Skip to main content

The Great Harmony in Translational Medicine: Biomaterials and Stem Cells

  • Chapter
  • First Online:
Book cover Cell Biology and Translational Medicine, Volume 4

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1119))

Abstract

Thanks to novel approaches and emerging technologies, tissue engineering and regenerative medicine have made a great effort to regenerate damaged tissue or organ with no donor needed. The approaches involve two fundamental components: bioengineered scaffolds and stem cells. Bioengineered scaffolds which can also be enriched with bioactive molecules such as cytokines, growth factors, and so on have been fabricated using a wide range of synthetically or naturally derived biodegradable and biocompatible polymers. These scaffolds should support cell attachment, migration, proliferation, and/or differentiation by mimicking the duty of native extracellular matrix. Stem cells are the other significant players in formation of the neotissue. Stem cells, bone marrow, or adipose-derived mesenchymal stem cells, in particular, have been widely used for this purpose. Recently, investigators have preferred to use progenitor cells including cardiac and neural cells in tissue engineering and regenerative medicine applications. The synergy of the bioengineered scaffolds and autologous stem cells is crucial for the successful reconstruction of damaged or missing tissues.

This review summarizes a number of excellent studies conducted on current applications of bioengineered scaffolds, novel fabrication methods, stem cells used in tissue engineering and regenerative medicine, and the future of the tissue-engineered products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

AMSCs:

Adipose-derived mesenchymal stem cells

CSCs:

Cardiac stem cells

ECM:

Extracellular matrix

ECSs:

Embryonic stem cells

FDA:

Food and Drug Administration

FDM:

Fused deposition modeling

hAMSCs:

Human adipose-derived mesenchymal stem cells

HUVECs:

Human umbilical vein endothelial cells

iPSCs:

Induced pluripotent stem cells

MSCs:

Mesenchymal stem cells

NCSs:

Neural stem cells

NPCs:

Neural progenitor cells

PFP:

Powder-fusion printing

SCI:

Spinal cord injury

SLA:

Stereolithographic Apparatus

References

  • Aguado BA, Bushnell GG, Rao SS et al (2017) Engineering the pre-metastatic niche. Nat Biomed Eng 1:77

    Article  CAS  Google Scholar 

  • Alcayaga-Miranda F, Varas-Godoy M, Khoury M (2016) Harnessing the Angiogenic potential of stem cell-derived exosomes for vascular regeneration. Stem Cells Int 2016:1–11

    Article  CAS  Google Scholar 

  • Arslan YE, Hız MM, Sezgin Arslan T (2015) The use of decellularized animal tissues in regenerative therapies. Kafkas Univ Vet Fak Derg 21:139–145

    Google Scholar 

  • Arslan YE, Sezgin Arslan T, Derkus B et al (2017) Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: from waste to regenerative medicine products. Colloids Surf B Biointerfaces 154:160–170

    Article  CAS  PubMed  Google Scholar 

  • Atala A (2004) Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res 7:15–34

    Article  PubMed  Google Scholar 

  • Atala A, Bauer SB, Soker S et al (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246

    Article  PubMed  Google Scholar 

  • Atala A, Kasper FK, Mikos AG (2012) Engineering complex tissues. Sci Transl Med 4:160rv12–160rv12

    Article  CAS  Google Scholar 

  • Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12:367–377

    Article  CAS  PubMed  Google Scholar 

  • Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. Semin Immunol 20:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badylak SF, Freytes D, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5:1–13

    Article  CAS  PubMed  Google Scholar 

  • Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    Article  CAS  PubMed  Google Scholar 

  • Bankoti K, Rameshbabu AP, Datta S et al (2017) Accelerated healing of full thickness dermal wounds by macroporous waterborne polyurethane-chitosan hydrogel scaffolds. Mater Sci Eng C 81:133–143

    Article  CAS  Google Scholar 

  • Bellei B, Migliano E, Tedesco M et al (2017) Maximizing non-enzymatic methods for harvesting adipose-derived stem from lipoaspirate: technical considerations and clinical implications for regenerative surgery. Sci Rep 7:1–15

    Article  CAS  Google Scholar 

  • Benning L, Gutzweiler L, Tröndle K et al (2017) Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. J Biomed Mater Res Part A 105:3231–3241

    Article  CAS  Google Scholar 

  • Berthiaume F, Maguire TJ, Yarmush ML (2011) Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng 2:403–430

