Skip to main content

Adult Stem Cell-Based Strategies for Peripheral Nerve Regeneration

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 4

Abstract

Peripheral nerve injuries (PNI) occur as the result of sudden trauma and can lead to life-long disability, reduced quality of life, and heavy economic and social burdens. Although the peripheral nervous system (PNS) has the intrinsic capacity to regenerate and regrow axons to a certain extent, current treatments frequently show incomplete recovery with poor functional outcomes, particularly for large PNI. Many surgical procedures are available to halt the propagation of nerve damage, and the choice of a procedure depends on the extent of the injury. In particular, recovery from large PNI gaps is difficult to achieve without any therapeutic intervention or some form of tissue/cell-based therapy. Autologous nerve grafting, considered the “gold standard” is often implemented for treatment of gap formation type PNI. Although these surgical procedures provide many benefits, there are still considerable limitations associated with such procedures as donor site morbidity, neuroma formation, fascicle mismatch, and scarring. To overcome such restrictions, researchers have explored various avenues to improve post-surgical outcomes. The most commonly studied methods include: cell transplantation, growth factor delivery to stimulate regenerating axons and implanting nerve guidance conduits containing replacement cells at the site of injury. Replacement cells which offer maximum benefits for the treatment of PNI, are Schwann cells (SCs), which are the peripheral glial cells and in part responsible for clearing out debris from the site of injury. Additionally, they release growth factors to stimulate myelination and axonal regeneration. Both primary SCs and genetically modified SCs enhance nerve regeneration in animal models; however, there is no good source for extracting SCs and the only method to obtain SCs is by sacrificing a healthy nerve. To overcome such challenges, various cell types have been investigated and reported to enhance nerve regeneration.

In this review, we have focused on cell-based strategies aimed to enhance peripheral nerve regeneration, in particular the use of mesenchymal stem cells (MSCs). Mesenchymal stem cells are preferred due to benefits such as autologous transplantation, routine isolation procedures, and paracrine and immunomodulatory properties. Mesenchymal stem cells have been transplanted at the site of injury either directly in their native form (undifferentiated) or in a SC-like form (transdifferentiated) and have been shown to significantly enhance nerve regeneration. In addition to transdifferentiated MSCs, some studies have also transplanted ex-vivo genetically modified MSCs that hypersecrete growth factors to improve neuroregeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMD:

age-related macular degeneration

BDNF:

brain-derived neurotrophic factor

bFGF:

basic fibroblast growth factor

BMMC:

bone marrow mononuclear cell

CNTF:

ciliary neurotrophic factor

CNV:

choroidal neovascularization

CREB:

cAMP-response-element-binding protein

DRG:

dorsal root ganglia

ELISA:

enzyme linked immunosorbent assay

GDNF:

glial cell line-derived neurotrophic factor

GFP:

green fluorescent protein

iPSC:

induced pluripotent stem cell

MBP:

myelin basic protein

MRI:

magnetic resonance imaging

MSC:

mesenchymal stem cell

NGF:

nerve growth factor

NT-3:

neurtrophin 3

NT-4/5:

neurotrophins 4 and 5

PDGF:

platelet-derived growth factor

PNI:

peripheral nerve injury

PNS:

peripheral nervous system

RGC:

retinal ganglion cell

SC:

Schwann cell

TDM:

transdifferentiation media

TENG:

tissue engineered nerve graft

Trk:

tropomyosin receptor kinases

tMSC:

transdifferentiated mesenchymal stem cell

uMSC:

undifferentiated mesenchymal stem cell

VEGF:

vascular endothelial growth factor

References

  • Acquistapace A, Bru T, Lesault PF, Figeac F, Coudert AE, le Coz O, Christov C, Baudin X, Auber F, Yiou R, Dubois-Rande JL, Rodriguez AM (2011) Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells 29(5):812–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 102(49):17734–17738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson KD, Guest JD, Dietrich WD, Bunge MB, Curiel R, Dididze M, Green BA, Khan A, Pearse DD, Saraf-Lavi E (2017) Safety of autologous human schwann cell transplantation in subacute thoracic spinal cord injury. J Neurotrauma 34:2950–2963

    Article  PubMed  Google Scholar 

  • Bathina S, Das UN (2015) Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 11(6):1164–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer G, Dao MA, Case SS, Meyerrose T, Wirthlin L, Zhou P, Wang X, Herrbrich P, Arevalo J, Csik S, Skelton DC, Walker J, Pepper K, Kohn DB, Nolta JA (2008) In vivo biosafety model to assess the risk of adverse events from retroviral and lentiviral vectors. Mol Ther 16(7):1308–1315

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99(4):2344–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286(5443):1358–1362

    Article  CAS  PubMed  Google Scholar 

  • Boyd JG, Gordon T (2002) A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor. Eur J Neurosci 15(4):613–626

    Article  CAS  PubMed  Google Scholar 

  • Boyd JG, Gordon T (2003) Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol 27(3):277–324

    Article  CAS  PubMed  Google Scholar 

  • Braga-Silva J, Gehlen D, Padoin A, Machado D, Garicochea B, Costa da Costa J (2008) Can local supply of bone marrow mononuclear cells improve the outcome from late tubular repair of human median and ulnar nerves? J Hand Surg Eur Vol 33(4):488–493

    Article  CAS  PubMed  Google Scholar 

  • Bredesen DE, Rabizadeh S (1997) p75NTR and apoptosis: Trk-dependent and Trk-independent effects. Trends Neurosci 20(7):287–290

