Skip to main content

Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1119))

Abstract

Biomaterials are key components in tissue engineering and regenerative medicine applications, with the intended purpose of reducing the burden of disease and enhancing the quality of life of a large number of patients. The success of many regenerative medicine strategies, such as cell-based therapies, artificial organs, and engineered living tissues, is highly dependent on the ability to design or produce suitable biomaterials that can support and guide cells during tissue healing and remodelling processes. This chapter presents an overview about basic research concerning the use of different biomaterials for tissue engineering and regenerative medicine applications. Starting from a historical perspective, the chapter introduces the basic principles of designing biomaterials for tissue regeneration approaches. The main focus is set on describing the main classes of biomaterials that have been applied in regenerative medicine, including natural and synthetic polymers, bioactive ceramics, and composites. For each class of biomaterials, some of the most important physicochemical and biological properties are presented. Finally, some challenges and concerns that remain in this field are presented and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BCP:

Biphasic calcium phosphate

BMP-2:

Bone morphogenetic protein 2

CaP:

Calcium phosphate

CNFs:

Carbon nanofibers

CNTs:

Carbon nanotubes

DLC:

Diamond-like carbon

ECM:

Extracellular matrix

FBRs:

Foreign body responses

GAGs:

Glycosaminoglycans

GAL:

Galactoxylose

GLU:

Glucan

HA:

Hydroxyapatite

hiPSCs:

Human-induced pluripotent stem cells

MCNs:

Mesoporous carbon nanomaterials

Micro-CT:

Microcomputed tomography

MMP:

Matrix metalloproteinase

MSCs:

Mesenchymal stem cells

MWCNTs:

Multi-walled carbon nanotubes.

PCL:

Polycaprolactone

PEG:

Polyethylene glycol

PEO:

Polyethylene oxide

PGA:

Polyglycolide

PLA:

Polylactide

PNIPAAm:

Poly(N-isopropylacrylamide)

POE:

Polyoxyethylene

PRP:

Platelet-rich plasma

QDs:

Quantum dots

SWCNTs:

Single-walled carbon nanotubes

References

  • Ahadian S, Yamada S, Ramón-Azcón J, Estili M, Liang X, Nakajima K, Shiku H, Khademhosseini A, Matsue T (2016) Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomater 31:134–143

    CAS  PubMed  Google Scholar 

  • Ahadian S, Huyer LD, Estili M, Yee B, Smith N, Xu Z, Sun Y, Radisic M (2017) Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater 52:81–91

    CAS  PubMed  Google Scholar 

  • Alasv N, Mozafari M (2015) Graphene-proceed with caution: what we know, what we don’t. J Clin Toxicol 5:E122

    Google Scholar 

  • Appel EA, Tibbitt MW, Webber MJ, Mattix BA, Veiseh O, Langer R (2015) Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nat Commun 6:6295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apple DJ (2007) Nicholas Harold Lloyd Ridley. 10 July 1906—25 May 2001: elected FRS 1986. Biogr Mem Fellows R Soc 53:285–307

    PubMed  Google Scholar 

  • Ayoub AS, Lucia LA (2017) Introduction to renewable biomaterials: first principles and concepts. Wiley, Hoboken

    Google Scholar 

  • Azmir J, Zaidul I, Rahman M, Sharif K, Mohamed A, Sahena F, Jahurul M, Ghafoor K, Norulaini N, Omar A (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117(4):426–436

    CAS  Google Scholar 

  • Bari A, Bloise N, Fiorilli S, Novajra G, Vallet-Regí M, Bruni G, Torres-Pardo A, González-Calbet JM, Visai L, Vitale-Brovarone C (2017) Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomater 55:493–504

    CAS  PubMed  Google Scholar 

  • Barud HO, Barud H d S, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, Petersen AL d OA, Celes F, Borges VM, de Oliveira CI (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51

    Google Scholar 

  • Bergmann CP, Stumpf A (2013) Dental Alumina: Microstructure and Properties. In: Dental Ceramics. Springer, Berlin, Heidelberg, pp 55–65

    Google Scholar 

  • Best S, Porter A, Thian E, Huang J (2008) Bioceramics: past, present and for the future. J Eur Ceram Soc 28(7):1319–1327

    CAS  Google Scholar 

  • Boccaccini A, Chatzistavrou X, Blaker J, Nazhat S (2012) Degradable and bioactive synthetic composite scaffolds for bone tissue engineering. In: Degradation of implant materials. Springer, New York, pp 111–137

