Skip to main content

Adipose Tissue-Derived Stromal Cells for Wound Healing

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 4

Abstract

Skin as the outer layer covers the body. Wounds can affect this vital organ negatively and disrupt its functions. Wound healing as a biological process is initiated immediately after an injury. This process consists of three stages: inflammation, proliferation, remodeling. Generally, these three stages occur continuously and timely. However, some factors such as infection, obesity and diabetes mellitus can interfere with these stages and impede the normal healing process which results in chronic wounds. Financial burden on both patients and health care systems, negative biologic effect on the patient’s general health status and reduction in quality of life are a number of issues which make chronic wounds as a considerable challenge. During recent years, along with advances in the biomedical sciences, various surgical and non-surgical therapeutic methods have been suggested. All of these suggested treatments have their own advantages and disadvantages. Recently, cell-based therapies and regenerative medicine represent promising approaches to wound healing. Accordingly, several types of mesenchymal stem cells have been used in both preclinical and clinical settings for the treatment of wounds. Adipose-derived stromal cells are a cost-effective source of mesenchymal stem cells in wound management which can be easily harvest from adipose tissues through the less invasive processes with high yield rates. In addition, their ability to secrete multiple cytokines and growth factors, and differentiation into skin cells make them an ideal cell type to use in wound treatment. This is a concise overview on the application of adipose-derived stromal cells in wound healing and their role in the treatment of chronic wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPs::

Antimicrobial peptides

ASCs::

Adipose-derived stromal Cells

bFGF::

Basic fibroblast growth factor

BM-MSCs::

Bone marrow-derived mesenchymal stem cells

DFU::

Diabetic foot ulcer

ECM::

Extracellular Matrix

EGF::

Epidermal growth factor

FGF2::

Fibroblast growth factor-2

GAGs::

Glycosaminoglycans

HBOT::

Hyperbaric oxygen therapy

HBSs::

Hypertrophic burn scars

HGF::

Epidermal growth factor

HTSs::

Hypertrophic scars

IGF::

Insulin-like growth factor

IL-1α::

Interleukin 1 alpha

IL-6::

Interleukin 6

KGF::

Keratinocyte growth factor

MMPs::

Matrix metalloproteinases

MSC::

Mesenchymal stromal cells

NPWT::

Negative pressure wound therapy

NRGs::

Neuregulins

PDGF::

Platelet-derived growth factor

PMNs::

Polymorphonuclear leukocytes

PU::

Pressure ulcer

SDF1::

Stromal-derived factor 1

SSI::

Surgical site infection

SVF::

Stromal vascular fraction

TGF-β::

Transforming growth factor beta

TIMPs::

Tissue inhibitor of metalloproteinases

TNF-α::

Tumor necrosis factor

VEGF::

Vascular endothelial growth factor

VLU::

Venous leg ulcers

VPF::

Vascular permeability factor

CAL::

Cell-Assisted Lipotransfer

References

  • Aghayan H-R, Goodarzi P, Arjmand B (2014) GMP-compliant human adipose tissue-derived mesenchymal stem cells for cellular therapy. In: Stem cells and good manufacturing practices. Springer, New York, pp 93–107

    Google Scholar 

  • Agren MS, Werthen M (2007) The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. Int J Low Extrem Wounds 6(2):82–97

    Article  PubMed  Google Scholar 

  • Akita S, Akino K, Hirano A, Ohtsuru A, Yamashita S (2010) Mesenchymal stem cell therapy for cutaneous radiation syndrome. Health Phys 98:858

    Article  CAS  PubMed  Google Scholar 

  • Arjmand B, Goodarzi P, Mohamadi-Jahani F, Falahzadeh K, Larijani B (2017) Personalized regenerative medicine. Acta Med Iran 55(3):144–149

    PubMed  Google Scholar 

  • Aronowitz JA, Lockhart RA, Hakakian CS (2015) Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus 4(1):713

    Article  PubMed  PubMed Central  Google Scholar 

  • Atala A, Lanza R, Thomson JA, Nerem R (2010) Principles of regenerative medicine. Academic Press, London

    Google Scholar 

  • Atiyeh BS, Ioannovich J, Al-Amm CA, El-Musa KA (2002) Management of acute and chronic open wounds: the importance of moist environment in optimal wound healing. Curr Pharm Biotechnol 3(3):179–195

    Article  CAS  PubMed  Google Scholar 

  • Baer PC, Geiger H (2012) Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int 2012:1