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  • Bunge MB, Monje PV, Khan A, Wood PM (2017) From transplanting Schwann cells in experimental rat spinal cord injury to their transplantation into human injured spinal cord in clinical trials. Prog Brain Res 231:107–133

    Article  PubMed  Google Scholar 

  • Burnett MG, Zager EL (2004) Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 16(5):E1

    Article  PubMed  Google Scholar 

  • Campbell WW (2008) Evaluation and management of peripheral nerve injury. Clin Neurophysiol 119(9):1951–1965

    Article  PubMed  Google Scholar 

  • Chan JR, Cosgaya JM, Wu YJ, Shooter EM (2001) Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Natl Acad Sci U S A 98(25):14661–14668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao MV, Bothwell MA, Ross AH, Koprowski H, Lanahan AA, Buck CR, Sehgal A (1986) Gene transfer and molecular cloning of the human NGF receptor. Science 232(4749):518–521

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M (2001) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189(1-2):49–57

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92(6):692–699

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Ou YC, Liao SL, Chen WY, Chen SY, Wu CW, Wang CC, Wang WY, Huang YS, Hsu SH (2007) Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol 204(1):443–453

    Article  CAS  PubMed  Google Scholar 

  • Chiu DT (1999) Autogenous venous nerve conduits. A review. Hand Clin 15(4):667–671 ix

    Article  CAS  PubMed  Google Scholar 

  • Chiu DT, Strauch B (1990) A prospective clinical evaluation of autogenous vein grafts used as a nerve conduit for distal sensory nerve defects of 3 cm or less. Plast Reconstr Surg 86(5):928–934

    Article  CAS  PubMed  Google Scholar 

  • Cuevas P, Carceller F, Dujovny M, Garcia-Gomez I, Cuevas B, Gonzalez-Corrochano R, Diaz-Gonzalez D, Reimers D (2002) Peripheral nerve regeneration by bone marrow stromal cells. Neurol Res 24(7):634–638

    Article  PubMed  Google Scholar 

  • Dadon-Nachum M, Sadan O, Srugo I, Melamed E, Offen D (2011) Differentiated mesenchymal stem cells for sciatic nerve injury. Stem Cell Rev 7(3):664–671

    Article  Google Scholar 

  • Das SR, Uz M, Ding S, Lentner MT, Hondred JA, Cargill AA, Sakaguchi DS, Mallapragada S, Claussen JC (2017) Electrical differentiation of mesenchymal stem cells into Schwann-cell-like phenotypes using inkjet-printed graphene circuits. Adv Healthc Mater 6(7)

    Google Scholar 

  • De la Rosa MB, Sharma AD, Mallapragada SK, Sakaguchi DS (2017) Transdifferentiation of brain-derived neurotrophic factor (BDNF)-secreting mesenchymal stem cells significantly enhance BDNF secretion and Schwann cell marker proteins. J Biosci Bioeng 124(5):572–582

    Article  CAS  Google Scholar 

  • Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, Sandstrom MI, Skeel RL, Lescaudron L, Dunbar GL (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 214(2):193–200

    Article  CAS  PubMed  Google Scholar 

  • Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H (2001) Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 14(11):1771–1776

    Article  CAS  PubMed  Google Scholar 

  • Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843

    Article  PubMed  Google Scholar 

  • Dodd J, Jessell TM (1988) Axon guidance and the patterning of neuronal projections in vertebrates. Science 242(4879):692–699

    Article  CAS  PubMed  Google Scholar 

  • Drake DB (1996) Nerve injuries: operative results for major nerve injuries, entrapments and tumors. Plast Reconstr Surg 98(4):749

    Article  Google Scholar 

  • Eriksson NP, Lindsay RM, Aldskogius H (1994) BDNF and NT-3 rescue sensory but not motoneurones following axotomy in the neonate. Neuroreport 5(12):1445–1448

    CAS  PubMed  Google Scholar 

  • Ernfors P, Rosario CM, Merlio JP, Grant G, Aldskogius H, Persson H (1993) Expression of mRNAs for neurotrophin receptors in the dorsal root ganglion and spinal cord during development and following peripheral or central axotomy. Brain Res Mol Brain Res 17(3-4):217–226

    Article  CAS  PubMed  Google Scholar 

  • Fields RD, Ellisman MH (1986) Axons regenerated through silicone tube splices. I. Conduction properties. Exp Neurol 92(1):48–60

    Article  CAS  PubMed  Google Scholar 

  • Friedman DS, Wolfs R, O’Colmain BJ, Klein BE, Taylor HR, West S, Leske MC, Mitchell P, Congdon N, Kempen J (2004) Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol 122:532–538

    Article  PubMed  Google Scholar 

  • Fu SY, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14(1-2):67–116

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi H, Frisen J, Barbany G, Timmusk T, Zachrisson O, Verge VM, Persson H (1993) Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol 123(2):455–465

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Lu P, Lynam D, Bednark B, Campana WM, Sakamoto J, Tuszynski M (2016) BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration. J Neural Eng 13(6):066011

    Article  PubMed  Google Scholar 

  • Gao F, Chiu S, Motan D, Zhang Z, Chen L, Ji H, Tse H, Fu Q-L, Lian Q (2017) Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 7(1):e2062

    Article  Google Scholar 

  • Gargano N, Levi A, Alema S (1997) Modulation of nerve growth factor internalization by direct interaction between p75 and TrkA receptors. J Neurosci Res 50(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 8:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Geuna S, Raimondo S, Ronchi G, Di Scipio F, Tos P, Czaja K, Fornaro M (2009) Chapter 3: histology of the peripheral nerve and changes occurring during nerve regeneration. Int Rev Neurobiol 87:27–46