    Google Scholar 

  • Boddohi S, Moore N, Johnson PA, Kipper MJ (2009) Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules 10(6):1402–1409

    CAS  PubMed  Google Scholar 

  • Boersema GS, Grotenhuis N, Bayon Y, Lange JF, Bastiaansen-Jenniskens YM (2016) The effect of biomaterials used for tissue regeneration purposes on polarization of macrophages. BioResearch Open Access 5(1):6–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braghirolli DI, Steffens D, Pranke P (2014) Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today 19(6):743–753

    CAS  PubMed  Google Scholar 

  • Braun M (1994) Picturing time: the work of Etienne-Jules Marey (1830–1904). University of Chicago Press, Chicago

    Google Scholar 

  • Calatayud MP, Sanz B, Raffa V, Riggio C, Ibarra MR, Goya GF (2014) The effect of surface charge of functionalized Fe 3 O 4 nanoparticles on protein adsorption and cell uptake. Biomaterials 35(24):6389–6399

    CAS  PubMed  Google Scholar 

  • Cao S, Zhu H (2014) Frontiers in biomaterials: the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application. Bentham Science Publishers, Oak Park

    Google Scholar 

  • Cattalini JP, Roether J, Hoppe A, Pishbin F, Durand LH, Gorustovich A, Boccaccini AR, Lucangioli S, Mouriño V (2016) Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering. Biomed Mater 11(6):065003

    PubMed  Google Scholar 

  • Chan B, Leong K (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(4):467–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H-I, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. Regenerative Medicine and Tissue Engineering Daniel Eberli, InTech Open

    Google Scholar 

  • Chauhan NPS, Mozafari M, Chundawat NS, Meghwal K, Ameta R, Ameta SC (2016) High-performance supercapacitors based on polyaniline–graphene nanocomposites: some approaches, challenges and opportunities. J Ind Eng Chem 36:13–29

    CAS  Google Scholar 

  • Chou J, Komuro M, Hao J, Kuroda S, Hattori Y, Ben-Nissan B, Milthorpe B, Otsuka M (2016) Bioresorbable zinc hydroxyapatite guided bone regeneration membrane for bone regeneration. Clin Oral Implants Res 27(3):354–360

    PubMed  Google Scholar 

  • Choudhary N, Syed A, Kale V, Avari J (2010) Oral sustained release in situ gel forming polymeric drug delivery systems. Res J Pharm Technol 3(3):682–687

    CAS  Google Scholar 

  • Cortes RA, Miranda E, Lee H, Gertner ME (2008) Biomaterials and the evolution of hernia repair I: the history of biomaterials and the permanent meshes. In: Surgery. Springer, New York, pp 2291–2304

    Google Scholar 

  • Crowder SW, Prasai D, Rath R, Balikov DA, Bae H, Bolotin KI, Sung H-J (2013) Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Olyveira GM, dos Santos ML, Costa LMM, Daltro PB, Basmaji P, de Cerqueira Daltro G, Guastaldi AC (2014) Bacterial cellulose biocomposites for guided tissue regeneration. Sci Adv Mater 6(12):2673–2678

    Google Scholar 

  • DeQuach JA, Yuan SH, Goldstein LS, Christman KL (2011) Decellularized porcine brain matrix for cell culture and tissue engineering scaffolds. Tissue Eng A 17(21–22):2583–2592

    CAS  Google Scholar 

  • Dornath P, Cho HJ, Paulsen A, Dauenhauer P, Fan W (2015) Efficient mechano-catalytic depolymerization of crystalline cellulose by formation of branched glucan chains. Green Chem 17(2):769–775

    CAS  Google Scholar 

  • Dorozhkin SV (2015) Calcium orthophosphate bioceramics. Ceram Int 41(10):13913–13966

    CAS  Google Scholar 

  • Ducheyne P (2015) Comprehensive biomaterials. Elsevier, Amsterdam

    Google Scholar 

  • Elsenaar A, Scha R (2002) Electric body manipulation as performance art: a historical perspective. Leonardo Music J 12:17–28