    Article  PubMed  Google Scholar 

  • Bhat S, Kumar A (2013) Biomaterials and bioengineering tomorrow’s healthcare. Biomatter 3:37–41

    Article  Google Scholar 

  • Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Börger V, Bremer M, Ferrer-Tur R et al (2017) Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int J Mol Sci 18:1450

    Article  PubMed Central  CAS  Google Scholar 

  • Bruno S, Camussi G (2013) Role of mesenchymal stem cell-derived microvesicles in tissue repair. Pediatr Nephrol 28:2249–2254

    Article  PubMed  Google Scholar 

  • Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17:467–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho S-W, Lim SH, Kim I-K et al (2005) Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg 241:506–515

    Article  PubMed  PubMed Central  Google Scholar 

  • de Paula DRM, Capuano V, Filho DM et al (2017) Biological properties of cardiac mesenchymal stem cells in rats with diabetic cardiomyopathy. Life Sci 188:45–52

    Article  PubMed  CAS  Google Scholar 

  • Den Hondt M, Vanaudenaerde BM, Maughan EF et al (2017) An optimized non-destructive protocol for testing mechanical properties in decellularized rabbit trachea. Acta Biomater 60:291–301

    Article  CAS  Google Scholar 

  • Derkus B, Emregul KC, Emregul E (2017) A new approach in stem cell research-exosomes: their mechanism of action via cellular pathways. Cell Biol Int 41:466–475

    Article  PubMed  Google Scholar 

  • Di Rocco G, Baldari S, Toietta G (2017) Exosomes and other extracellular vesicles-mediated microRNA delivery for cancer therapy. Transl Cancer Res 6:S1321–S1330

    Article  CAS  Google Scholar 

  • Donderwinkel I, van Hest JCM, Cameron NR (2017) Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 8:4451–4471

    Article  CAS  Google Scholar 

  • Erten E, Sezgin Arslan T, Derkus B et al (2016) Detergent-free decellularization of bovine costal cartilage for chondrogenic differentiation of human adipose mesenchymal stem cells in vitro. RSC Adv 6:94236–94246

    Article  CAS  Google Scholar 

  • Fitzpatrick LE, McDevitt TC (2015) Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater Sci 3:12–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanagan TC, Pandit A (2003) Living artificial heart valve alternatives: a review. Eur Cell Mater 6:28–45

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Peng S, Feng P et al (2017) Bone biomaterials and interactions with stem cells. Bone Res 5:17059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazzarri M, Bartoli C, Mota C et al (2013) Fibrous star poly(ε-caprolactone) melt-electrospun scaffolds for wound healing applications. J Bioact Compat Polym 28:492–507

    Article  CAS  Google Scholar 

  • Geissler SA, Sabin AL, Besser RR et al (2018) Biomimetic hydrogels direct spinal progenitor cell differentiation and promote functional recovery after spinal cord injury. J Neural Eng 15:25004

    Article  Google Scholar 

  • Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683

    CAS  PubMed  Google Scholar 

  • Godara P, Nordon RE, McFarland CD (2008) Mesenchymal stem cells in tissue engineering. J Chem Technol Biotechnol 83:397–407

    Article  CAS  Google Scholar 

  • Goldman SA, Sim F (2005) Neural progenitor cells of the adult brain (Bock G, Goode J, eds). Novartis Found Symp 265:66–80–97

    Google Scholar 

  • Gomzikova MO, Rizvanov AA (2017) Current trends in regenerative medicine: from cell to cell-free therapy. Bionanoscience 7:240–245

    Article  Google Scholar 

  • Gong M, Yu B, Wang J et al (2017) Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 8:45200–45212

    Article  PubMed  PubMed Central  Google Scholar 

  • Goradel NH, Hour FG, Negahdari B et al (2018) Stem cell therapy: a new therapeutic option for cardiovascular diseases. J Cell Biochem 119:95–104

    Article  CAS  PubMed  Google Scholar 

  • Goyal R, Vega ME, Pastino AK et al (2017) Development of hybrid scaffolds with natural extracellular matrix deposited within synthetic polymeric fibers. J Biomed Mater Res Part A 105:2162–2170

    Article  CAS  Google Scholar 

  • Griffith LG, Naughton G (2002) Tissue engineering–current challenges and expanding opportunities. Science 295:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Han C, Sun X, Liu L et al (2016) Exosomes and their therapeutic potentials of stem cells. Stem Cells Int 2016:1–11

    Google Scholar 

  • Harris L, Zalucki O, Clément O et al (2018) Neurogenic differentiation by hippocampal neural stem and progenitor cells is biased by NFIX expression. Development 145:dev155689

