pp 1-9 | Cite as

Effects of Breast and Prostate Cancer Metastases on Lumbar Spine Biomechanics: Rapid In Silico Evaluation

  • J. Lorkowski
  • O. Grzegorowska
  • M. S. Kozień
  • I. Kotela
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

Metastases to distant organs are a frequent occurrence in cancer diseases. The skeletal system, especially the spine, is one such organ. The objective of this study was to apply a numerical modeling, using a finite element method (FEM), for the evaluation of deformation and stress in lumbar spine in bone metastases to the spine. We investigated 20 patients (10 women and 10 men) aged 38–81 years. In women, osteolytic lesions in lumbar spine accompanied breast cancer, in men it was prostate cancer. Geometry of FEM models were built based on CT scans of metastatic lumbar spine. We made the models for osteolytic metastases, osteosclerotic metastases, and metastases after surgery. Images were compared. We found a considerable concentration of strain, especially located in the posterior part of the vertebral body. In osteolytic lesions, the strain was located below the vertebral body with metastases. In osteosclerotic lesions, the strain was located in the anterior and posterior parts in and below the vertebral body with metastases. Surgery abolished the pathological strain. We conclude that metastases to the lumbar spine introduce a pathological strain on the lumbar body. The immobilization of the vertebral body around fractures abolished the strain.

Keywords

Cancer metastases Finite element method Lumbar spine Osteolytic lesions Osteosclerotic lesions Strain 

