Skip to main content

Definitive Erythropoiesis from Pluripotent Stem Cells: Recent Advances and Perspectives

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 3

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1107))

Abstract

Derivation of functional and mature red blood cells (RBCs) with adult globin expression from renewable source such as induced pluripotent stem cells (iPSCs) is of importance from the clinical point of view. Definitive RBC generation can only be succeeded through production of true hematopoietic stem cells (HSCs). There has been a great effort to obtain definitive engraftable HSCs from iPSCs but the results were mostly unsatisfactory due to low, short-term and linage-biased engraftment in mouse models. Moreover, ex vivo differentiation approaches ended up with RBCs with mostly embryonic and fetal globin expression. To establish reliable, standardized and effective laboratory protocols, we need to expand our knowledge about developmental hematopoiesis/erythropoiesis and identify critical regulatory signaling pathways and transcription factors. Once we meet these challenges, we could establish differentiation protocols for massive RBC production for transfusion purposes in the clinical setting, performing drug screening and disease modeling in ex vivo conditions, and investigating the embryological cascade of erythropoiesis. More interestingly, with the introduction of relatively efficient and facile genome editing tools, genetic correction for inherited RBC disorders such as sickle cell disease (SCD) would become possible through iPSCs that can subsequently generate definitive HSCs, which then give rise to definitive RBCs producing β-globin after transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGM:

Aorta-gonad-mesonephros

BMPs:

Bone morphogenetic proteins

BMT:

Bone marrow transplantation

EBs:

Embryoid bodies

EHT:

Endothelial-to-hematopoietic transition

EMPs:

Erythromyeloid progenitors

EryD:

Definitive erythrocytes

EryP:

Primitive erythrocytes

ESCs:

Embryonic stem cells

FGF2:

Fibroblast growth factor 2

FLT-3:

Fms-like tyrosine kinase 3

HLA:

Human leukocyte antigen

HSCs:

Hematopoietic stem cells

ILs:

Interleukins

iPSCs:

Induced pluripotent stem cells

RBCs:

Red blood cells

SCD:

Sickle cell disease

SCF:

Stem cell factor

TPO:

Thrombopoietin

VEGF:

Vascular endothelial growth factor

References

  • Amabile G, Welner RS, Nombela-Arrieta C, D’Alise AM, Di Ruscio A, Ebralidze AK, Kraytsberg Y, Ye M, Kocher O, Neuberg DS (2013) In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood 121(8):1255–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora N, Wenzel PL, McKinney-Freeman SL, Ross SJ, Kim PG, Chou SS, Yoshimoto M, Yoder MC, Daley GQ (2014) Effect of developmental stage of HSC and recipient on transplant outcomes. Dev Cell 29(5):621–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barminko J, Reinholt B, Baron MH (2016) Development and differentiation of the erythroid lineage in mammals. Dev Comp Immunol 58:18–29

    Article  CAS  PubMed  Google Scholar 

  • Baron MH (2005) Early patterning of the mouse embryo: implications for hematopoietic commitment and differentiation. Exp Hematol 33(9):1015–1020

    Article  PubMed  Google Scholar 

  • Baron MH (2013) Concise review: early embryonic erythropoiesis: not so primitive after all. Stem Cells 31(5):849–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batta K, Menegatti S, Garcia-Alegria E, Florkowska M, Lacaud G, Kouskoff V (2016) Concise review: recent advances in the in vitro derivation of blood cell populations. Stem Cells Transl Med 5(10):1330–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender M, Bulger M, Close J, Groudine M (2000) β-Globin gene switching and DNase I sensitivity of the endogenous β-globin locus in mice do not require the locus control region. Mol Cell 5(2):387–393

    Article  CAS  PubMed  Google Scholar 

  • Bungert J, Davé U, Lim K-C, Lieuw KH, Shavit JA, Liu Q, Engel JD (1995) Synergistic regulation of human beta-globin gene switching by locus control region elements HS3 and HS4. Genes Dev 9(24):3083–3096

    Article  CAS  PubMed  Google Scholar 

  • Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI (2005) Hematopoietic stem cell fate is established by the notch–Runx pathway. Genes Dev 19(19):2331–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carotta S, Pilat S, Mairhofer A, Schmidt U, Dolznig H, Steinlein P, Beug H (2004) Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood 104(6):1873–1880