    Article  CAS  Google Scholar 

  • Bangert C, Brunner PM, Stingl G (2011) Immune functions of the skin. Clin Dermatol 29(4):360–376

    Article  PubMed  Google Scholar 

  • Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res 153(2):347–358

    Article  CAS  PubMed  Google Scholar 

  • Baroni A, Buommino E, De Gregorio V, Ruocco E, Ruocco V, Wolf R (2012) Structure and function of the epidermis related to barrier properties. Clin Dermatol 30(3):257–262

    Article  PubMed  Google Scholar 

  • Basiouny HS, Salama NM, El Maadawi ZM, Farag EA (2013) Effect of bone marrow derived mesenchymal stem cells on healing of induced full-thickness skin wounds in albino rat. Int J Stem Cells 6(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bereznicki L (2012) Factors affecting wound healing. Aust Pharm 31(6):484

    Google Scholar 

  • Bertozzi N, Simonacci F, Grieco MP, Grignaffini E, Raposio E (2017) The biological and clinical basis for the use of adipose-derived stem cells in the field of wound healing. Ann Med Surg 20:41–48

    Article  Google Scholar 

  • Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    Article  CAS  PubMed  Google Scholar 

  • Boink MA, van den Broek LJ, Roffel S, Nazmi K, Bolscher JG, Gefen A, Veerman EC, Gibbs S (2016) Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells. Wound Repair Regen 24(1):100–109

    Article  PubMed  Google Scholar 

  • Border WA, Noble NA (1994) Transforming growth factor β in tissue fibrosis. N Engl J Med 331(19):1286–1292

    Article  CAS  PubMed  Google Scholar 

  • Bowley E, O’Gorman DB, Gan BS (2007) β-catenin signaling in fibroproliferative disease. J Surg Res 138(1):141–150

    Article  CAS  PubMed  Google Scholar 

  • Brackman G, Coenye T (2015) In vitro and in vivo biofilm wound models and their application. In: Advances in microbiology, infectious diseases and public health. Springer, Cham, pp 15–32

    Chapter  Google Scholar 

  • Branski LK, Gauglitz GG, Herndon DN, Jeschke MG (2009) A review of gene and stem cell therapy in cutaneous wound healing. Burns 35(2):171–180

    Article  PubMed  Google Scholar 

  • Brown LF, Yeo K, Berse B, Yeo T-K, Senger DR, Dvorak HF, Van De Water L (1992) Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 176(5):1375–1379

    Article  CAS  PubMed  Google Scholar 

  • Bryant R, Nix D (2015) Acute and chronic wounds-E-book. Elsevier Health Sciences, St. Louis, Missouri

    Google Scholar 

  • Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45(2):115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camilleri ET, Gustafson MP, Dudakovic A, Riester SM, Garces CG, Paradise CR, Takai H, Karperien M, Cool S, Im Sampen H-J (2016) Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther 7(1):107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerqueira MT, Pirraco RP, Marques AP (2016) Stem cells in skin wound healing: are we there yet? Adv Wound Care 5(4):164–175

    Article  Google Scholar 

  • Chae D-S, Han S, Son M, Kim S-W (2017) Stromal vascular fraction shows robust wound healing through high chemotactic and epithelialization property. Cytotherapy 19(4):543–554

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253(1–2):269–285

    Article  CAS  PubMed  Google Scholar 

  • Cheon SS, Wei Q, Gurung A, Youn A, Bright T, Poon R, Whetstone H, Guha A, Alman BA (2006) Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing. FASEB J 20(6):692–701

    Article  CAS  PubMed  Google Scholar 

  • Choi S-K, Park J-K, Kim J-H, Lee K-M, Kim E, Jeong K-S, Jeon WB (2016) Integrin-binding elastin-like polypeptide as an in situ gelling delivery matrix enhances the therapeutic efficacy of adipose stem cells in healing full-thickness cutaneous wounds. J Control Release 237:89–100

    Article  CAS  PubMed  Google Scholar 

  • Clark RA, Ghosh K, Tonnesen MG (2007) Tissue engineering for cutaneous wounds. J Investig Dermatol 127(5):1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Conway K, Ruge F, Price P, Harding KG, Jiang WG (2007) Hepatocyte growth factor regulation: an integral part of why wounds become chronic. Wound Repair Regen 15(5):683–692

    Article  PubMed  Google Scholar 

  • Crozier T (1994) Interleukin-6 and wound healing. Br J Anaesth 73(3):426

    Article  Google Scholar 

  • Cutting K (1994) Factors influencing wound healing. Nurs Stand 8(50):33–36

    Article  CAS  PubMed  Google Scholar 

  • D’andrea F, De Francesco F, Grella R, Ferraro G (2010) Human CD34/CD90 ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries. Eur J Clin Invest 40:88