    Article  PubMed  Google Scholar 

  • Geuna S, Gnavi S, Perroteau I, Tos P, Battiston B (2013) Tissue engineering and peripheral nerve reconstruction: an overview. Int Rev Neurobiol 108:35–57

    Article  CAS  PubMed  Google Scholar 

  • Gordon T (2009) The role of neurotrophic factors in nerve regeneration. Neurosurg Focus 26(2):E3

    Article  PubMed  Google Scholar 

  • Goto E, Mukozawa M, Mori H, Hara M (2010) A rolled sheet of collagen gel with cultured Schwann cells: model of nerve conduit to enhance neurite growth. J Biosci Bioeng 109(5):512–518

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Wang J, Ding F, Hu N, Wang Y, Gu X (2010) Neurotrophic actions of bone marrow stromal cells on primary culture of dorsal root ganglion tissues and neurons. J Mol Neurosci 40(3):332–341

    Article  CAS  PubMed  Google Scholar 

  • Guertin AD, Zhang DP, Mak KS, Alberta JA, Kim HA (2005) Microanatomy of axon/glial signaling during Wallerian degeneration. J Neurosci 25(13):3478–3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gundersen RW, Barrett JN (1980) Characterization of the turning response of dorsal root neurites toward nerve growth factor. J Cell Biol 87(3 Pt 1):546–554

    Article  CAS  PubMed  Google Scholar 

  • Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP (2000) A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng 6(2):119–127

    Article  CAS  PubMed  Google Scholar 

  • Hall S (2001) Nerve repair: a neurobiologist’s view. J Hand Surg Br 26(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Harper MM, Grozdanic SD, Blits B, Kuehn MH, Zamzow D, Buss JE, Kardon RH, Sakaguchi DS (2011) Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci 52(7):4506–4515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrop JS, Hashimoto R, Norvell D, Raich A, Aarabi B, Grossman RG, Guest JD, Tator CH, Chapman J, Fehlings MG (2012) Evaluation of clinical experience using cell-based therapies in patients with spinal cord injury: a systematic review. J Neurosurg Spine 17(1 Suppl):230–246

    Article  PubMed  Google Scholar 

  • Hei WH, Almansoori AA, Sung MA, Ju KW, Seo N, Lee SH, Kim BJ, Kim SM, Jahng JW, He H, Lee JH (2017) Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration. Neurosci Lett 643:111–120

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa Y, Sakakida K (1983) Sports and peripheral nerve injury. Am J Sports Med 11(6):420–426

    Article  CAS  PubMed  Google Scholar 

  • Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2006) Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res 84(7):1495–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou H-Y, Liang H-L, Wang Y-S, Zhang Z-X, Wang B-R, Shi Y-Y, Dong X, Cai Y (2010) A therapeutic strategy for choroidal neovascularization based on recruitment of mesenchymal stem cells to the sites of lesions. Mol Ther 18(10):1837–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu N, Wu H, Xue C, Gong Y, Wu J, Xiao Z, Yang Y, Ding F, Gu X (2013) Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts. Biomaterials 34(1):100–111

    Article  CAS  PubMed  Google Scholar 

  • Huang JK, Phillips GR, Roth AD, Pedraza L, Shan W, Belkaid W, Mi S, Fex-Svenningsen A, Florens L, Yates JR 3rd, Colman DR (2005) Glial membranes at the node of Ranvier prevent neurite outgrowth. Science 310(5755):1813–1817

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Ye Z, Hu X, Lu L, Luo Z (2010) Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia 58(5):622–631

    PubMed  Google Scholar 

  • Iihoshi S, Honmou O, Houkin K, Hashi K, Kocsis JD (2004) A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Res 1007(1-2):1–9

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa N, Suzuki Y, Dezawa M, Kataoka K, Ohta M, Cho H, Ide C (2009) Peripheral nerve regeneration by transplantation of BMSC-derived Schwann cells as chitosan gel sponge scaffolds. J Biomed Mater Res A 89((4):1118–1124

    Article  CAS  Google Scholar 

  • Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18(5):759–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaquet JB, Luijsterburg AJ, Kalmijn S, Kuypers PD, Hofman A, Hovius SE (2001) Median, ulnar, and combined median-ulnar nerve injuries: functional outcome and return to productivity. J Trauma 51(4):687–692

    Article  CAS  PubMed  Google Scholar 

  • Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105(10):4120–4126

    Article  CAS  PubMed  Google Scholar 

  • Kamada T, Koda M, Dezawa M, Anahara R, Toyama Y, Yoshinaga K, Hashimoto M, Koshizuka S, Nishio Y, Mannoji C, Okawa A, Yamazaki M (2011) Transplantation of human bone marrow stromal cell-derived Schwann cells reduces cystic cavity and promotes functional recovery after contusion injury of adult rat spinal cord. Neuropathology 31(1):48–58

    Article  PubMed  Google Scholar 

  • Karanth S, Yang G, Yeh J, Richardson PM (2006) Nature of signals that initiate the immune response during Wallerian degeneration of peripheral nerves. Exp Neurol 202(1):161–166

    Article  CAS  PubMed  Google Scholar 

  • Keilhoff G, Fansa H (2011) Mesenchymal stem cells for peripheral nerve regeneration--a real hope or just an empty promise? Exp Neurol 232(2):110–113

    Article  PubMed  Google Scholar 

  • Keilhoff G, Goihl A, Langnase K, Fansa H, Wolf G (2006) Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol 85(1):11–24