    Article  PubMed  CAS  Google Scholar 

  • Hawking SW (1988) A brief history of time: from the big bang to black holes. Bantam, New York

    Book  Google Scholar 

  • Hixon KR, Melvin AM, Lin AY et al (2017) Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects. J Biomater Appl 32:598–611

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Seeberger PH, Yin J (2016) Using carbohydrate-based biomaterials as scaffolds to control human stem cell fate. Org Biomol Chem 14:8648–8658

    Article  CAS  PubMed  Google Scholar 

  • Hussey GS, Keane TJ, Badylak SF (2017) The extracellular matrix of the gastrointestinal tract: a regenerative medicine platform. Nat Rev Gastroenterol Hepatol 14:540–552

    Article  PubMed  Google Scholar 

  • Inanç B, Arslan YE, Seker S et al (2009) Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide- co -glycolide) nanofibrous membrane scaffolds. J Biomed Mater Res Part A 90A:186–195

    Article  CAS  Google Scholar 

  • Jokanović V, Čolović B, Antonijević Đ et al (2017) Various methods of 3D and bio-printing. Serbian Dent J 64:136–145

    Article  Google Scholar 

  • Kamao H, Mandai M, Ohashi W et al (2017) Evaluation of the surgical device and procedure for extracellular matrix–scaffold–supported human iPSC–derived retinal pigment epithelium cell sheet transplantation. Investig Opthalmology Vis Sci 58:211

    Article  Google Scholar 

  • Kaushik G, Leijten J, Khademhosseini A (2017) Concise review: organ engineering: design, technology, and integration. Stem Cells 35:51–60

    Article  PubMed  Google Scholar 

  • Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300:64–71

    Article  CAS  PubMed  Google Scholar 

  • Kim HO, Choi S-M, Kim H-S (2013) Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Eng Regen Med 10:93–101

    Article  CAS  Google Scholar 

  • Kolar K, Weber W (2017) Synthetic biological approaches to optogenetically control cell signaling. Curr Opin Biotechnol 47:112–119

    Article  CAS  PubMed  Google Scholar 

  • Konno M, Hamabe A, Hasegawa S et al (2013) Adipose-derived mesenchymal stem cells and regenerative medicine. Develop Growth Differ 55:309–318

    Article  CAS  Google Scholar 

  • Koudan EV, Bulanova EA, Pereira FDAS et al (2016) Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using 3D bioprinter. Int J Bioprinting 2:45–52

    CAS  Google Scholar 

  • Langer R, Vacanti J (1993) Tissue Eng Sci (80- ) 260:920–926

    Google Scholar 

  • Langer RS, Vacanti JP (1999) Tissue engineering: the challenges ahead. Sci Am 280:86–89

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu Y, Zhang P et al (2018) Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl Mater Interfaces 10:5240–5254

    Article  CAS  PubMed  Google Scholar 

  • Lin H (2002) The stem-cell niche theory: lessons from flies. Nat Rev Genet 3:931–940

    Article  CAS  PubMed  Google Scholar 

  • Lou G, Chen Z, Zheng M et al (2017) Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med 49:e346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lui H, Vaquette C, Bindra R (2017) Tissue engineering in hand surgery: a technology update. J Hand Surg Am 42:727–735

    Article  PubMed  Google Scholar 

  • Lv H, Wang H, Zhang Z et al (2017) Biomaterial stiffness determines stem cell fate. Life Sci 178:42–48

    Article  CAS  PubMed  Google Scholar 

  • Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci 112:14452–14459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez PR, Goyanes A, Basit AW et al (2017) Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm 532:313–317

    Article  CAS  PubMed  Google Scholar 

  • Mason C, Dunnill P (2008) The strong financial case for regenerative medicine and the Regen industry. Regen Med 3:351–363

    Article  PubMed  Google Scholar 

  • Mason C, Dunnill P (2010) A brief definition of regenerative medicine [EDITORIAL]. Regen Med 3:1–5

    Article  PubMed  Google Scholar 

  • Melhem MR, Park J, Knapp L et al (2017) 3D printed stem-cell-laden, microchanneled hydrogel patch for the enhanced release of cell-secreting factors and treatment of myocardial infarctions. ACS Biomater Sci Eng 3:1980–1987