    Article  CAS  PubMed  Google Scholar 

  • Cerdan C, Rouleau A, Bhatia M (2004) VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood 103(7):2504–2512

    Article  CAS  PubMed  Google Scholar 

  • Chang K-H, Nelson AM, Cao H, Wang L, Nakamoto B, Ware CB, Papayannopoulou T (2006) Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood 108(5):1515–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creamer JP, Dege C, Ren Q, Ho JT, Valentine MC, Druley TE, Sturgeon CM (2017) Human definitive hematopoietic specification from pluripotent stem cells is regulated by mesodermal expression of CDX4. Blood 129(22):2988–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA, Bowen-Pope DF (2000) Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 87(9):728–730

    Article  CAS  PubMed  Google Scholar 

  • Ditadi A, Sturgeon CM, Tober J, Awong G, Kennedy M, Yzaguirre AD, Azzola L, Ng ES, Stanley EG, French DL (2015) Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. Nat Cell Biol 17(5):580–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditadi A, Sturgeon CM, Keller G (2017) A view of human haematopoietic development from the Petri dish. Nat Rev Mol Cell Biol 18(1):56–67

    Article  CAS  PubMed  Google Scholar 

  • Doulatov S, Notta F, Laurenti E, Dick JE (2012) Hematopoiesis: a human perspective. Cell Stem Cell 10(2):120–136

    Article  CAS  PubMed  Google Scholar 

  • Doulatov S, Vo LT, Chou SS, Kim PG, Arora N, Li H, Hadland BK, Bernstein ID, Collins JJ, Zon LI (2013) Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell 13(4):459–470

    Article  CAS  PubMed  Google Scholar 

  • Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9(2):129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebihara Y, Ma F, Tsuji K (2012) Generation of red blood cells from human embryonic/induced pluripotent stem cells for blood transfusion. Int J Hematol 95(6):610–616. https://doi.org/10.1007/s12185-012-1107-9

    Article  PubMed  Google Scholar 

  • Eilken HM, Nishikawa S-I, Schroeder T (2009) Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457(7231):896–900

    Article  CAS  PubMed  Google Scholar 

  • Ema M, Yokomizo T, Wakamatsu A, Terunuma T, Yamamoto M, Takahashi S (2006) Primitive erythropoiesis from mesodermal precursors expressing VE-cadherin, PECAM-1, Tie2, endoglin, and CD34 in the mouse embryo. Blood 108(13):4018–4024

    Article  CAS  PubMed  Google Scholar 

  • Ferreira AF, Calin GA, Picanço-Castro V, Kashima S, Covas DT, de Castro FA (2018) Hematopoietic stem cells from induced pluripotent stem cells–considering the role of microRNA as a cell differentiation regulator. J Cell Sci 131(4):jcs203018

    Article  CAS  PubMed  Google Scholar 

  • Fitzhugh CD, Hsieh MM, Taylor T, Coles W, Roskom K, Wilson D, Wright E, Jeffries N, Gamper CJ, Powell J (2017) Cyclophosphamide improves engraftment in patients with SCD and severe organ damage who undergo haploidentical PBSCT. Blood Adv 1(11):652–661

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser ST, Ogawa M, Ruth TY, Nishikawa S, Yoder MC, Nishikawa S-I (2002) Definitive hematopoietic commitment within the embryonic vascular endothelial-cadherin+ population. Exp Hematol 30(9):1070–1078

    Article  CAS  PubMed  Google Scholar 

  • Fujimi A, Matsunaga T, Kobune M, Kawano Y, Nagaya T, Tanaka I, Iyama S, Hayashi T, Sato T, Miyanishi K (2008) Ex vivo large-scale generation of human red blood cells from cord blood CD34+ cells by co-culturing with macrophages. Int J Hematol Ther 87(4):339–350