    Google Scholar 

  • Erasmus E, Sule R, Johnson O, Massera J, Sigalas I (2018) In vitro evaluation of porous borosilicate, borophosphate and phosphate bioactive glasses scaffolds fabricated using foaming agent for bone regeneration. Sci Rep 8(1):3699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Follmann HDM, Naves AF, Araujo RA, Dubovoy V, Huang X, Asefa T, Silva R, Oliveira ON (2017) Hybrid materials and nanocomposites as multifunctional biomaterials. Curr Pharm Des 23(26):3794–3813

    CAS  PubMed  Google Scholar 

  • Fujihara K, Huang Z-M, Ramakrishna S, Satkunanantham K, Hamada H (2001) Development of braided carbon/PEEK composite bone plates. Adv Compos Lett 10:13–20

    Google Scholar 

  • Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111(3):441–453

    CAS  PubMed  Google Scholar 

  • Gardin C, Piattelli A, Zavan B (2016) Graphene in regenerative medicine: focus on stem cells and neuronal differentiation. Trends Biotechnol 34(6):435–437

    CAS  PubMed  Google Scholar 

  • Ge Z, Li C, Heng BC, Cao G, Yang Z (2012) Functional biomaterials for cartilage regeneration. J Biomed Mater Res A 100(9):2526–2536

    PubMed  Google Scholar 

  • Gholipourmalekabadi M, Samadikuchaksaraei A, Seifalian AM, Urbanska A, Ghanbarian H, Hardy JG, Omrani M, Mozafari M, Reis RL, Kundu SC (2017) Silk fibroin/amniotic membrane 3D bi-layered artificial skin. Biomed Mater 13(3):035003

    Google Scholar 

  • Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88

    CAS  PubMed  Google Scholar 

  • Goodarzi S, Da Ros T, Conde J, Sefat F, Mozafari M (2017) Fullerene: biomedical engineers get to revisit an old friend. Mater Today 20:460–480

    CAS  Google Scholar 

  • Guillén G, Giménez B, López Caballero M, Montero García P (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25(8):1813–1827

    Google Scholar 

  • Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5(1):1–16

    CAS  PubMed  Google Scholar 

  • Guo X, Zou X, Sun M (2010) Optimization of extraction process by response surface methodology and preliminary characterization of polysaccharides from Phellinus igniarius. Carbohydr Polym 80(2):344–349

    CAS  Google Scholar 

  • Ha TLB, Quan TM, Vu D, Si D, Andrades J (2013) Naturally derived biomaterials: preparation and application. In: Regenerative medicine and tissue engineering, pp 247–274

    Google Scholar 

  • Hao J, Acharya A, Chen K, Chou J, Kasugai S, Lang N (2015) Novel bioresorbable strontium hydroxyapatite membrane for guided bone regeneration. Clin Oral Implants Res 26(1):1–7

    CAS  PubMed  Google Scholar 

  • Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28(2):344–353

    CAS  PubMed  Google Scholar 

  • He W, Benson R (2014) Polymeric biomaterials. William Andrew Publishing, Oxford

    Google Scholar 

  • Hench LL, Splinter RJ, Allen W, Greenlee T (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res A 5(6):117–141

    Google Scholar 

  • Hintze V, Moeller S, Schnabelrauch M, Bierbaum S, Viola M, Worch H, Scharnweber D (2009) Modifications of hyaluronan influence the interaction with human bone morphogenetic protein-4 (hBMP-4). Biomacromolecules 10(12):3290–3297

    CAS  PubMed  Google Scholar 

  • Hoefling M, Iori F, Corni S, Gottschalk K-E (2010) Interaction of amino acids with the Au (111) surface: adsorption free energies from molecular dynamics simulations. Langmuir 26(11):8347–8351

    CAS  PubMed  Google Scholar 

  • Hollinger JO (2011) An introduction to biomaterials. CRC press, Boca Raton

    Google Scholar 

  • Hoshiba T (2017) Cultured cell-derived decellularized matrices: a review towards the next decade. J Mater Chem B 5(23):4322–4331

    CAS  Google Scholar 

  • Hyldig K, Riis S, Pennisi CP, Zachar V, Fink T (2017) Implications of extracellular matrix production by adipose tissue-derived stem cells for development of wound healing therapies. Int J Mol Sci 18(6):1167

    PubMed Central  Google Scholar 

  • Ige OO, Umoru LE, Aribo S (2012) Natural products: a minefield of biomaterials. ISRN Mater Sci 2012:1–20