    Google Scholar 

  • Dai R, Wang Z, Samanipour R, Koo K-i, Kim K (2016) Adipose-derived stem cells for tissue engineering and regenerative medicine applications. Stem Cells Int 2016:1

    CAS  Google Scholar 

  • Dash BC, Xu Z, Lin L, Koo A, Ndon S, Berthiaume F, Dardik A, Hsia H (2018) Stem cells and engineered scaffolds for regenerative wound healing. Bioengineering 5(1):23

    Article  PubMed Central  CAS  Google Scholar 

  • Desiderio V, De Francesco F, Schiraldi C, De Rosa A, La Gatta A, Paino F, d’Aquino R, Ferraro GA, Tirino V, Papaccio G (2013) Human Ng2+ adipose stem cells loaded in vivo on a new crosslinked hyaluronic acid-lys scaffold fabricate a skeletal muscle tissue. J Cell Physiol 228(8):1762–1773

    Article  CAS  PubMed  Google Scholar 

  • Di Rocco G, Gentile A, Antonini A, Ceradini F, Wu JC, Capogrossi MC, Toietta G (2011) Enhanced healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: biodistribution and engraftment analysis by bioluminescent imaging. Stem Cells Int 2011:1

    Article  Google Scholar 

  • Dittmer J, Leyh B (2014) Paracrine effects of stem cells in wound healing and cancer progression. Int J Oncol 44(6):1789–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146(5):1029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, AndrĂ© M, Cousin B, Gourmelon P, Benderitter M, Casteilla L, Tamarat R (2009) Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 29(4):503–510

    Article  CAS  PubMed  Google Scholar 

  • Enoch S, Grey JE, Harding KG (2006) ABC of wound healing: non-surgical and drug treatments. BMJ 332(7546):900

    Article  PubMed  PubMed Central  Google Scholar 

  • Enoch S, Price P (2004) Cellular, molecular and biochemical differences in the pathophysiology of healing between acute wounds, chronic wounds and wounds in the aged. World Wide Wounds 13:1–17

    Google Scholar 

  • Ferraro GA, De Francesco F, Nicoletti G, Paino F, Desiderio V, Tirino V, D’Andrea F (2013) Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues. J Cell Biochem 114(5):1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Frank S, HĂ¼bner G, Breier G, Longaker MT, Greenhalgh DG, Werner S (1995) Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem 270(21):12607–12613

    Article  CAS  PubMed  Google Scholar 

  • Frieedenstein A, Petrakova K, Kurolesova A, Frolova G (1968) Hetrotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoetic tissue. Transplantacion 6(2):230

    Article  Google Scholar 

  • Fromm-Dornieden C, Koenen P (2013) Adipose-derived stem cells in wound healing: recent results in vitro and in vivo. OA Mol Cell Biol 1(1):8

    Article  Google Scholar 

  • Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care 4(9):560–582

    Article  Google Scholar 

  • GarcĂ­a-Olmo D, GarcĂ­a-Arranz M, GarcĂ­a LG, Cuellar ES, Blanco IF, Prianes LA, Montes JAR, Pinto FL, Marcos DH, GarcĂ­a-Sancho L (2003) Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn’s disease: a new cell-based therapy. Int J Color Dis 18(5):451–454

    Article  Google Scholar 

  • Garcia-Olmo D, Garcia-Arranz M, Herreros D (2008) Expanded adipose-derived stem cells for the treatment of complex perianal fistula including Crohn’s disease. Expert Opin Biol Ther 8(9):1417–1423

    Article  CAS  PubMed  Google Scholar 

  • GarcĂ­a-Olmo D, GarcĂ­a-Arranz M, Herreros D, Pascual I, Peiro C, RodrĂ­guez-Montes JA (2005) A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 48(7):1416–1423

    Article  PubMed  Google Scholar 

  • Garcia-Olmo D, Herreros D, De-La-Quintana P, Guadalajara H, TrĂ©bol J, Georgiev-Hristov T, GarcĂ­a-Arranz M (2010) Adipose-derived stem cells in Crohn’s rectovaginal fistula. Case Rep Med 2010:1

    Article  Google Scholar 

  • Garcia-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J, De-La-Quintana P, Garcia-Arranz M, Pascual M (2009a) Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 52(1):79–86