    Article  CAS  PubMed  Google Scholar 

  • Kerrebijn JD, Freeman JL (1998) Facial nerve reconstruction: outcome and failures. J Otolaryngol 27(4):183–186

    CAS  PubMed  Google Scholar 

  • Kim BJ, Seo JH, Bubien JK, Oh YS (2002) Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport 13(9):1185–1188

    Article  PubMed  Google Scholar 

  • Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207(2):267–274

    Article  CAS  PubMed  Google Scholar 

  • Kishino A, Ishige Y, Tatsuno T, Nakayama C, Noguchi H (1997) BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth. Exp Neurol 144(2):273–286

    Article  CAS  PubMed  Google Scholar 

  • Klimaschewski L, Hausott B, Angelov DN (2013) The pros and cons of growth factors and cytokines in peripheral axon regeneration. Int Rev Neurobiol 108:137–171

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi NR, Bedard AM, Hincke MT, Tetzlaff W (1996) Increased expression of BDNF and trkB mRNA in rat facial motoneurons after axotomy. Eur J Neurosci 8(5):1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Koppes AN, Seggio AM, Thompson DM (2011) Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields. J Neural Eng 8(4):046023

    Article  PubMed  Google Scholar 

  • Koppes AN, Nordberg AL, Paolillo GM, Goodsell NM, Darwish HA, Zhang L, Thompson DM (2014) Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth. Tissue Eng Part A 20(3-4):494–506

    CAS  PubMed  Google Scholar 

  • Kouyoumdjian JA (2006) Peripheral nerve injuries: a retrospective survey of 456 cases. Muscle Nerve 34(6):785–788

    Article  PubMed  Google Scholar 

  • Kreutzberg GW (1995) Reaction of the neuronal cell body to axonal damage. In: Waxman SG, Kocsis JD, Stys PK (eds) The axon: structure, function and pathophysiology. Oxford University Press, Oxford, pp 355–374

    Chapter  Google Scholar 

  • Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2004) BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 9(2):189–197

    Article  CAS  PubMed  Google Scholar 

  • Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11(1):96–104

    Article  CAS  PubMed  Google Scholar 

  • Latif MJ, Afthinos JN, Connery CP, Perin N, Bhora FY, Chwajol M, Todd GJ, Belsley SJ (2008) Robotic intercostal nerve graft for reversal of thoracic sympathectomy: a large animal feasibility model. Int J Med Robot 4(3):258–262

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Jo EK, Choi SY, Oh SB, Park K, Kim JS, Lee SJ (2006) Necrotic neuronal cells induce inflammatory Schwann cell activation via TLR2 and TLR3: implication in Wallerian degeneration. Biochem Biophys Res Commun 350(3):742–747

    Article  CAS  PubMed  Google Scholar 

  • Levkovitch-Verbin H, Sadan O, Vander S, Rosner M, Barhum Y, Melamed E, Offen D, Melamed S (2010) Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection. Invest Ophthalmol Vis Sci 51(12):6394–6400

    Article  PubMed  Google Scholar 

  • Lewin GR, Barde YA (1996) Physiology of the neurotrophins. Annu Rev Neurosci 19:289–317

    Article  CAS  PubMed  Google Scholar 

  • Lewin SL, Utley DS, Cheng ET, Verity AN, Terris DJ (1997) Simultaneous treatment with BDNF and CNTF after peripheral nerve transection and repair enhances rate of functional recovery compared with BDNF treatment alone. Laryngoscope 107(7):992–999

    Article  CAS  PubMed  Google Scholar 

  • Lewis EB (1992) The 1991 Albert Lasker Medical Awards. Clusters of master control genes regulate the development of higher organisms. JAMA 267(11):1524–1531

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen J, Wang L, Lu M, Chopp M (2001) Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56(12):1666–1672

    Article  CAS  PubMed  Google Scholar 

  • Li Y, McIntosh K, Chen J, Zhang C, Gao Q, Borneman J, Raginski K, Mitchell J, Shen L, Zhang J, Lu D, Chopp M (2006) Allogeneic bone marrow stromal cells promote glial-axonal remodeling without immunologic sensitization after stroke in rats. Exp Neurol 198(2):313–325

    Article  CAS  PubMed  Google Scholar 

  • Li LY, Li JT, Wu QY, Li J, Feng ZT, Liu S, Wang TH (2008) Transplantation of NGF-gene-modified bone marrow stromal cells into a rat model of Alzheimer’ disease. J Mol Neurosci 34(2):157–163

    Article  PubMed  CAS  Google Scholar 

  • Li X-Y, Zheng Z-H, Li X-Y, Guo J, Zhang Y, Li H, Wang Y-W, Ren J, Wu Z-B (2013) Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: response and correction of immunological anomalies. Curr Pharm Des 19(27):4893–4899

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, Ip MS, Tse HF, Mak JC, Lian Q (2014) Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol 51(3):455–465

    Article  PubMed  CAS  Google Scholar 

  • Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Forscher P (1993) Cytoskeletal remodeling during growth cone-target interactions. J Cell Biol 121(6):1369–1383

    Article  CAS  PubMed  Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130–1132

    Article  CAS  PubMed  Google Scholar 

  • López-León M, Outeiro TF, Goya RG (2017) Cell reprogramming: therapeutic potential and the promise of rejuvenation for the aging brain. Ageing Res Rev 40:168–181

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M (2001) Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 12(3):559–563

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Jones LL, Tuszynski MH (2005) BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 191(2):344–360

    Article  CAS  PubMed  Google Scholar 

  • Lundborg G (2000) A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg 25(3):391–414