    Google Scholar 

  • Jing X, Mi H-Y, Napiwocki BN, Peng X-F, Turng L-S (2017) Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon 125:557–570

    CAS  Google Scholar 

  • Jung SB (2012) Bioactive borate glasses. In: Bio-glasses: an introduction. Wiley, Chichester, pp 75–95

    Google Scholar 

  • Jung SB, Day DE (2009) Conversion kinetics of silicate, borosilicate, and borate bioactive glasses to hydroxyapatite. Phys Chem Glasses Eur J Glass Sci Technol Part B 50(2):85–88

    CAS  Google Scholar 

  • Kalbacova M, Broz A, Kong J, Kalbac M (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15):4323–4329

    CAS  Google Scholar 

  • Kargozar S, Baino F, Hamzehlou S, Hill RG, Mozafari M (2018) Bioactive glasses: sprouting angiogenesis in tissue engineering. Trends Biotechnol 36:430–444

    CAS  PubMed  Google Scholar 

  • Kean ZS, Craig SL (2012) Mechanochemical remodeling of synthetic polymers. Polymer 53(5):1035–1048

    CAS  Google Scholar 

  • Khaing ZZ, Schmidt CE (2012) Advances in natural biomaterials for nerve tissue repair. Neurosci Lett 519(2):103–114

    CAS  PubMed  Google Scholar 

  • Kim BW (2017) Clinical regenerative medicine in urology. Springer, Singapore

    Google Scholar 

  • Kim T-W, Chung P-W, Slowing II, Tsunoda M, Yeung ES, Lin VS-Y (2008) Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Lett 8(11):3724–3727

    CAS  PubMed  Google Scholar 

  • Kim B-S, Choi M-K, Yoon J-H, Lee J (2015) Evaluation of bone regeneration with biphasic calcium phosphate substitute implanted with bone morphogenetic protein 2 and mesenchymal stem cells in a rabbit calvarial defect model. Oral Surg Oral Med Oral Pathol Oral Radiol 120(1):2–9

    PubMed  Google Scholar 

  • Kumar S, Chatterjee K (2016) Comprehensive review on the use of graphene-based substrates for regenerative medicine and biomedical devices. ACS Appl Mater Interfaces 8(40):26431–26457

    CAS  Google Scholar 

  • Kwak HS, Nam J, Lee J h, Kim HJ, Yoo JJ (2017) Meniscal repair in vivo using human chondrocyte-seeded PLGA mesh scaffold pretreated with platelet-rich plasma. J Tissue Eng Regen Med 11(2):471–480

    CAS  PubMed  Google Scholar 

  • Levi B, Longaker MT (2011) Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem Cells 29(4):576–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Qiu Y, Zhou S, Hu X, Yu G, Deng X (2008) Preparation and properties of dental zirconia ceramics. J Univ Sci Technol Beijing Miner Metall Mate 15(6):764–768

    CAS  Google Scholar 

  • Lichota A, Krokosz A (2016) Fullerenols in therapy and diagnosis of cancer. Med Pr 67(6):817–831

    PubMed  Google Scholar 

  • Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381

    CAS  PubMed  Google Scholar 

  • Lindroos B, Suuronen R, Miettinen S (2011) The potential of adipose stem cells in regenerative medicine. Stem Cell Rev Rep 7(2):269–291

    Google Scholar 

  • Liu K-K, Zheng W-W, Wang C-C, Chiu Y-C, Cheng C-L, Lo Y-S, Chen C, Chao J-I (2010) Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology 21(31):315106

    PubMed  Google Scholar 

  • Ma PX (2016) Alginates: tissue engineering. In: Encyclopedia of biomedical polymers and polymeric biomaterials, 11 Volume Set, CRC Press, Boca Raton, pp 126–133

    Google Scholar 

  • Mano J, Silva G, Azevedo HS, Malafaya P, Sousa R, Silva SS, Boesel L, Oliveira JM, Santos T, Marques A (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regen Med 3(1):1–6

    PubMed  Google Scholar 

  • Meder F, Daberkow T, Treccani L, Wilhelm M, Schowalter M, Rosenauer A, Mädler L, Rezwan K (2012) Protein adsorption on colloidal alumina particles functionalized with amino, carboxyl, sulfonate and phosphate groups. Acta Biomater 8(3):1221–1229