    Article  PubMed  Google Scholar 

  • Garcia-Olmo D, Herreros D, Pascual M, Pascual I, De-La-Quintana P, Trebol J, Garcia-Arranz M (2009b) Treatment of enterocutaneous fistula in Crohn’s disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion. Int J Color Dis 24(1):27–30

    Article  Google Scholar 

  • Gaspar A, Constantin D, Seciu A-M, Moldovan L, Craciunescu O, Ganea E (2016) Human adipose-derived stem cells differentiation into epidermal cells and interaction with human keratinocytes in coculture. Turk J Biol 40(5):1111–1120

    Article  CAS  Google Scholar 

  • Gehris A, D’Angelo M, Greene RM (2003) Immunodetection of the transforming growth factors beta 1 and beta 2 in the developing murine palate. Int J Dev Biol 35(1):17–24

    Google Scholar 

  • Gimble JM, Bunnell BA, Guilak F (2012) Human adipose-derived cells: an update on the transition to clinical translation. Regen Med 7(2):225–235

    Article  CAS  PubMed  Google Scholar 

  • Gimble JM, Wu X (2016) Non-enzymatic method for isolating human adipose-derived stromal stem cells, Google Patents

    Google Scholar 

  • Gir P, Oni G, Brown SA, Mojallal A, Rohrich RJ (2012) Human adipose stem cells: current clinical applications. Plast Reconstr Surg 129(6):1277–1290

    Article  CAS  PubMed  Google Scholar 

  • Goldman R (2004) Growth factors and chronic wound healing: past, present, and future. Adv Skin Wound Care 17(1):24–35

    Article  PubMed  Google Scholar 

  • Gomathysankar S, Halim AS, Yaacob NS (2014) Proliferation of keratinocytes induced by adipose-derived stem cells on a chitosan scaffold and its role in wound healing, a review. Arch Plast Surg 41(5):452–457

    Article  PubMed  PubMed Central  Google Scholar 

  • GonzĂ¡lez-Cruz RD, Fonseca VC, Darling EM (2012) Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc Natl Acad Sci 109(24):E1523–E1529

    Article  PubMed  PubMed Central  Google Scholar 

  • Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 206(1):229–237

    Article  CAS  PubMed  Google Scholar 

  • Guo S a, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34(3):599–610

    Article  PubMed  PubMed Central  Google Scholar 

  • Han S, Sun HM, Hwang K-C, Kim S-W (2015) Adipose-derived stromal vascular fraction cells: update on clinical utility and efficacy. Crit Rev Eukaryot Gene Expr 25(2):145

    Article  PubMed  Google Scholar 

  • Hanson SE, Kleinbeck KR, Cantu D, Kim J, Bentz ML, Faucher LD, Kao WJ, Hematti P (2016) Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model. J Tissue Eng Regen Med 10(2):E90

    Article  CAS  PubMed  Google Scholar 

  • Harder J, Dressel S, Wittersheim M, Cordes J, Meyer-Hoffert U, Mrowietz U, Fölster-Holst R, Proksch E, Schröder J-M, Schwarz T (2010) Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J Investig Dermatol 130(5):1355–1364

    Article  CAS  PubMed  Google Scholar 

  • Hart J (2002) Inflammation 1: its role in the healing of acute wounds. J Wound Care 11(6):205–209

    Article  CAS  PubMed  Google Scholar 

  • Hassan WU, Greiser U, Wang W (2014) Role of adipose-derived stem cells in wound healing. Wound Repair Regen 22(3):313–325

    Article  PubMed  Google Scholar 

  • Heo SC, Jeon ES, Lee IH, Kim HS, Kim MB, Kim JH (2011) Tumor necrosis factor-α-activated human adipose tissue–derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms. J Investig Dermatol 131(7):1559–1567

    Article  CAS  PubMed  Google Scholar 

  • Hilmi ABM, Halim AS (2015) Vital roles of stem cells and biomaterials in skin tissue engineering. World J Stem Cells 7(2):428

    Article  Google Scholar 

  • Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580

    Article  CAS  PubMed  Google Scholar 

  • Hong SJ, Jia S-X, Xie P, Xu W, Leung KP, Mustoe TA, Galiano RD (2013) Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS One 8(1):e55640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu R, Ling W, Xu W, Han D (2014) Fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells for vocal fold wound healing. PLoS One 9(3):e92676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang S-P, Huang C-H, Shyu J-F, Lee H-S, Chen S-G, Chan JY-H, Huang S-M (2013) Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model. J Biomed Sci 20(1):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal A, Jan A, Wajid M, Tariq S (2017) Management of Chronic non-healing wounds by hirudotherapy. World J Plast Surg 6(1):9