    Article  CAS  Google Scholar 

  • Machalińska A, Kawa M, Pius-Sadowska E, Stępniewski J, Nowak W, Rogińska D, Kaczyńska K, Baumert B, Wiszniewska B, Józkowicz A (2013) Long-Term Neuroprotective Effects of NT-4–Engineered Mesenchymal Stem Cells Injected Intravitreally in a Mouse Model of Acute Retinal Injury. Invest Ophthalmol Vis Sci 54(13):8292–8305

    Article  PubMed  CAS  Google Scholar 

  • Mahay D, Terenghi G, Shawcross SG (2008) Schwann cell mediated trophic effects by differentiated mesenchymal stem cells. Exp Cell Res 314(14):2692–2701

    Article  CAS  PubMed  Google Scholar 

  • Maricevic A, Erceg M (1997) War injuries to the extremities. Mil Med 162(12):808–811

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168(2):689–695

    Article  CAS  PubMed  Google Scholar 

  • McMahon SB, Armanini MP, Ling LH, Phillips HS (1994) Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron 12(5):1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Meek MF, Coert JH (2002) Clinical use of nerve conduits in peripheral-nerve repair: review of the literature. J Reconstr Microsurg 18(2):97–109

    Article  CAS  PubMed  Google Scholar 

  • Millesi H (1981) Interfascicular nerve grafting. Orthop Clin North Am 12(2): 287–301

    Article  CAS  PubMed  Google Scholar 

  • Mimura T, Dezawa M, Kanno H, Sawada H, Yamamoto I (2004) Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats. J Neurosurg 101(5):806–812

    Article  PubMed  Google Scholar 

  • Mimura T, Dezawa M, Kanno H, Yamamoto I (2005) Behavioral and histological evaluation of a focal cerebral infarction rat model transplanted with neurons induced from bone marrow stromal cells. J Neuropathol Exp Neurol 64(12):1108–1117

    Article  PubMed  Google Scholar 

  • Moloney TC, Rooney GE, Barry FP, Howard L, Dowd E (2010) Potential of rat bone marrow-derived mesenchymal stem cells as vehicles for delivery of neurotrophins to the Parkinsonian rat brain. Brain Res 1359:33–43

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Flores MT, Bradbury EJ, Martin-Bermejo MJ, Agudo M, Lim F, Pastrana E, Avila J, Diaz-Nido J, McMahon SB, Wandosell F (2006) A clonal cell line from immortalized olfactory ensheathing glia promotes functional recovery in the injured spinal cord. Mol Ther 13(3):598–608

    Article  CAS  PubMed  Google Scholar 

  • Mosahebi A, Woodward B, Wiberg M, Martin R, Terenghi G (2001) Retroviral labeling of Schwann cells: in vitro characterization and in vivo transplantation to improve peripheral nerve regeneration. Glia 34(1):8–17

    Article  CAS  PubMed  Google Scholar 

  • Muraglia A, Cancedda R, Quarto R (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113. ( Pt 7:1161–1166

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, Yoshida A, Long G, Wright KT, Johnson WE, Baba H (2012) Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 29(8):1614–1625

    Article  PubMed  PubMed Central  Google Scholar 

  • Nectoux E, Taleb C, Liverneaux P (2009) Nerve repair in telemicrosurgery: an experimental study. J Reconstr Microsurg 25(4):261–265

    Article  PubMed  Google Scholar 

  • Ni WF, Yin LH, Lu J, Xu HZ, Chi YL, Wu JB, Zhang N (2010) In vitro neural differentiation of bone marrow stromal cells induced by cocultured olfactory ensheathing cells. Neurosci Lett 475(2):99–103

    Article  CAS  PubMed  Google Scholar 

  • Nizzardo M, Simone C, Falcone M, Riboldi G, Comi GP, Bresolin N, Corti S (2013) Direct reprogramming of adult somatic cells into other lineages: past evidence and future perspectives. Cell Transplant 22(6):921–944

    Article  PubMed  Google Scholar 

  • Noble J, Munro CA, Prasad VS, Midha R (1998) Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 45(1):116–122

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2005) I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience 136(1):161–169

    Article  CAS  PubMed  Google Scholar 

  • Novikov L, Novikova L, Kellerth JO (1995) Brain-derived neurotrophic factor promotes survival and blocks nitric oxide synthase expression in adult rat spinal motoneurons after ventral root avulsion. Neurosci Lett 200(1):45–48

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JT, Almeida FM, Biancalana A, Baptista AF, Tomaz MA, Melo PA, Martinez AM (2010) Mesenchymal stem cells in a polycaprolactone conduit enhance median-nerve regeneration, prevent decrease of creatine phosphokinase levels in muscle, and improve functional recovery in mice. Neuroscience 170(4):1295–1303

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JT, Mostacada K, de Lima S, Martinez AM (2013) Bone marrow mesenchymal stem cell transplantation for improving nerve regeneration. Int Rev Neurobiol 108:59–77

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim RW, Yin QW, Prevette D, Yan Q (1992) Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 360(6406):755–757

    Article  CAS  PubMed  Google Scholar 

  • Pan HC, Cheng FC, Chen CJ, Lai SZ, Lee CW, Yang DY, Chang MH, Ho SP (2007) Post-injury regeneration in rat sciatic nerve facilitated by neurotrophic factors secreted by amniotic fluid mesenchymal stem cells. J Clin Neurosci 14(11):1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Park H-YL, Kim JH, Kim HS, Park CK (2012) Stem cell-based delivery of brain-derived neurotrophic factor gene in the rat retina. Brain Res 1469:10–23