    CAS  PubMed  Google Scholar 

  • Mehrali M, Thakur A, Pennisi CP, Talebian S, Arpanaei A, Nikkhah M, Dolatshahi-Pirouz A (2017) Nanoreinforced hydrogels for tissue engineering: biomaterials that are compatible with load-bearing and electroactive tissues. Adv Mater 29(8):1603612

    Google Scholar 

  • Migonney V (2014) History of biomaterials. In: Biomaterials. Wiley, Hoboken, pp 1–10

    Google Scholar 

  • Min BG, Sun K (2002) The total artificial heart and implantable biventricular assist device. J Artif Organs 5(3):0147–0148

    Google Scholar 

  • Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR (2008) Comparison of nanoscale and microscale bioactive glass on the properties of P (3HB)/Bioglass® composites. Biomaterials 29(12):1750–1761

    CAS  PubMed  Google Scholar 

  • Mizuno H, Tobita M, Uysal AC (2012) Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30(5):804–810

    CAS  PubMed  Google Scholar 

  • Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23

    CAS  Google Scholar 

  • Mooney DJ, Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell Stem Cell 2(3):205–213

    CAS  PubMed  Google Scholar 

  • Morais JM, Papadimitrakopoulos F, Burgess DJ (2010) Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J 12(2):188–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186

    CAS  PubMed  Google Scholar 

  • Mozafari M, Moztarzadeh F (2014) Synthesis, characterization and biocompatibility evaluation of sol–gel derived bioactive glass scaffolds prepared by freeze casting method. Ceram Int 40(4):5349–5355

    CAS  Google Scholar 

  • Mozafari M, Moztarzadeh F, Tahriri M (2010) Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid. J Non-Cryst Solids 356(28–30):1470–1478

    CAS  Google Scholar 

  • Mozafari M, Kargozar S, de Santiago G, Mohammadi MR, Milan P, Foroutan Koudehi M, Aghabarari B, Nourani M (2018) Synthesis and characterisation of highly interconnected porous poly (ε-caprolactone)-collagen scaffolds: a therapeutic design to facilitate tendon regeneration. Mater Technol 33(1):29–37

    CAS  Google Scholar 

  • Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Veterinarni Medicina 53(8):397–411

    CAS  Google Scholar 

  • Nommeots-Nomm A, Labbaf S, Devlin A, Todd N, Geng H, Solanki AK, Tang HM, Perdika P, Pinna A, Ejeian F (2017) Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Acta Biomater 57:449–461

    CAS  PubMed  Google Scholar 

  • Nosé Y (2009) Dr. Willem J. Kolff: the godfather of artificial organ technologies (February 14, 1911–February 11, 2009). Artif Organs 33(5):389–402

    PubMed  Google Scholar 

  • O’brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Google Scholar 

  • Ombelli M, Costello L, Postle C, Anantharaman V, Meng QC, Composto RJ, Eckmann DM (2011) Competitive protein adsorption on polysaccharide and hyaluronate modified surfaces. Biofouling 27(5):505–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3(3):1863–1887

    CAS  PubMed Central  Google Scholar 

  • Pati F, Ha D-H, Jang J, Han HH, Rhie J-W, Cho D-W (2015) Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175

    CAS  PubMed  Google Scholar 

  • Patino JMR, Pilosof AM (2011) Protein–polysaccharide interactions at fluid interfaces. Food Hydrocoll 25(8):1925–1937

    Google Scholar 

  • Pennisi CP, Alcaide M (2014) Nanocrystalline diamond films for biomedical applications. In: Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application. Bentham Science Publishers, pp 70–100

    Google Scholar 

  • Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27(7):1143–1169

    CAS  PubMed  Google Scholar 

  • Rahmati M, Samadikuchaksaraei A, Mozafari M (2016) Insight into the interactive effects of β-glycerophosphate molecules on thermosensitive chitosan-based hydrogels. Bioinspired Biomimetic Nanobiomat 5(2):67–73

    Google Scholar 

  • Rahmati M, Milan PB, Samadikuchaksaraei A, Goodarzi V, Saeb MR, Kargozar S, Kaplan DL, Mozafari M (2017) Ionically crosslinked Thermoresponsive chitosan hydrogels formed in situ: a conceptual basis for deeper understanding. Macromol Mater Eng 302(11):1700227

    Google Scholar 

  • Ramón-Azcón J, Ahadian S, Estili M, Liang X, Ostrovidov S, Kaji H, Shiku H, Ramalingam M, Nakajima K, Sakka Y (2013) Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv Mater 25(29):4028–4034