    PubMed  PubMed Central  Google Scholar 

  • Järbrink K, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R, Car J (2017) The humanistic and economic burden of chronic wounds: a protocol for a systematic review. Syst Rev 6(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  • Jimenez PA, Rampy MA (1999) Keratinocyte growth factor-2 accelerates wound healing in incisional wounds. J Surg Res 81(2):238–242

    Article  CAS  PubMed  Google Scholar 

  • Johal KS, Lees VC, Reid AJ (2015) Adipose-derived stem cells: selecting for translational success. Regen Med 10(1):79–96

    Article  CAS  PubMed  Google Scholar 

  • Johnson KE, Wilgus TA (2014) Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care 3(10):647–661

    Article  Google Scholar 

  • Johnston BR, Ha AY, Kwan D (2016) Surgical management of chronic wounds. R I Med J 99:30–33

    Google Scholar 

  • Kapp S, Santamaria N (2017) The financial and quality-of-life cost to patients living with a chronic wound in the community. Int Wound J 14:1108

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato T, Khanh VC, Sato K, Takeuchi K, Carolina E, Yamashita T, Sugaya H, Yoshioka T, Mishima H, Ohneda O (2017) SDF-1 improves wound healing ability of glucocorticoid-treated adipose tissue-derived mesenchymal stem cells. Biochem Biophys Res Commun 493(2):1010–1017

    Article  CAS  PubMed  Google Scholar 

  • Kavros SJ, Liedl DA, Boon AJ, Miller JL, Hobbs JA, Andrews KL (2008) Expedited wound healing with noncontact, low-frequency ultrasound therapy in chronic wounds: a retrospective analysis. Adv Skin Wound Care 21(9):416–423

    Article  PubMed  Google Scholar 

  • Kern S, Eichler H, Stoeve J, KlĂ¼ter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Kim I, Lee SK, Bang SI, Lim SY (2011) Clinical trial of autologous differentiated adipocytes from stem cells derived from human adipose tissue. Dermatol Surg 37(6):750–759

    Article  CAS  PubMed  Google Scholar 

  • Kim W-S, Park B-S, Sung J-H, Yang J-M, Park S-B, Kwak S-J, Park J-S (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Klingemann H, Matzilevich D, Marchand J (2008) Mesenchymal stem cells–sources and clinical applications. Transfus Med Hemother 35(4):272–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolaparthy LK, Sanivarapu S, Moogla S, Kutcham RS (2015) Adipose tissue-adequate, accessible regenerative material. Int J Stem Cells 8(2):121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranke P, Bennett M, Roeckl-Wiedmann I, Debus S (2004) Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev 2(2):CD004123

    Google Scholar 

  • Lafosse A, Desmet C, Aouassar N, AndrĂ© W, Hanet M-S, Beauloye C, Vanwijck R, Poirel HA, Gallez B, Dufrane D (2015) Autologous adipose stromal cells seeded onto a human collagen matrix for dermal regeneration in chronic wounds: clinical proof of concept. Plast Reconstr Surg 136(2):279–295

    Article  CAS  PubMed  Google Scholar 

  • Larijani B, Aghayan H, Goodarzi P, Mohamadi-Jahani F, Norouzi-Javidan A, Dehpour AR, Fallahzadeh K, Sayahpour FA, Bidaki K, Arjmand B (2015) Clinical grade human adipose tissue-derived mesenchymal stem cell banking. Acta Med Iran 53(9):540–546

    PubMed  Google Scholar 

  • Laurens N, Koolwijk P, De Maat M (2006) Fibrin structure and wound healing. J Thromb Haemost 4(5):932–939

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Lee JH, Cho KH (2011) Effects of human adipose-derived stem cells on cutaneous wound healing in nude mice. Ann Dermatol 23(2):150–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Leonov YI, Shkumat M, Klymenko P, Hovorun MY, Guzyk M, Kuchmerovska T, Pishel I (2015) Effect of insulin-like growth factor transgene on wound healing in mice with streptozotocin-induced diabetes. Cytol Genet 49(1):19–26

    Article  Google Scholar 

  • Li Q, Guo Y, Chen F, Liu J, Jin P (2016) Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing. Exp Ther Med 12(1):45–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y-C, Grahovac T, Oh SJ, Ieraci M, Rubin JP, Marra KG (2013) Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater 9(2):5243–5250

    Article  CAS  PubMed  Google Scholar 

  • Locke M, Windsor J, Dunbar P (2009) Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg 79(4):235–244