    Article  Google Scholar 

  • Fujita A, Uchida N, Haro-Mora JJ, Winkler T, Tisdale J (2016) β-Globin-expressing definitive erythroid progenitor cells generated from embryonic and induced pluripotent stem cell-derived sacs. Stem Cells 34(6):1541–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giarratana M-C, Rouard H, Dumont A, Kiger L, Safeukui I, Le Pennec P-Y, François S, Trugnan G, Peyrard T, Marie T (2011) Proof of principle for transfusion of in vitro–generated red blood cells. Blood 118(19):5071–5079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil C-H, Lee J-h, Seo J, Park S-J, Park Z, Kim J, Jung A-R, Lee W-Y, Kim J-S, Moon S-H (2015) Well-defined differentiation of hesc-derived hemangioblasts by embryoid body formation without enzymatic treatment. Biotechnol Lett 37(6):1315–1322

    Article  CAS  PubMed  Google Scholar 

  • Gori JL, Butler JM, Chan Y-Y, Chandrasekaran D, Poulos MG, Ginsberg M, Nolan DJ, Elemento O, Wood BL, Adair JE (2015) Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. J Clin Invest 125(3):1243–1254

    Article  PubMed  PubMed Central  Google Scholar 

  • Gratwohl A, Pasquini MC, Aljurf M, Atsuta Y, Baldomero H, Foeken L, Gratwohl M, Bouzas LF, Confer D, Frauendorfer K (2015) One million haemopoietic stem-cell transplants: a retrospective observational study. Lancet Haematol 2(3):e91-e100

    Article  Google Scholar 

  • Grosso M, Sessa R, Puzone S, Storino MR, Izzo P (2012) Molecular basis of thalassemia. In: Silverberg D (ed) Anemia. InTech, Croatia, pp 342–360

    Google Scholar 

  • Hatzistavrou T, Micallef SJ, Ng ES, Vadolas J, Stanley EG, Elefanty AG (2009) ErythRED, a hESC line enabling identification of erythroid cells. Nat Methods 6(9):659–662

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Wang Y, Yan W, Smith C, Ye Z, Wang J, Gao Y, Mendelsohn L, Cheng L (2015) Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells 33(5):1470–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang Y, Broxmeyer HE, Lee MR (2017) Generating autologous hematopoietic cells from human-induced pluripotent stem cells through ectopic expression of transcription factors. Curr Opin Hematol 24(4):283–288

    Article  CAS  PubMed  Google Scholar 

  • Iarovaia O, Kovina A, Petrova N, Razin S, Ioudinkova E, Vassetzky Y, Ulianov S (2018) Genetic and epigenetic mechanisms of β-globin gene switching. Biochem Mosc 83(4):381–392

    Article  CAS  Google Scholar 

  • Ivanovs A, Rybtsov S, Anderson RA, Turner ML, Medvinsky A (2014) Identification of the niche and phenotype of the first human hematopoietic stem cells. Stem Cell Rep 2(4):449–456

    Article  Google Scholar 

  • Kartalaei PS, Yamada-Inagawa T, Vink CS, de Pater E, Van Der Linden R, Marks-Bluth J, van der Sloot A, van den Hout M, Yokomizo T, van Schaick-Solernó ML (2015) Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. J Exp Med 212(1):93–106

    Article  CAS  Google Scholar 

  • Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 98(19):10716–10721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy M, D'Souza SL, Lynch-Kattman M, Schwantz S, Keller G (2007) Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109(7):2679–2687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy M, Awong G, Sturgeon CM, Ditadi A, LaMotte-Mohs R, Zúñiga-Pflücker JC, Keller G (2012) T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep 2(6):1722–1735

    Article  CAS  PubMed  Google Scholar 

  • Kingsley PD, Malik J, Fantauzzo KA, Palis J (2004) Yolk sac–derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood 104(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Kumaravelu P, Hook L, Morrison AM, Ure J, Zhao S, Zuyev S, Ansell J, Medvinsky A (2002) Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129(21):4891–4899

    CAS  PubMed  Google Scholar 

  • Kyba M, Perlingeiro RC, Daley GQ (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Lacaud G, Kouskoff V (2017) Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis. Exp Hematol 49:19–24

    Article  PubMed  Google Scholar 

  • Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457(7231):892–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledran MH, Krassowska A, Armstrong L, Dimmick I, Renström J, Lang R, Yung S, Santibanez-Coref M, Dzierzak E, Stojkovic M (2008) Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 3(1):85–98

