photoresponsive hydrogels with photoswitchable mechanical properties allow time-resolved analysis of cellular responses to matrix stiffening. ACS Appl Mater Interfaces 10:7765–7776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CX, Talele NP, Boo S et al (2016) MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat Mater 16:379–389

    Article  CAS  PubMed  Google Scholar 

  • Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi ML, Jaalouk DE, Shanahan CM et al (2011) The interaction between Nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J Biol Chem 286:26743–26753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137:1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mammoto T, Mammoto A, Ingber DE (2013) Mechanobiology and developmental control. Annu Rev Cell Dev Biol 29:27–61

    Article  CAS  PubMed  Google Scholar 

  • Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JAW (2015) Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology 71:181–197

    Article  CAS  PubMed  Google Scholar 

  • McBeath R, Pirone DM, Nelson CM et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  CAS  PubMed  Google Scholar 

  • Norris SCP, Tseng P, Kasko AM (2016) Direct gradient photolithography of photodegradable hydrogels with patterned stiffness control with submicrometer resolution. ACS Biomater Sci Eng 2:1309–1318

    Article  CAS  PubMed  Google Scholar 

  • O’Brien LE, Bilder D (2013) Beyond the niche: tissue-level coordination of stem cell dynamics. Annu Rev Cell Dev Biol 29:107–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JS, Chu JS, Tsou AD et al (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials 32:3921–3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94:13661–13665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15:1243–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Raab M, Swift J, Dingal PCDP et al (2012) Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J Cell Biol 199:669–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reilly GC, Engler AJ (2010) Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43:55–62

    Article  PubMed  Google Scholar 

  • Richardson SM, Hoyland JA, Mobasheri R et al (2010) Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol 222(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Richardson SM, Kalamegam G, Pushparaj PN et al (2016) Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods 99:69–80

    Article  CAS  PubMed  Google Scholar 

  • Rosales AM, Anseth KS (2016) The design of reversible hydrogels to capture extracellular matrix dynamics. Nat Rev Mater 1:15012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosales AM, Mabry KM, Nehls EM, Anseth KS (2015) Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16:798–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosales AM, Vega SL, DelRio FW et al (2017) Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angew Chem Int Ed 56:12132–12136

    Article  CAS  Google Scholar 

  • Rosales AM, Rodell CB, Chen MH et al (2018) Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjug Chem 29:905–913

    Article  CAS  PubMed  Google Scholar 

  • Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. AJP Cell Physiol 295:C1037–C1044

    Article  CAS  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    CAS  PubMed  Google Scholar 

  • Shannon JM, Pitelka DR (1981) The influence of cell shape on the induction of functional differentiation in mouse mammary cells in vitro. In Vitro 17:1016–1028

    Article  CAS  PubMed  Google Scholar 

  • Sherratt MJ (2009) Tissue elasticity and the ageing elastic fibre. Age (Omaha) 31:305–325

    Article  CAS  Google Scholar 

  • Shih YRV, Tseng KF, Lai HY et al (2011) Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 26:730–738

    Article  CAS  PubMed  Google Scholar 

  • Stoecklin C, Yue Z, Chen WW et al (2018) A new approach to design artificial 3D microniches with combined chemical, topographical, and rheological cues. Adv Biosyst 2:1700237

    Google Scholar 

  • Swift J, Ivanovska IL, Buxboim A et al (2013) Nuclear lamin-a scales with tissue stiffness and enhances matrix-directed differentiation. Science (80-.) 341:1240104–1240104

    Article  CAS  Google Scholar 

  • Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17:11–22

    Article  CAS  PubMed  Google Scholar 

  • Tschumperlin DJ, Liu F, Tager AM (2013) Biomechanical regulation of mesenchymal cell function. Curr Opin Rheumatol 25:92–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol 47(1):10.16.1–10.16.16

    Article  Google Scholar 

  • Tse JR, Engler AJ (2011) Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 6:e15978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsimbouri P, Gadegaard N, Burgess K et al (2014) Nanotopographical effects on mesenchymal stem cell morphology and phenotype. J Cell Biochem 115:380–390

    Article  CAS  PubMed  Google Scholar 

  • Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H-B, Dembo M, Wang Y-L (2000) Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Physiol 279:C1345–C1350

    Article  CAS  Google Scholar 

  • Wang D, Park JS, Chu JSF et al (2004) Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor β1 stimulation. J Biol Chem 279:43725–43734

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75–82

    Article  CAS  PubMed  Google Scholar 

  • Winer JP, Janmey PA, McCormick ME, Funaki M (2009) Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A 15:147–154

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Dong M, Collins CV et al (2016) A red-light azobenzene di-maleimide photoswitch: pros and cons. Adv Opt Mater 4:1402–1409

    Article  CAS  Google Scholar 

  • Yang C, Tibbitt MW, Basta L, Anseth KS (2014) Mechanical memory and dosing influence stem cell fate. Nat Mater 13:645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, DelRio FW, Ma H et al (2016a) Spatially patterned matrix elasticity directs stem cell fate. Proc Natl Acad Sci U S A 113:E4439–E4445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Nguyen KT, Leong DT et al (2016b) Soft material approach to induce oxidative stress in mesenchymal stem cells for functional tissue repair. ACS Appl Mater Interfaces 8:26591–26599

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa HY, Rossetti FF, Kaufmann S et al (2011) Quantitative evaluation of mechanosensing of cells on dynamically tunable hydrogels. J Am Chem Soc 133:1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wang PP, Zhao J et al (2014) Dietary N-nitroso compounds and risk of colorectal cancer: a case-control study in Newfoundland and Labrador and Ontario, Canada. Br J Nutr 111:1109–1117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.R. was supported by the EPSRC & MRC funded Centre for Doctoral Training in Regenerative Medicine (EP/L014904/1). J.S. was funded by a Biotechnology and Biological Sciences Research Council (BBSRC) David Phillips Fellowship (BB/L024551/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Richardson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Richards, D., Swift, J., Wong, L.S., Richardson, S.M. (2018). Photoresponsive Hydrogels with Photoswitchable Stiffness: Emerging Platforms to Study Temporal Aspects of Mesenchymal Stem Cell Responses to Extracellular Stiffness Regulation. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 5. Advances in Experimental Medicine and Biology(), vol 1144. Springer, Cham. https://doi.org/10.1007/5584_2018_293

Download citation

Publish with us

Policies and ethics