    Article  CAS  PubMed  Google Scholar 

  • Murphy KC, Whitehead J, Zhou D et al (2017) Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids. Acta Biomater 64:176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NASDAQ Globe News (2017) Global $53 billion Regenerative Medicine Market Analysis & Forecast Report 2017–2021: focus on stem cells, tissue engineering, BioBanking & CAR-T Industries. NASDAQ Globe News Wire

    Google Scholar 

  • Nemeno-Guanzon JG, Lee S, Berg JR et al (2012) Trends in tissue engineering for blood vessels. J Biomed Biotechnol 2012:1–14

    Article  CAS  Google Scholar 

  • Nerem RM (2010) Regenerative medicine: the emergence of an industry. J R Soc Interface 7:S771–S775

    Article  PubMed  PubMed Central  Google Scholar 

  • Ning L-J, Jiang Y-L, Zhang C-H et al (2017) Fabrication and characterization of a decellularized bovine tendon sheet for tendon reconstruction. J Biomed Mater Res Part A 105:2299–2311

    Article  CAS  Google Scholar 

  • Ozler SB, Bakirci E, Kucukgul C et al (2017) Three-dimensional direct cell bioprinting for tissue engineering. J Biomed Mater Res Part B Appl Biomater 105:2530–2544

    Article  CAS  Google Scholar 

  • Pereira RF, Bártolo PJ (2015) 3D photo-fabrication for tissue engineering and drug delivery. Engineering 1:090–112

    Article  CAS  Google Scholar 

  • Plagnol AC, Rowley E, Martin P et al (2009) Industry perceptions of barriers to commercialization of regenerative medicine products in the UK. Regen Med 4:549–559

    Article  PubMed  Google Scholar 

  • Porter JR, Ruckh TT, Popat KC (2009) Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 25:1539–1560

    CAS  PubMed  Google Scholar 

  • Pournaqi F, Ghiaee A, Vakilian S et al (2017) Improved proliferation and osteogenic differentiation of mesenchymal stem cells on polyaniline composited by polyethersulfone nanofibers. Biologicals 45:78–84

    Article  CAS  PubMed  Google Scholar 

  • Prajumwongs P, Weeranantanapan O, Jaroonwitchawan T et al (2016) Human embryonic stem cells: a model for the study of neural development and neurological diseases 2016

    Google Scholar 

  • Quan Q, Chang B, Meng HY et al (2016) Use of electrospinning to construct biomaterials for peripheral nerve regeneration. Rev Neurosci 27:761–768

    Article  CAS  PubMed  Google Scholar 

  • Repina NA, Rosenbloom A, Mukherjee A et al (2017) At light speed: advances in optogenetic systems for regulating cell signaling and behavior. Annu Rev Chem Biomol Eng 8:13–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Riazifar M, Pone EJ, Lötvall J et al (2017) Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol 57:125–154

    Article  CAS  PubMed  Google Scholar 

  • Rim NG, Shin CS, Shin H (2013) Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater 8:14102

    Article  CAS  Google Scholar 

  • Rosenzweig ES, Brock JH, Lu P et al (2018) Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med 24:484–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadtler K, Singh A, Wolf MT et al (2016) Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat Rev Mater 1:16040

    Article  CAS  Google Scholar 

  • Safari S, Malekvandfard F, Babashah S et al (2016) Mesenchymal stem cell-derived exosomes: a novel potential therapeutic avenue for cardiac regeneration. Cell Mol Biol 62:66–73

    CAS  PubMed  Google Scholar 

  • Saito S, Hiemori K, Kiyoi K et al (2018) Glycome analysis of extracellular vesicles derived from human induced pluripotent stem cells using lectin microarray. Sci Rep 8:3997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santoso MR, Yang PC (2017) Molecular imaging of stem cells and exosomes for myocardial regeneration. Curr Cardiovasc Imaging Rep 10:37

    Article  Google Scholar 

  • Seker S, Arslan YE, Elcin YM (2010) Electrospun Nanofibrous PLGA/fullerene-C60 coated quartz crystal microbalance for real-time Gluconic acid monitoring. IEEE Sensors J 10:1342–1348

    Article  CAS  Google Scholar 

  • Seyler TM, Bracey DN, Plate JF et al (2017) The development of a xenograft-derived scaffold for tendon and ligament reconstruction using a Decellularization and oxidation protocol. Arthrosc J Arthrosc Relat Surg 33:374–386

    Article  Google Scholar 

  • Shenghui H, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25:377–406

    Article  CAS  Google Scholar 

  • Soletti L, Hong Y, Guan J et al (2010) A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater 6:110–122

