Pulmonary Health and Disorders pp 1-10 | Cite as
Effects of Exposure to Carbon Dioxide in Potash Miners
- 1 Mentions
- 350 Downloads
Abstract
Potash miners can become exposed to carbon dioxide (CO2) during the blasting of basalt intrusions or loading and transporting the blasted salt. In a cross-shift study, we compared physiological effects of acute exposure to elevated CO2 concentrations in miners after long-term exposure to evaluate the possible health risks. A group of 119 miners was assessed by clinical examination, lung function tests, and blood gas content directly before and after the shift. A cumulative CO2 exposure was measured using personal monitors. The miners were categorized as low (<0.1 vol.%, n = 83), medium (<0.5 vol.%, n = 26), and high (>0.5 vol.%, n = 10) CO2 exposed subjects. We found no significant differences among the three groups. Lung function testing revealed no conspicuous findings, and chronic health effects were not observed in the miners either. In conclusion, no significant adverse effects could be found in potash miners exposed to elevated CO2 concentrations. Therefore, the mining authorities allow potash mining operations for 4 h at ambient CO2 up to 1.0 vol.% and for 2 h at CO2 not exceeding 1.5 vol.% per shift.
Keywords
Air monitoring Blood pH Carbon dioxide Lung function pCO2 Potash minersNotes
Acknowledgments
We are grateful to our volunteers for their participation. The authors thank Hans Berresheim, Anja Deckert, Sven Koszma, Thomas Lüttke, Anja Molkenthin, Roswitha Nioduschewski, Nina Rosenkranz, Jan Schramm and Patrick Schulze for their excellent technical assistance.
Conflicts of Interest
The authors declare no conflicts of interest in relation to this article.
References
- AMA (1953) Aviation toxicology: an introduction to the subject and a handbook of data/prepared under the direction of the committee on aviation toxicology. Aero Medical Association, New York/BlakistonGoogle Scholar
- Antony MM, Brown TA, Barlow DH (1997) Response to hyperventilation and 5.5% CO2 inhalation of subjects with types of specific phobia, panic disorder, or no mental disorder. Am J Psychiatry 154(8):1089–1095CrossRefGoogle Scholar
- ATS (1995) American thoracic society. Standardization of spirometry. 1994 update. Am J Respir Crit Care Med 152:1107–1136CrossRefGoogle Scholar
- Bakris G, Sorrentino M (2018) Redefining hypertension assessing the new blood–pressure guidelines. N Engl J Med 378:497–499CrossRefGoogle Scholar
- Borum VF, Schaefer KE, Hastings BJ (1954) The effect of exposure to elevated carbon dioxide tension over a prolonged period on basal physiological functions and cardiovascular capacity. US Navy Med Res Lab Rep 241:1–19Google Scholar
- Bösch D (2009) Möglichkeiten und Grenzen der Spirometrie. Atemwegs– und Lungenkrankheiten 35:96–98 Article in GermanCrossRefGoogle Scholar
- Craig FN (1971) Technical Report No. N72–14127–1970. AFSC, Wright–Patterson AFB, OhioGoogle Scholar
- Criée CP, Berdel D, Heise D, Kardos P, Köhler D, Leupold W, Magnussen H, Marek W, Merget R, Mitfessel H, Rolke M, Sorichter S, Worth W, Wuthe H (2006) Empfehlungen der Deutschen Atemwegsliga zur Spirometrie. Pneumologie 60:576–584 (Article in German)CrossRefGoogle Scholar
- DFG (1961) The MAK collection for occupational health and safety, 9th edn. Wiley VCH, Weinheim Online ISBN: 9783527600410Google Scholar
- DFG (2002) The MAK collection for occupational health and safety, 34th edn. Wiley VCH, Weinheim Online ISBN: 9783527600410Google Scholar
- Drummer C, Friedel V, Börger A, Störmer I, Wolter S, Zittermann A, Wolfram G, Heer M (1998) Effects of elevated carbon dioxide environment on calcium metabolism in humans. Aviat Space Environ Med 69(3):291–298PubMedGoogle Scholar
- Duchrow G, Thoma K, Marggraf P, Sanzer K (1988) Research on the phenomenon of the salt–gas eruptions in the Werra potash area in the GDR. Neue Bergbautechnik 18:241–250 Article in GermanGoogle Scholar