    Article  PubMed  Google Scholar 

  • Ma T, Sun J, Zhao Z, Lei W, Chen Y, Wang X, Yang J, Shen Z (2017) A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res Ther 8(1):124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maharlooei MK, Bagheri M, Solhjou Z, Jahromi BM, Akrami M, Rohani L, Monabati A, Noorafshan A, Omrani GR (2011) Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Res Clin Pract 93(2):228–234

    Article  PubMed  Google Scholar 

  • Margadant C, Sonnenberg A (2010) Integrin–TGF-β crosstalk in fibrosis, cancer and wound healing. EMBO Rep 11(2):97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin P (1997) Wound healing--aiming for perfect skin regeneration. Science 276(5309):75–81

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, Aiba-Kojima E, Iizuka F, Inoue K, Suga H (2006) Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng 12(12):3375–3382

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Tanaka R, Okada K, Arita K, Hyakusoku H, Miyamoto M, Tabata Y, Mizuno H (2013) The effect of control-released basic fibroblast growth factor in wound healing: histological analyses and clinical application. Plast Reconstr Surg Glob Open 1(6):e44

    Article  PubMed  PubMed Central  Google Scholar 

  • Metcalfe AD, Ferguson MW (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4(14):413–437

    Article  CAS  PubMed  Google Scholar 

  • Mihm MC Jr, Soter NA, Dvorak HF, Austen KF (1976) The structure of normal skin and the morphology of atopic eczema. J Investig Dermatol 67(3):305–312

    Article  PubMed  Google Scholar 

  • Mildmay-White A, Khan W (2017) Cell surface markers on adipose-derived stem cells: a systematic review. Curr Stem Cell Res Ther 12(6):484–492

    Article  CAS  PubMed  Google Scholar 

  • Millan A, Landerholm T, Chapman J (2014) Comparison between collagenase adipose digestion and Stromacell mechanical dissociation for mesenchymal stem cell separation. McNair Schol J CSUS 15:86–101

    Google Scholar 

  • Montesano R, Orci L (1988) Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: implications for wound healing. Proc Natl Acad Sci 85(13):4894–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morasso MI, Tomic-Canic M (2005) Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biol Cell 97(3):173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder G, Tenenhaus M, D’Souza GF (2014) Reduction of diabetic foot ulcer healing times through use of advanced treatment modalities. Sage Publications, Los Angeles

    Book  Google Scholar 

  • Na YK, Ban J-J, Lee M, Im W, Kim M (2017) Wound healing potential of adipose tissue stem cell extract. Biochem Biophys Res Commun 485(1):30–34

    Article  CAS  PubMed  Google Scholar 

  • Nambu M, Kishimoto S, Nakamura S, Mizuno H, Yanagibayashi S, Yamamoto N, Azuma R, Nakamura S-i, Kiyosawa T, Ishihara M (2009) Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg 62(3):317–321

    Article  CAS  PubMed  Google Scholar 

  • Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118(20):4731–4739

    Article  CAS  PubMed  Google Scholar 

  • Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J (2011) Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 20:205–216

    Article  PubMed  Google Scholar 

  • Norman G, Dumville JC, Mohapatra DP, Crosbie EJ (2016) Antibiotics and antiseptics for surgical wounds healing by secondary intention. Cochrane Database Syst Rev 3:1–73, DOI: 10.1002/14651858.CD011712.pub2.

  • Oberbauer E, Steffenhagen C, Wurzer C, Gabriel C, Redl H, Wolbank S (2015) Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regen 4(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pai D, Madan S (2013) Techniques in chronic wound management: review of the literature and recent concepts. J Nov Physiother 3(2):134

    Google Scholar 

  • Pak J, Lee JH, Park KS, Park M, Kang L-W, Lee SH (2017) Current use of autologous adipose tissue-derived stromal vascular fraction cells for orthopedic applications. J Biomed Sci 24(1):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A (2013) Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care 2(5):215–224

    Article  Google Scholar 

  • Park S-R, Kim J-W, Jun H-S, Roh JY, Lee H-Y, Hong I-S (2017) Stem cell secretome and its effect on cellular mechanisms relevant to wound healing. Mol Ther 26(2):606–617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Percival NJ (2002) Classification of wounds and their management. Surgery-Oxford Int Ed 20(5):114–117

    Google Scholar 

  • Piaggesi A, Schipani E, Campi F, Romanelli M, Baccetti F, Arvia C, Navalesi R (1998) Conservative surgical approach versus non-surgical management for diabetic neuropathic foot ulcers: a randomized trial. Diabet Med 15(5):412–417