    PubMed  Google Scholar 

  • Ranawat A, Ranawat C (2012) The history of total knee arthroplasty. In: The knee joint. Springer, Paris, pp 699–707

    Google Scholar 

  • Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E (2010) Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater 6(7):2711–2720

    CAS  PubMed  Google Scholar 

  • Ratner BD (2013) A history of biomaterials. In: Biomaterials science: an introduction to materials, 3rd edn. Elsevier Inc, Kidlington

    Google Scholar 

  • Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface rsif20100120 7:S559–S579

    CAS  Google Scholar 

  • Rezwan K, Chen Q, Blaker J, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    CAS  PubMed  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    CAS  Google Scholar 

  • Sahoo NG, Pan YZ, Li L, He CB (2013) Nanocomposites for bone tissue regeneration. Nanomedicine 8(4):639–653

    CAS  PubMed  Google Scholar 

  • Salahinejad E, Hadianfard M, Macdonald D, Mozafari M, Vashaee D, Tayebi L (2012) Zirconium titanate thin film prepared by an aqueous particulate sol–gel spin coating process using carboxymethyl cellulose as dispersant. Mater Lett 88:5–8

    CAS  Google Scholar 

  • Sarasam A, Madihally SV (2005) Characterization of chitosan–polycaprolactone blends for tissue engineering applications. Biomaterials 26(27):5500–5508

    CAS  PubMed  Google Scholar 

  • Sarem M, Moztarzadeh F, Mozafari M (2013) How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues? Carbohydr Polym 93(2):635–643

    CAS  PubMed  Google Scholar 

  • Sarkar SK, Lee BT (2015) Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med 30(3):279–293

    PubMed  PubMed Central  Google Scholar 

  • Sekuła M, Zuba-Surma EK (2018) Biomaterials and stem cells: promising tools in tissue engineering and biomedical applications. In: Biomaterials in regenerative medicine. InTech, Rijeka

    Google Scholar 

  • Shabafrooz V, Mozafari M, Köhler GA, Assefa S, Vashaee D, Tayebi L (2014) The effect of hyaluronic acid on biofunctionality of gelatin–collagen intestine tissue engineering scaffolds. J Biomed Mater Res A 102(9):3130–3139

    PubMed  Google Scholar 

  • Shih Y-RV, Hwang Y, Phadke A, Kang H, Hwang NS, Caro EJ, Nguyen S, Siu M, Theodorakis EA, Gianneschi NC (2014) Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc Natl Acad Sci 111(3):990–995

    CAS  PubMed  Google Scholar 

  • Shin SR, Li Y-C, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, Zhang YS, Tamayol A, Khademhosseini A (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105:255–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh Dhillon G, Kaur S, Jyoti Sarma S, Kaur Brar S, Verma M, Yadagiri Surampalli R (2013) Recent development in applications of important biopolymer chitosan in biomedicine, pharmaceuticals and personal care products. Curr Tissue Eng 2(1):20–40

    Google Scholar 

  • Stanić V (2017) Variation in properties of bioactive glasses after surface modification. In: Clinical applications of biomaterials. Springer, Cham, pp 35–63

    Google Scholar 

  • Stevens KR, Miller JS, Blakely BL, Chen CS, Bhatia SN (2015) Degradable hydrogels derived from PEG-diacrylamide for hepatic tissue engineering. J Biomed Mater Res A 103(10):3331–3338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surmenev RA, Surmeneva MA, Ivanova AA (2014) Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis–a review. Acta Biomater 10(2):557–579

    CAS  PubMed  Google Scholar 

  • Tanaka M, Sato Y, Haniu H, Nomura H, Kobayashi S, Takanashi S, Okamoto M, Takizawa T, Aoki K, Usui Y (2017) A three-dimensional block structure consisting exclusively of carbon nanotubes serving as bone regeneration scaffold and as bone defect filler. PLoS One 12(2):e0172601

    PubMed  PubMed Central  Google Scholar 

  • Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280

    CAS  Google Scholar 

  • Tøndervik A, Klinkenberg G, Aarstad OA, Drabløs F, Ertesvåg H, Ellingsen TE, Skjåk-Bræk G, Valla S, Sletta H (2010) Isolation of mutant alginate lyases with cleavage specificity for di-guluronic acid linkages. J Biol Chem 285(46):35284–35292