    Article  CAS  PubMed  Google Scholar 

  • Subia B, Kundu J, Kundu CS (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. In: Eberli D (ed) Tissue Eng. InTech, p 524

    Google Scholar 

  • Sutherland AJ, Beck EC, Dennis SC et al (2015) Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering (Almarza A, ed). PLoS One 10:e0121966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science (80- ) 282:1145–1147

    Article  CAS  Google Scholar 

  • Toh WS, Lai RC, Hui JHP et al (2016) MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment. Semin Cell Dev Biol

    Google Scholar 

  • Torella D, Ellison GM, Karakikes I et al (2007) Cardiovascular development: towards biomedical applicability. Cell Mol Life Sci 64:661–673

    Article  CAS  PubMed  Google Scholar 

  • Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5:32–45

    Article  CAS  PubMed  Google Scholar 

  • Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells – current trends and future prospective. Biosci Rep 35:1–18

    Article  CAS  Google Scholar 

  • Vacanti CA (2006) The history of tissue engineering. J Cell Mol Med 10:569–576

    Article  PubMed  Google Scholar 

  • van de Kamp J, Paefgen V, Wöltje M et al (2017) Mesenchymal stem cells can be recruited to wounded tissue via hepatocyte growth factor-loaded biomaterials. J Tissue Eng Regen Med 11:2988–2998

    Article  PubMed  CAS  Google Scholar 

  • Vargas-Alfredo N, Dorronsoro A, Cortajarena AL et al (2017) Antimicrobial 3D porous scaffolds prepared by additive manufacturing and breath figures. ACS Appl Mater Interfaces 9:37454–37462

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan S, Huang J, Botterman B et al (2014) Detergent-free decellularized nerve grafts for long-gap peripheral nerve reconstruction. Plast Reconstr Surg Glob Open 2:e201

    Article  PubMed  PubMed Central  Google Scholar 

  • Vizoso F, Eiro N, Cid S et al (2017) Mesenchymal stem cell Secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18:1852

    Article  PubMed Central  CAS  Google Scholar 

  • Wang X, Fang Q, You C et al (2014) Construction of skin substitutes using minced split-thickness autografts and biodegradable synthetic scaffolds. Burns 40:1232–1233

    Article  PubMed  Google Scholar 

  • Wang Y, Bao J, Wu X et al (2016) Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci Rep 6:24779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Kang J, Sun C et al (2017) Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants. Mater Des 133:62–68

    Article  CAS  Google Scholar 

  • Wei C-C, Lin AB, Hung S-C (2014) Mesenchymal stem cells in regenerative medicine for musculoskeletal diseases: bench, bedside, and industry. Cell Transplant 23:505–512

    Article  PubMed  Google Scholar 

  • White IA, Sanina C, Balkan W et al (2016) Mesenchymal stem cells in cardiology. In: Gnecchi M (ed) Mesenchymal stem cells, methods in molecular biology. Springer, New York, pp 55–87

    Chapter  Google Scholar 

  • Wiles K, Fishman JM, De Coppi P et al (2016) The host immune response to tissue-engineered organs: current problems and future directions. Tissue Eng Part B Rev 22:208–219

    Article  PubMed  Google Scholar 

  • Wolf MT, Dearth CL, Sonnenberg SB et al (2015) Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv Drug Deliv Rev 84:208–221

    Article  CAS  PubMed  Google Scholar 

  • Xing Q, Qian Z, Jia W et al (2017) Natural extracellular matrix for cellular and tissue biomanufacturing. ACS Biomater Sci Eng 3:1462–1476

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Lu F, Cheng L et al (2017) Preparation and characterization of small-diameter decellularized scaffolds for vascular tissue engineering in an animal model. Biomed Eng Online 16:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15:4142–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37:1–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu X, Li H et al (2016) Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther 7:1–14

    Article  CAS  Google Scholar 

  • Zhang Y-Z, Liu F, Song C-G et al (2018) Exosomes derived from human umbilical vein endothelial cells promote neural stem cell expansion while maintain their stemness in culture. Biochem Biophys Res Commun 495:892–898

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Kaan C. Emregul for his comments and language proofreading.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yavuz Emre Arslan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erten, E., Arslan, Y.E. (2018). The Great Harmony in Translational Medicine: Biomaterials and Stem Cells. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 4. Advances in Experimental Medicine and Biology(), vol 1119. Springer, Cham. https://doi.org/10.1007/5584_2018_231

Download citation

Publish with us

Policies and ethics