    Article  CAS  PubMed  Google Scholar 

  • Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A (1991) Role of platelet-derived growth factor in wound healing. J Cell Biochem 45(4):319–326

    Article  CAS  PubMed  Google Scholar 

  • Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072

    Article  PubMed  Google Scholar 

  • Qomi RT, Sheykhhasan M (2017) Adipose-derived stromal cell in regenerative medicine: a review. World J Stem Cells 9(8):107

    Article  Google Scholar 

  • Rahim K, Saleha S, Zhu X, Huo L, Basit A, Franco OL (2017) Bacterial contribution in chronicity of wounds. Microb Ecol 73(3):710–721

    Article  PubMed  Google Scholar 

  • Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298

    Article  PubMed  Google Scholar 

  • Reinke J, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119(5):1409–1422

    Article  CAS  PubMed  Google Scholar 

  • RittiĂ© L (2016) Cellular mechanisms of skin repair in humans and other mammals. J Cell Commun Signal 10(2):103–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Robson MC (1997) Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surg Clin 77(3):637–650

    CAS  Google Scholar 

  • Rodbell M (1966) Metabolism of isolated fat cells II. The similar effects of phospholipase C (Clostridium perfringens α toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem 241(1):130–139

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, Rouyer O, Ardisson O, Rutschi H, Sigaudo-Roussel D, Damour O, Mojallal A (2015) Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res Ther 6:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Sankar S, Mahooti-Brooks N, Bensen L, McCarthy TL, Centrella M, Madri JA (1996) Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis. J Clin Invest 97(6):1436–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer CJ, Nanney LB (1996) Cell biology of wound healing. Int Rev Cytol Elsevier 169:151–181

    Google Scholar 

  • Schubert T, Xhema D, VĂ©riter S, Schubert M, Behets C, Delloye C, Gianello P, Dufrane D (2011) The enhanced performance of bone allografts using osteogenic-differentiated adipose-derived mesenchymal stem cells. Biomaterials 32(34):8880–8891

    Article  CAS  PubMed  Google Scholar 

  • Shingyochi Y, Orbay H, Mizuno H (2015) Adipose-derived stem cells for wound repair and regeneration. Expert Opin Biol Ther 15(9):1285–1292

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Armstrong DG, Lipsky BA (2005) Preventing foot ulcers in patients with diabetes. JAMA 293(2):217–228

    Article  CAS  PubMed  Google Scholar 

  • Sinno H, Prakash S (2013) Complements and the wound healing cascade: an updated review. Plast Surg Int 2013:1

    Google Scholar 

  • Å itum M, Kolić M, Å poljar S (2016) Quality of life and psychological aspects in patients with chronic leg ulcer. Acta Med Croatica 70(1):61–63

    PubMed  Google Scholar 

  • Stadelmann WK, Digenis AG, Tobin GR (1998) Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 176(2):26S–38S

    Article  CAS  PubMed  Google Scholar 

  • Stamenkovic I (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 200(4):448–464

    Article  CAS  PubMed  Google Scholar 

  • Steinberg JP, Hong SJ, Geringer MR, Galiano RD, Mustoe TA (2012) Equivalent effects of topically-delivered adipose-derived stem cells and dermal fibroblasts in the ischemic rabbit ear model for chronic wounds. Aesthet Surg J 32(4):504–519

    Article  PubMed  Google Scholar 

  • Stoltz J-F, De Isla N, Li Y, Bensoussan D, Zhang L, Huselstein C, Chen Y, Decot V, Magdalou J, Li N (2015) Stem cells and regenerative medicine: myth or reality of the 21th century. Stem Cells Int 2015:1

    Article  CAS  Google Scholar 

  • Stramer BM, Mori R, Martin P (2007) The inflammation–fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. J Investig Dermatol 127(5):1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Teng M, Huang Y, Zhang H (2014) Application of stems cells in wound healing—an update. Wound Repair Regen 22(2):151–160

    Article  PubMed  Google Scholar 

  • Tobita M, Tajima S, Mizuno H (2015) Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: stem cell transplantation methods that enhance stemness. Stem Cell Res Ther 6(1):215

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuji W, Rubin JP, Marra KG (2014) Adipose-derived stem cells: implications in tissue regeneration. World J Stem Cells 6(3):312