    Article  CAS  PubMed  Google Scholar 

  • Pereira Lopes FR, Camargo de Moura Campos L, Dias Correa J Jr, Balduino A, Lora S, Langone F, Borojevic R, Blanco Martinez AM (2006) Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice. Exp Neurol 198(2):457–468

    Article  PubMed  CAS  Google Scholar 

  • Pereira JH, Bowden RE, Gattuso JM, Norris RW (1991) Comparison of results of repair of digital nerves by denatured muscle grafts and end-to-end sutures. J Hand Surg Br 16(5):519–523

    Article  CAS  PubMed  Google Scholar 

  • Pereira JH, Bowden RE, Narayanakumar TS, Gschmeissner SE (1996) Peripheral nerve reconstruction using denatured muscle autografts for restoring protective sensation in hands and feet of leprosy patients. Indian J Lepr 68(1):83–91

    CAS  PubMed  Google Scholar 

  • Plotnikov EY, Khryapenkova TG, Vasileva AK, Marey MV, Galkina SI, Isaev NK, Sheval EV, Polyakov VY, Sukhikh GT, Zorov DB (2008) Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med 12(5A):1622–1631

    Article  CAS  PubMed  Google Scholar 

  • Pollock K, Dahlenburg H, Nelson H, Fink KD, Cary W, Hendrix K, Annett G, Torrest A, Deng P, Gutierrez J, Nacey C, Pepper K, Kalomoiris S, J DA, McGee J, Gruenloh W, Fury B, Bauer G, Duffy A, Tempkin T, Wheelock V, Nolta JA (2016) Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington’s Disease Mouse Models. Mol Ther 24(5):965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad A, Manivannan J, Loong DT, Chua SM, Gharibani PM, All AH (2016) A review of induced pluripotent stem cell, direct conversion by trans-differentiation, direct reprogramming and oligodendrocyte differentiation. Regen Med 11(2):181–191

    Article  CAS  PubMed  Google Scholar 

  • Purves D (1986) The trophic theory of neural concentrations. Trends Neurosci 9:486–489

    Article  Google Scholar 

  • Rath EM (2002) Skeletal muscle autograft for repair of the human inferior alveolar nerve: a case report. J Oral Maxillofac Surg 60(3):330–334

    Article  PubMed  Google Scholar 

  • Ren Z, Wang J, Wang S, Zou C, Li X, Guan Y, Chen Z, Zhang YA (2013) Autologous transplantation of GDNF-expressing mesenchymal stem cells protects against MPTP-induced damage in cynomolgus monkeys. Sci Rep 3:2786

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribeiro-Resende VT, Pimentel-Coelho PM, Mesentier-Louro LA, Mendez RM, Mello-Silva JP, Cabral-da-Silva MC, de Mello FG, de Melo Reis RA, Mendez-Otero R (2009) Trophic activity derived from bone marrow mononuclear cells increases peripheral nerve regeneration by acting on both neuronal and glial cell populations. Neuroscience 159(2):540–549

    Article  CAS  PubMed  Google Scholar 

  • Robinson LR (2000) Traumatic injury to peripheral nerves. Muscle Nerve 23(6):863–873

    Article  CAS  PubMed  Google Scholar 

  • Robinson LR (2004) traumatic injury to peripheral nerves. Suppl Clin Neurophysiol 57:173–186

    Article  PubMed  Google Scholar 

  • Rosberg HE, Carlsson KS, Dahlin LB (2005) Prospective study of patients with injuries to the hand and forearm: costs, function, and general health. Scand J Plast Reconstr Surg Hand Surg 39(6):360–369

    Article  PubMed  Google Scholar 

  • Sakaguchi DS (2017) Regenerative and repair strategies for the central nervous system. In: Neuroimmune pharmacology. Springer, Cham, pp 799–818

    Chapter  Google Scholar 

  • Salzer JL, Bunge RP (1980) Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol 84(3):739–752

    Article  CAS  PubMed  Google Scholar 

  • Sameem M, Wood TJ, Bain JR (2011) A systematic review on the use of fibrin glue for peripheral nerve repair. Plast Reconstr Surg 127(6):2381–2390

    Article  CAS  PubMed  Google Scholar 

  • Sandquist EJ, Uz M, Sharma AD, Patel BB, Mallapragada SK, Sakaguchi DS (2016) Stem cells, bioengineering and 3-D scaffolds for nervous system repair and regeneration. In: Zhang LG, Kaplan D (eds) Neural engineering: from advanced biomaterials to 3D fabrication techniques. Springer, New York

    Google Scholar 

  • Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, Honmou O, Kocsis JD (2009) BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 29(47):14932–14941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlosshauer B, Muller E, Schroder B, Planck H, Muller HW (2003) Rat Schwann cells in bioresorbable nerve guides to promote and accelerate axonal regeneration. Brain Res 963(1-2):321–326

    Article  CAS  PubMed  Google Scholar 

  • Seddon HJ, Medawar PB, Smith H (1943) Rate of regeneration of peripheral nerves in man. J Physiol 102(2):191–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma AD, Brodskiy PA, Petersen EM, Dagdeviren M, Ye EA, Mallapragada SK, Sakaguchi DS (2015) High throughput characterization of adult stem cells engineered for delivery of therapeutic factors for neuroprotective strategies. J Vis Exp (95)