- Ebersole JH (1960) The new dimensions of submarine medicine. N Engl J Med 262:599–610CrossRefGoogle Scholar
- Elliot AR, Prisk GK, Schöllman C, Hoffmann U (1998) Hypercapnic ventilatory response in humans before, during and after 23 days of low level CO2 exposure. Aviat Space Environ Med 69:391–396Google Scholar
- EPA (2000) Carbon dioxide as a fire suppressant: examining the risks. United States Environmental Protection Agency Air and Radiation, 6205J. http://www.epa.gov/ozone. Accessed on 22 July 2018
- Flury F, Zernik F (1931) Schädliche Gase und Dämpfe. Springer, Berlin in GermanCrossRefGoogle Scholar
- Friedlander WJ, Hill T (1954) EEG changes during administration of carbon dioxide. Dis Nerv Syst 15:71–75PubMedGoogle Scholar
- Glatte HA, Motsay GJ, Welch BE (1967) Carbon dioxide tolerance studies. SAM–TR–77. Tech Rep SAM–TR 23:1–22Google Scholar
- Gray SP (1950) Pulmonary ventilation and its physiologic regulation. Chas Thomas Publ, SpringfieldGoogle Scholar
- Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM (2006) Global burden of COPD: systematic review and meta–analysis. Eur Respir J 28:523–532CrossRefGoogle Scholar
- Khodabandeh–Shahraki S, Azizzadeh-Forouzi M (2012) Effects of gradual exposure to carbon dioxide gas on the blood pressure status of workers in coal mines of Kerman province, Iran. ARYA Artheroscler 8:149–152Google Scholar
- Kutz A, Marshall E, Bernstein A, Zvolensky MJ (2010) Evaluating emotional sensitivity and tolerance factors in the prediction of panic–relevant responding to a biological challenge. J Anxiety Disord 24:16–22CrossRefGoogle Scholar
- Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright O, van der Grinten CPM, Gustafson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi R, Wangler J (2005) Standardisation of spirometry. Eur Respir J 26:319–338CrossRefGoogle Scholar
- Monsé C, Broding HC, Sucker K, Berresheim H, Jettkant B, Hoffmeyer F, Merget R, Brüning T, Bünger J (2013) Exposure assessment of potash miners at elevated CO2 levels. Int Arch Occup Environ Health 87(4):413–421CrossRefGoogle Scholar
- Ogliari A, Tambs K, Harris JR, Scaini S, Maffei C, Reichborn–Kjennerud T, Battaglia M (2010) The relationships between adverse events, early antecedents, and carbon dioxide reactivity as an intermediate phenotype of panic disorder. Psychother Psychosom 79:48–55CrossRefGoogle Scholar
- Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Enright PL, Hankinson JL, Ip MS, Zheng J, Stocks J, on behalf of the ERS Global Lung Function Initiative (2012) Multi–ethnic reference values for spirometry for the 3–95 year age range: the global lung function 2012 equations. Eur Respir J 40:1324–1343CrossRefGoogle Scholar
- Saric M, Gomzi M, Hrustic O (1982) Comparison of measured and predicted ventilatory volumes in selected groups of industrial workers. Scand J Work Environ Health 8:111–116PubMedGoogle Scholar
- Stegen K, Neujens A, Crombez G, Hermans D, Van de Woestijne KP, Van den Bergh O (1998) Negative affect, respiratory reactivity and somatic complaints in a CO2 enriched air inhalation paradigm. Biol Psychol 49:109–122CrossRefGoogle Scholar
- TRGS 900 (2018) Technische Regeln für Gefahrstoffe, Arbeitsplatzgrenzwerte (Fassung 31.01.2018) Ausschuss für Gefahrstoffe – AGS-Geschäftsführung – BAuA, Ausgabe: Januar 2006, BArBl Heft 1/2006, zuletzt berichtigt: GMBl 2018 S.9 (Nr.1) (29.01.2018) (Article in German)Google Scholar
- Vogelmeier C, Buhl R, Criée CP, Gillissen A, Kardos P, Köhler D, Magnussen H, Morr H, Nowak D, Pfeiffer–Kascha D, Petro W, Rabe K, Schultz K, Sitter H, Teschler H, Welte T (2007) Leitlinie der Deutschen Atemwegsliga und der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin zur Diagnostik und Therapie von Patienten mit chronisch obstruktiver Bronchitis und Lungenemphysem (COPD). Pneumologie 61:e1–e40 Article in GermanCrossRefGoogle Scholar