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Fong BSP, Tsang KS, Lau TK, Ng PC, Lam AC, Chan KYY, Wang CC, Kung HF, Li CK (2010) Fetal stromal niches enhance human embryonic stem cell–derived hematopoietic differentiation and globin switch. Stem Cells Dev 20(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Leung A, Zulick E, Skvir N, Vanuytsel K, Morrison TA, Naing ZH, Wang Z, Dai Y, Chui DH, Steinberg MH (2018) Notch and aryl hydrocarbon receptor signaling impact definitive hematopoiesis from human pluripotent stem cells. Stem Cells. https://doi.org/10.1002/stem.2822

  • Ma F, Ebihara Y, Umeda K, Sakai H, Hanada S, Zhang H, Zaike Y, Tsuchida E, Nakahata T, Nakauchi H (2008) Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci U S A 105(35):13087–13092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maximow AA (1924) Relation of blood cells to connective tissues and endothelium. Physiol Rev 4(4):533–563

    Article  Google Scholar 

  • McGrath KE, Frame JM, Fegan KH, Bowen JR, Conway SJ, Catherman SC, Kingsley PD, Koniski AD, Palis J (2015) Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep 11(12):1892–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney-Freeman S, Cahan P, Li H, Lacadie SA, Huang H-T, Curran M, Loewer S, Naveiras O, Kathrein KL, Konantz M (2012) The transcriptional landscape of hematopoietic stem cell ontogeny. Cell Stem Cell 11(5):701–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meader E, Barta T, Melguizo-Sanchis D, Tilgner K, Montaner D, El-Harouni AA, Armstrong L, Lako M (2018) Pluripotent stem cell-derived hematopoietic progenitors are unable to downregulate key epithelial-mesenchymal transition-associated miRNAs. Stem Cells 36(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio G, Migliaccio A, Petti S, Mavilio F, Russo G, Lazzaro D, Testa U, Marinucci M, Peschle C (1986) Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac–liver transition. J Clin Invest 78(1):51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neildez-Nguyen TMA, Wajcman H, Marden MC, Bensidhoum M, Moncollin V, Giarratana M-C, Kobari L, Thierry D, Douay L (2002) Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol 20(5):467–472

    Article  CAS  PubMed  Google Scholar 

  • Palis J (2014) Primitive and definitive erythropoiesis in mammals. Front Physiol 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126(22):5073–5084

    CAS  PubMed  Google Scholar 

  • Poh Y-C, Chen J, Hong Y, Yi H, Zhang S, Chen J, Wu DC, Wang L, Jia Q, Singh R (2014) Generation of organized germ layers from a single mouse embryonic stem cell. Nat Commun 5:4000

    Article  CAS  PubMed  Google Scholar 

  • Prashad SL, Calvanese V, Yao CY, Kaiser J, Wang Y, Sasidharan R, Crooks G, Magnusson M, Mikkola HKA (2015) GPI-80 defines self-renewal ability in hematopoietic stem cells during human development. Cell Stem Cell 16(1):80–87

    Article  CAS  PubMed  Google Scholar 

  • Rowe RG, Mandelbaum J, Zon LI, Daley GQ (2016) Engineering hematopoietic stem cells: lessons from development. Cell Stem Cell 18(6):707–720. https://doi.org/10.1016/j.stem.2016.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabin FR (1920) Studies on the origin of blood-vessels and of red blood-corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Contrib Embryol 9:214–262