    Google Scholar 

  • Sharma AD, Wiederin J, Uz M, Ciborowski P, Mallapragada SK, Gendelman HE, Sakaguchi DS (2017) Proteomic analysis of mesenchymal to Schwann cell transdifferentiation. J Proteomics 165:93–101

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K, Tosaki T, Matsuki T (2008) Transplantation of bone marrow–derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 57(11):3099–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu S, Kitada M, Ishikawa H, Itokazu Y, Wakao S, Dezawa M (2007) Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Biochem Biophys Res Commun 359(4):915–920

    Article  CAS  PubMed  Google Scholar 

  • Shirley DM, Williams SA, Santos PM (1996) Brain-derived neurotrophic factor and peripheral nerve regeneration: a functional evaluation. Laryngoscope 106(5 Pt 1):629–632

    Article  CAS  PubMed  Google Scholar 

  • Siemionow M, Brzezicki G (2009) Chapter 8: Current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol 87:141–172

    Article  CAS  PubMed  Google Scholar 

  • Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, Maione S (2011) Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci 5:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Someya Y, Koda M, Dezawa M, Kadota T, Hashimoto M, Kamada T, Nishio Y, Kadota R, Mannoji C, Miyashita T, Okawa A, Yoshinaga K, Yamazaki M (2008) Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell-derived Schwann cells after contusion injury to the adult rat spinal cord. J Neurosurg Spine 9(6):600–610

    Article  PubMed  Google Scholar 

  • Song HJ, Poo MM (1999) Signal transduction underlying growth cone guidance by diffusible factors. Curr Opin Neurobiol 9(3):355–363

    Article  CAS  PubMed  Google Scholar 

  • Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 103(5):1283–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25(5):829–848

    Article  PubMed  Google Scholar 

  • Stanec S, Tonkovic I, Stanec Z, Tonkovic D, Dzepina I (1997) Treatment of upper limb nerve war injuries associated with vascular trauma. Injury 28(7):463–468

    Article  CAS  PubMed  Google Scholar 

  • Stoll G, Griffin JW, Li CY, Trapp BD (1989) Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol 18(5):671–683

    Article  CAS  PubMed  Google Scholar 

  • Stoll G, Jander S, Myers RR (2002) Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J Peripher Nerv Syst 7(1):13–27

    Article  PubMed  Google Scholar 

  • Strauch B, Rodriguez DM, Diaz J, Yu HL, Kaplan G, Weinstein DE (2001) Autologous Schwann cells drive regeneration through a 6-cm autogenous venous nerve conduit. J Reconstr Microsurg 17(8):589–595 discussion 596-587

    Article  CAS  PubMed  Google Scholar 

  • Streppel M, Azzolin N, Dohm S, Guntinas-Lichius O, Haas C, Grothe C, Wevers A, Neiss WF, Angelov DN (2002) Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve lesion. Eur J Neurosci 15(8):1327–1342

    Article  CAS  PubMed  Google Scholar 

  • Sunderland S, Williams HB (1992) Nerve injuries and their repair: a critical appraisal. LWW

    Google Scholar 

  • Takemura Y, Imai S, Kojima H, Katagi M, Yamakawa I, Kasahara T, Urabe H, Terashima T, Yasuda H, Chan L, Kimura H, Matsusue Y (2012) Brain-derived neurotrophic factor from bone marrow-derived cells promotes post-injury repair of peripheral nerve. PLoS One 7(9):e44592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terenghi G (1999) Peripheral nerve regeneration and neurotrophic factors. J Anat 194. ( Pt 1:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terness P, Bauer TM, Röse L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2, 3-dioxygenase–expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196(4):447–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetzlaff W (1982) Tight junction contact events and temporary gap junctions in the sciatic nerve fibres of the chicken during Wallerian degeneration and subsequent regeneration. J Neurocytol 11(5):839–858

    Article  CAS  PubMed  Google Scholar 

  • Thoma EC, Merkl C, Heckel T, Haab R, Knoflach F, Nowaczyk C, Flint N, Jagasia R, Jensen Zoffmann S, Truong HH, Petitjean P, Jessberger S, Graf M, Iacone R (2014) Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Rep 3(4):539–547

    Article  CAS  Google Scholar 

  • Tofaris GK, Patterson PH, Jessen KR, Mirsky R (2002) Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci 22(15):6696–6703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng TC, Hsu SH (2014) Substrate-mediated nanoparticle/gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials 35(9):2630–2641

    Article  CAS  PubMed  Google Scholar 

  • Tung TH, Mackinnon SE (2010) Nerve transfers: indications, techniques, and outcomes. J Hand Surg [Am] 35(2):332–341

    Article  Google Scholar 

  • Uz M, Büyüköz M, Sharma AD, Sakaguchi DS, Altinkaya SA, Mallapragada SK (2017) Gelatin-based 3D conduits for transdifferentiation of mesenchymal stem cells into Schwann cell-like phenotypes. Acta Biomater 53:293–306

    Article  CAS  PubMed  Google Scholar 

  • Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK (2018) Advances in controlling differentiation of adult stem cells for peripheral nerve regeneration. Adv Healthc Mater:1701046

    Article  CAS  Google Scholar 

  • Vallabhaneni KC, Haller H, Dumler I (2012) Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev 21(17):3104–3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2009) Regeneration of the ischemic brain by engineered stem cells: fuelling endogenous repair processes. Brain Res Rev 61(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Verge VM, Merlio JP, Grondin J, Ernfors P, Persson H, Riopelle RJ, Hokfelt T, Richardson PM (1992) Colocalization of NGF binding sites, trk mRNA, and low-affinity NGF receptor mRNA in primary sensory neurons: responses to injury and infusion of NGF. J Neurosci 12(10):4011–4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verge VM, Richardson PM, Wiesenfeld-Hallin Z, Hokfelt T (1995) Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci 15(3 Pt 1):2081–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakao S, Hayashi T, Kitada M, Kohama M, Matsue D, Teramoto N, Ose T, Itokazu Y, Koshino K, Watabe H, Iida H, Takamoto T, Tabata Y, Dezawa M (2010) Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Exp Neurol 223(2):537–547