    Article  PubMed  PubMed Central  Google Scholar 

  • Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37(5):1528–1542

    Article  CAS  PubMed  Google Scholar 

  • VĂ©riter S, Aouassar N, Adnet P-Y, Paridaens M-S, Stuckman C, Jordan B, Karroum O, Gallez B, Gianello P, Dufrane D (2011) The impact of hyperglycemia and the presence of encapsulated islets on oxygenation within a bioartificial pancreas in the presence of mesenchymal stem cells in a diabetic Wistar rat model. Biomaterials 32(26):5945–5956

    Article  PubMed  CAS  Google Scholar 

  • VĂ©riter S, Gianello P, Igarashi Y, Beaurin G, Ghyselinck A, Aouassar N, Jordan B, Gallez B, Dufrane D (2014) Improvement of subcutaneous bioartificial pancreas vascularization and function by coencapsulation of pig islets and mesenchymal stem cells in primates. Cell Transplant 23(11):1349–1364

    Article  PubMed  Google Scholar 

  • Wagers AJ (2012) The stem cell niche in regenerative medicine. Cell Stem Cell 10(4):362–369

    Article  CAS  PubMed  Google Scholar 

  • Wankhade UD, Shen M, Kolhe R, Fulzele S (2016) Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int 2016:1

    Article  CAS  Google Scholar 

  • Weber L, Kirsch E, MĂ¼ller P, Krieg T (1984) Collagen type distribution and macromolecular organization of connective tissue in different layers of human skin. J Investig Dermatol 82(2):156–160

    Article  CAS  PubMed  Google Scholar 

  • Werdin F, Tennenhaus M, Schaller H-E, Rennekampff H-O (2009) Evidence-based management strategies for treatment of chronic wounds. Eplasty 9:e19

    PubMed  PubMed Central  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870

    Article  CAS  PubMed  Google Scholar 

  • Witte MB, Barbul A (1997) General principles of wound healing. Surg Clin 77(3):509–528

    CAS  Google Scholar 

  • Wysocki AB (1989) Surgical wound healing. AORN J 49(2):502–506

    Article  CAS  PubMed  Google Scholar 

  • Xue H, McCauley R, Zhang W, Martini D (2000) Altered interleukin-6 expression in fibroblasts from hypertrophic burn scars. J Burn Care Rehabil 21(2):142–146

    Article  CAS  PubMed  Google Scholar 

  • Yolanda M-M, Maria A-V, Amaia F, Marcos P, Silvia P, Dolores E, JesĂºs O (2014) Adult stem cell therapy in chronic wound healing. J Stem Cell Res Ther 4(162):2

    Google Scholar 

  • Yoshimura K, Sato K, Aoi N, Kurita M, Inoue K, Suga H, Eto H, Kato H, Hirohi T, Harii K (2008) Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg 34(9):1178–1185

    CAS  PubMed  Google Scholar 

  • You H-J, Han S-K (2014) Cell therapy for wound healing. J Korean Med Sci 29(3):311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan W, Varga J (2001) Transforming growth factor-β repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J Biol Chem 276(42):38502–38510

    Article  CAS  PubMed  Google Scholar 

  • Yun IS, Jeon YR, Lee WJ, Lee JW, Rah DK, Tark KC, Lew DH (2012) Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: a pilot study. Dermatol Surg 38(10):1678–1688

    Article  CAS  PubMed  Google Scholar 

  • Zarei F, Soleimaninejad M (2018) Role of growth factors and biomaterials in wound healing. Artif Cells Nanomed Biotechnol 15:1–6

    Google Scholar 

  • Zhang D, Gu L, Liu L, Wang C, Sun B, Li Z, Sung C (2009) Effect of Wnt signaling pathway on wound healing. Biochem Biophys Res Commun 378(2):149–151

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y (2017) Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann Med 49(2):106–116

    Article  PubMed  Google Scholar 

  • Zhu Z, Ding J, Shankowsky HA, Tredget EE (2013) The molecular mechanism of hypertrophic scar. J Cell Commun Signal 7(4):239–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, PĂ©ault B, Rubin JP, Donnenberg AD (2010) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77(1):22–30

    PubMed  PubMed Central  Google Scholar 

  • Zuk P (2013) Adipose-derived stem cells in tissue regeneration: a review. ISRN Stem Cells 2013:1

    Article  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Dr. Mohsen khorshidi, Dr. Salman Radkarim, Rasta Arjmand, and Maryam Afshari for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Arjmand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goodarzi, P. et al. (2018). Adipose Tissue-Derived Stromal Cells for Wound Healing. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 4. Advances in Experimental Medicine and Biology(), vol 1119. Springer, Cham. https://doi.org/10.1007/5584_2018_220

Download citation

Publish with us

Policies and ethics