    PubMed  PubMed Central  Google Scholar 

  • Touri R, Moztarzadeh F, Sadeghian Z, Bizari D, Tahriri M, Mozafari M (2013) The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications. Biomed Res Int 2013:1–8

    Google Scholar 

  • Vaquette C, Ivanovski S, Hamlet SM, Hutmacher DW (2013) Effect of culture conditions and calcium phosphate coating on ectopic bone formation. Biomaterials 34(22):5538–5551

    CAS  PubMed  Google Scholar 

  • Wachesk C, Trava-Airoldi V, Da-Silva N, Lobo A, Marciano F (2016) The influence of titanium dioxide on diamond-like carbon biocompatibility for dental applications. J Nanomater 2016:1–7

    Google Scholar 

  • Wang K, Zhou C, Hong Y, Zhang X (2012) A review of protein adsorption on bioceramics. Interface Focus rsfs20120012 2(3):259–277

    Google Scholar 

  • Webber MJ, Appel EA, Meijer E, Langer R (2016) Supramolecular biomaterials. Nat Mater 15(1):13

    CAS  PubMed  Google Scholar 

  • Wei G, Ma PX (2006) Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A 78((2):306–315

    Google Scholar 

  • Williams D (1999) The Williams dictionary of biomaterials. Liverpool, University Press, Liverpool 42 p

    Google Scholar 

  • Wintermatel E, Tognini R, Mayer J, Koch B, Loher U (1993) Development of a cortical bone screw made with endless carbon fibre reinforced polyetheretherketone(CF-PEEK) by extrusion. A new method. In: 7th international conference on polymers in medicine and surgery. The Institute of Materials, London

    Google Scholar 

  • Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X (2012) Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter 8(12):3280–3294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41):412001

    Google Scholar 

  • Yazdanpanah A, Amoabediny G, Shariatpanahi P, Nourmohammadi J, Tahmasbi M, Mozafari M (2014) Synthesis and characterization of Polylactic acid tubular scaffolds with improved mechanical properties for vascular tissue engineering. Trends Biomat Artif Organs 28(3):99–105

    Google Scholar 

  • Zarrintaj P, Urbanska A, Gholizadeh SS, Goodarzi V, Saeb MR, Mozafari M (2018) A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications. J Colloid Interface Sci 516:57–66

    CAS  PubMed  Google Scholar 

  • Zhang C, Yuan H, Liu H, Chen X, Lu P, Zhu T, Yang L, Yin Z, Heng BC, Zhang Y (2015) Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials 53:716–730

    CAS  PubMed  Google Scholar 

  • Zhao L, Dong Y, Chen G, Hu Q (2010) Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum. Carbohydr Polym 80(3):783–789

    CAS  Google Scholar 

  • Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

A. Mobasheri has been funded from the following sources: The European Commission Framework 7 programme (EU FP7; HEALTH.2012.2.4.5-2, project number 305815; Novel Diagnostics and Biomarkers for Early Identification of Chronic Inflammatory Joint Diseases). The Innovative Medicines Initiative Joint Undertaking under grant agreement No. 115770, resources of which are composed of financial contribution from the European Union’s Seventh Framework programme (FP7/2007–2013) and EFPIA companies’ in-kind contribution. A. Mobasheri also wishes to acknowledge funding from the European Commission through a Marie Curie Intra-European Fellowship for Career Development grant (project number 625746; acronym: CHONDRION; FP7-PEOPLE-2013-IEF) and support from the European Social Fund according to the activity ‘Improvement of researchers’ qualification by implementing world-class R&D projects’ of Measure No. 09.3.3-LMT-K-712 (grant application code: 09.3.3-LMT-K-712-01-0157, agreement No. DOTSUT-215) and the Lithuanian Research Council through the European Social Fund to support the strategic activity ‘Development of a nanobiosensor: a multiplex analysis of diagnostic biomarkers for personalization of osteoarthritis therapy’, (grant application code: 01.2.2-LMT-K-718-02-0022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Mobasheri or Masoud Mozafari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahmati, M., Pennisi, C.P., Budd, E., Mobasheri, A., Mozafari, M. (2018). Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 4. Advances in Experimental Medicine and Biology(), vol 1119. Springer, Cham. https://doi.org/10.1007/5584_2018_278

Download citation

Publish with us

Policies and ethics