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ding F, Gu Y, Liu J, Gu X (2009) Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res 1262:7–15

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Luo E, Li Y, Hu J (2011) Schwann-like mesenchymal stem cells within vein graft facilitate facial nerve regeneration and remyelination. Brain Res 1383:71–80

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen X, Cao W, Shi Y (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15(11):1009

    Article  CAS  PubMed  Google Scholar 

  • Watson WE (1974) The binding of actinomycin D to the nuclei of axotomised neurones. Brain Res 65(2):317–322

    Article  CAS  PubMed  Google Scholar 

  • Weimann JM, Johansson CB, Trejo A, Blau HM (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol 5(11):959–966

    Article  CAS  PubMed  Google Scholar 

  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S et al (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251(4995):761–766

    Article  CAS  PubMed  Google Scholar 

  • Whitlock EL, Kasukurthi R, Yan Y, Tung TH, Hunter DA, Mackinnon SE (2010) Fibrin glue mitigates the learning curve of microneurosurgical repair. Microsurgery 30(3):218–222

    Article  PubMed  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370

    Article  CAS  PubMed  Google Scholar 

  • Wright DE, Snider WD (1995) Neurotrophin receptor mRNA expression defines distinct populations of neurons in rat dorsal root ganglia. J Comp Neurol 351(3):329–338

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yu W, Chen Y, Su Y, Ding Z, Ren H, Jiang Y, Wang J (2010) Intrastriatal transplantation of GDNF-engineered BMSCs and its neuroprotection in lactacystin-induced Parkinsonian rat model. Neurochem Res 35(3):495–502

    Article  CAS  PubMed  Google Scholar 

  • Wyse RD, Dunbar GL, Rossignol J (2014) Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int J Mol Sci 15(2):1719–1745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xue C, Hu N, Gu Y, Yang Y, Liu Y, Liu J, Ding F, Gu X (2012) Joint use of a chitosan/PLGA scaffold and MSCs to bridge an extra large gap in dog sciatic nerve. Neurorehabil Neural Repair 26(1):96–106

    Article  PubMed  Google Scholar 

  • Yan Q, Elliott J, Snider WD (1992) Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 360(6406):753–755

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Matheson C, Lopez OT, Miller JA (1994) The biological responses of axotomized adult motoneurons to brain-derived neurotrophic factor. J Neurosci 14(9):5281–5291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Lou Q, Huang R, Shen L, Chen Z (2008) Dorsal root ganglion neurons induce transdifferentiation of mesenchymal stem cells along a Schwann cell lineage. Neurosci Lett 445(3):246–251

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yuan X, Ding F, Yao D, Gu Y, Liu J, Gu X (2011) Repair of rat sciatic nerve gap by a silk fibroin-based scaffold added with bone marrow mesenchymal stem cells. Tissue Eng Part A 17(17-18):2231–2244

    Article  CAS  PubMed  Google Scholar 

  • Ye E-A, Chawla SS, Khan MZ, Sakaguchi DS (2016) Bone marrow-derived mesenchymal stem cells (MSCs) stimulate neurite outgrowth from differentiating adult hippocampal progenitor cells. Stem Cell Biol Res 3(1):3

    Article  Google Scholar 

  • Yin Q, Kemp GJ, Frostick SP (1998) Neurotrophins, neurones and peripheral nerve regeneration. J Hand Surg Br 23(4):433–437

    Article  CAS  PubMed  Google Scholar 

  • Zhang CG, Gu YD (2011) Contralateral C7 nerve transfer – our experiences over past 25 years. J Brachial Plex Peripher Nerve Inj 6(1):10

    PubMed  PubMed Central  Google Scholar 

  • Zhang JY, Luo XG, Xian CJ, Liu ZH, Zhou XF (2000) Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. Eur J Neurosci 12(12):4171–4180

    CAS  Google Scholar 

  • Zhang F, Blain B, Beck J, Zhang J, Chen Z, Chen ZW, Lineaweaver WC (2002) Autogenous venous graft with one-stage prepared Schwann cells as a conduit for repair of long segmental nerve defects. J Reconstr Microsurg 18(4):295–300

    Article  PubMed  Google Scholar 

  • Zheng M, Kuffler DP (2000) Guidance of regenerating motor axons in vivo by gradients of diffusible peripheral nerve-derived factors. J Neurobiol 42(2):212–219

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Sun J, Lu X, Zhao P, Li K, Li L (2016) BDNF promotes the axonal regrowth after sciatic nerve crush through intrinsic neuronal capability upregulation and distal portion protection. Neurosci Lett 621:1–8

    Article  CAS  PubMed  Google Scholar 

  • Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293(5529):493–498

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Stem Cell Biology Research Fund.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald S. Sakaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De la Rosa, M.B., Kozik, E.M., Sakaguchi, D.S. (2018). Adult Stem Cell-Based Strategies for Peripheral Nerve Regeneration. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 4. Advances in Experimental Medicine and Biology(), vol 1119. Springer, Cham. https://doi.org/10.1007/5584_2018_254

Download citation

Publish with us

Policies and ethics