    Google Scholar 

  • Sankaran VG, Xu J, Orkin SH (2010) Advances in the understanding of haemoglobin switching. Br J Haematol 149(2):181–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS, Largman C, Lawrence HJ, Humphries RK (1994) Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci U S A 91(25):12223–12227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith BW, Rozelle SS, Leung A, Ubellacker J, Parks A, Nah SK, French D, Gadue P, Monti S, Chui DH (2013) The aryl hydrocarbon receptor directs hematopoietic progenitor cell expansion and differentiation. Blood 122(3):376–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatoyannopoulos G (2005) Control of globin gene expression during development and erythroid differentiation. Exp Hematol 33(3):259–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturgeon CM, Ditadi A, Awong G, Kennedy M, Keller G (2014) Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol 32(6):554–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimura R, Jha DK, Han A, Soria-Valles C, da Rocha EL, Lu Y-F, Goettel JA, Serrao E, Rowe RG, Malleshaiah M (2017) Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 545(7655):432–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Yamazaki S, Yamaguchi T, Okabe M, Masaki H, Takaki S, Otsu M, Nakauchi H (2013) Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther 21(7):1424–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney CL, Teng R, Wang H, Merling RK, Lee J, Choi U, Koontz S, Wright DG, Malech HL (2016) Molecular analysis of neutrophil differentiation from human induced pluripotent stem cells delineates the kinetics of key regulators of hematopoiesis. Stem Cells 34(6):1513–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallack MR, Perkins AC (2013) Three fingers on the switch: Krüppel-like factor 1 regulation of γ-globin to β-globin gene switching. Curr Opin Hematol 20(3):193–200

    Article  CAS  PubMed  Google Scholar 

  • Tan Y-T, Ye L, Xie F, Beyer AI, Muench MO, Wang J, Chen Z, Liu H, Chen S-J, Kan YW (2018) Respecifying human iPSC-derived blood cells into highly engraftable hematopoietic stem and progenitor cells with a single factor. Proc Natl Acad Sci U S A 115(9):2180–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavian M, Peault B (2003) Embryonic development of the human hematopoietic system. Int J Dev Biol 49(2–3):243–250

    Google Scholar 

  • Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11(2):147–152

    Article  CAS  PubMed  Google Scholar 

  • Tober J, Koniski A, McGrath KE, Vemishetti R, Emerson R, de Mesy-Bentley KK, Waugh R, Palis J (2007) The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood 109(4):1433–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida N, Haro-Mora JJ, Fujita A, Lee DY, Winkler T, Hsieh MM, Tisdale JF (2017) Efficient generation of β-globin-expressing erythroid cells using stromal cell-derived induced pluripotent stem cells from patients with sickle cell disease. Stem Cells 35(3):586–596

    Article  CAS  PubMed  Google Scholar 

  • Van Handel B, Prashad SL, Hassanzadeh-Kiabi N, Huang A, Magnusson M, Atanassova B, Chen A, Hamalainen EI, Mikkola HK (2010) The first trimester human placenta is a site for terminal maturation of primitive erythroid cells. Blood 116(17):3321–3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhee S, De Mulder K, Van Caeneghem Y, Verstichel G, Van Roy N, Menten B, Velghe I, De Bleser D, Lambrecht BN, Taghon T (2015) In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis. Haematologica 100:157–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vodyanik MA, Bork JA, Thomson JA, Slukvin II (2005) Human embryonic stem cell–derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105(2):617–626

    Article  CAS  PubMed  Google Scholar 

  • Wahlster L, Daley GQ (2016) Progress towards generation of human haematopoietic stem cells. Nat Cell Biol 18(11):1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Walasek MA, van Os R, de Haan G (2012) Hematopoietic stem cell expansion: challenges and opportunities. Ann N Y Acad Sci 1266(1):138–150

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Li Y, Pei X (2014) From stem cells to red blood cells: how far away from the clinical application? Sci China Life Sci 57(6):581–585

    Article  PubMed  Google Scholar 

  • Yang CT, Ma R, Axton RA, Jackson M, Taylor AH, Fidanza A, Marenah L, Frayne J, Mountford JC, Forrester LM (2017) Activation of KLF1 enhances the differentiation and maturation of red blood cells from human pluripotent stem cells. Stem Cells 35(4):886–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu K-R, Natanson H, Dunbar CE (2016) Gene editing of human hematopoietic stem and progenitor cells: promise and potential hurdles. Hum Gene Ther 27(10):729–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of Interest

The authors have no commercial, proprietary, or financial interest in the products described in this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Selami Demirci or John F. Tisdale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demirci, S., Tisdale, J.F. (2018). Definitive Erythropoiesis from Pluripotent Stem Cells: Recent Advances and Perspectives. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 3. Advances in Experimental Medicine and Biology(), vol 1107. Springer, Cham. https://doi.org/10.1007/5584_2018_228

Download citation

Publish with us

Policies and ethics