Notes

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

References

  1. Asdourian PL, Mardjetko S, Rauschning W, Jónsson H Jr, Hammerberg KW, Dewald RL (1990a) An evaluation of spinal deformity in metastatic breast cancer. J Spinal Disord 3:119–134CrossRefPubMedGoogle Scholar
  2. Asdourian PL, Weidenbaum M, De Wald RL, Hammerberg KW, Ramsey RG (1990b) The pattern of vertebral involvement in metastatic vertebral breast cancer. Clin Orthop Relat Res (250):164–170Google Scholar
  3. Bartels RH, van der Linden YM, van der Graaf WT (2008) Spinal extradural metastasis: review of current treatment options. CA Cancer J Clin 58:245–259CrossRefPubMedGoogle Scholar
  4. Batson O (1942) The role of vertebral veins in metastatic processes. Ann Intern Med l:38–45Google Scholar
  5. Bergmann G, Deuretzbacher G, Heller M, Greichen F, Rohlmann A, Strauss J, Duda DN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34(7):859–871CrossRefPubMedGoogle Scholar
  6. Ciftdemir M, Kaya M, Selcuk E, Yalniz E (2017) Tumors of the spine. World J Orthop 7:109–116CrossRefGoogle Scholar
  7. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12:6243–6249CrossRefGoogle Scholar
  8. David Roodman G, Silbermann R (2015) Mechanisms of osteolytic and osteoblastic skeletal lesions. Bonekey Rep 4:753CrossRefPubMedPubMedCentralGoogle Scholar
  9. Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976) 8:817–831CrossRefGoogle Scholar
  10. Di Martino A, Caldaria A, De Vivo V, Denaro V (2016) Metastatic epidural spinal cord compression. Expert Rev Anticancer Ther 12:1–10Google Scholar
  11. Ditunno JF, Young W, Donovan WH, Creasey G (1994) The international standards booklet for neurological and functional classification of spinal cord injury. American Spinal Injury Association Paraplegia 32:70–80PubMedGoogle Scholar
  12. Dougall WC, Chaisson M (2006) The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev 25:541–549CrossRefPubMedGoogle Scholar
  13. Ecker RD, Endo T, Wetjen NM, Krauss WE (2005) Diagnosis and treatment of vertebral column metastases. Mayo Clin Proc 80:1177–1186CrossRefPubMedGoogle Scholar
  14. Groblewska M, Mroczko B, Czygier M, Szmitkowski M (2008) Cytokines as markers of osteolysis in the diagnostics of patients with bone metastases. Postepy Hig Med Dosw 62:668–675Google Scholar
  15. Guzik G (2016) The correspondence between magnetic resonance images and the clinical and intraoperative status of patients with spinal tumors. Curr Med Imaging Rev 12:149–155CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16:1575–1582CrossRefPubMedGoogle Scholar
  17. Jacobs WB, Perrin RG (2001) Evaluation and treatment of spinal metastases: an overview. Neurosurg Focus 11(6):e10CrossRefPubMedGoogle Scholar
  18. Kato S, Hozumi T, Takeshita K, Kondo T, Goto T, Yamakawa K (2012) Neurological recovery after posterior decompression surgery for anterior dural compression in paralytic spinal metastasis. Arch Orthop Trauma Surg 132:765–771CrossRefPubMedGoogle Scholar
  19. Kimbung S, Loman N, Hedenfalk I (2015) Clinical and molecular complexity of breast cancer metastases. Semin Cancer Biol 35:85–95CrossRefPubMedGoogle Scholar
  20. Kintzelé L, Weber MA (2017) Imaging diagnostics in bone metastases. Radiologe 57:113–128CrossRefPubMedGoogle Scholar
  21. Kopaczewski B, Jankowski R, Nowak S (2009) Prognostic factors and therapeutic recommendations in patients with metastasis of the spine. Neuroskop 11:77–85Google Scholar
  22. Liao J, Li X, Koh AJ, Berry JE, Thudi N, Rosol TJ, Pienta KJ, McCauley LK (2008) Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. Int J Cancer 123:2267–2278CrossRefPubMedPubMedCentralGoogle Scholar
  23. Loblaw DA, Mitera G, Ford M, Laperriere NJ (2012) A 2011 updated systematic review and clinical practice guideline for the management of malignant extradural spinal cord compression. Int J Radiat Oncol Biol Phys 84(2):312–317CrossRefPubMedGoogle Scholar
  24. Lorkowski J, Mrzygłod M, Kotela A, Kotela I (2014) Application of rapid computer modeling in the analysis of the stabilization method in intraoperative femoral bone shaft fracture during revision hip arthroplasty- a case report. Pol Orthop Traumatol 79:138–144PubMedGoogle Scholar
  25. Matsuura Y, Giambini H, Ogawa Y, Fang Z, Thoreson AR, Yaszemski MJ, Lu L, An KN (2014) Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty. Spine (Phila Pa 1976) 39:E1291–E1296CrossRefGoogle Scholar
  26. Mc Cormaek R, Taraikovie E, Gaines RW (1994) The load sharing classification of spine fractures. Spine 19:1741–1742CrossRefGoogle Scholar
  27. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573CrossRefGoogle Scholar
  28. Pawlak WZ, Gabriel Wcisło G, Leśniewski-Kmak K, Korniluk J (2002) The metastatic bone disease as a first clinical symptom in cancer. Współczesna Onkologia 4:206–215Google Scholar
  29. Phanphaisarn A, Patumanond J, Settakorn J, Chaiyawat P, Klangjorhor J, Pruksakorn D (2016) Prevalence and survival patterns of patients with bone metastasis from common cancers in Thailand. Asian Pac J Cancer Prev 17:4335–4340PubMedGoogle Scholar
  30. Pokhrel D, Sood S, McClinton C, Shen X, Badkul R, Jiang H, Mallory M, Mitchell M, Wang F, Lominska C (2017) On the use of volumetric-modulated arc therapy for single-fraction thoracic vertebral metastases stereotactic body radiosurgery. Med Dosim 42:69–75CrossRefPubMedGoogle Scholar
  31. Sanderson RD, Yang Y (2008) Syndecan-1: a dynamic regulator of the myeloma microenvironment. Clin Exp Metastasis 25:149–159CrossRefPubMedGoogle Scholar
  32. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, Pienta MJ, Song J, Wang J, Loberg RD, Krebsbach PH, Pienta KJ, Taichman RS (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121:1298–1312CrossRefPubMedPubMedCentralGoogle Scholar
  33. Steinauer K, Gross MW, Huang DJ, Eppenberger-Castori S, Güth U (2014) Radiotherapy in patients with distant metastatic breast cancer. Radiat Oncol 9:126CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tokuhashi MH, Oda H, Oshima M, Ryu J (2005) A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine (Phila Pa 1976) 30:2186–2191CrossRefGoogle Scholar
  35. Tomita K, Kawahara N, Kobayashi T, Yoshida A, Murakami H, Akamaru T (2001) Surgical strategy for spinal metastases. Spine 26:298–306CrossRefPubMedGoogle Scholar
  36. Tschirhart CE, Finkelstein JA, Whyne CM (2007) Biomechanics of vertebral level, geometry, and transcortical tumors in the metastatic spine. J Biomech Eng 40:46–54CrossRefGoogle Scholar
  37. Unnikrishnan GU, Morgan EF (2011) A new material mapping procedure for quantitative computed tomography-based, continuum finite element analyses of the vertebra. J Biomech Eng 133(7):071001CrossRefPubMedGoogle Scholar
  38. Whyne CM, Hu SS, Lotz JC (2003) Biomechanically derived guideline equations for burst fracture risk prediction in the metastatically involved spine. J Spinal Disord Tech 16:180–185CrossRefPubMedGoogle Scholar
  39. Wilson DA, Fusco DJ, Uschold TD, Spetzler RF, Chang SW (2012) Survival and functional outcome after surgical resection of intramedullary spinal cord metastases. World Neurosurg 77:370–374CrossRefPubMedGoogle Scholar
  40. Wirtz DC, Schiffers N, Pandorf T, Radermacher K, Weichert D, Forst R (2000) Critical evaluation of known bone material properties to realize anisotropic FE simulation of the proximal femur. J Biomech 33:1325–1330CrossRefPubMedGoogle Scholar
  41. Zhao C, Liang J, Yang Y, Yu M, Qu X (2017) The impact of glucagon-like peptide-1 on bone metabolism and its possible mechanisms. Front Endocrinol (Lausanne) 8:98CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • J. Lorkowski
    • 1
    • 2
  • O. Grzegorowska
    • 2
  • M. S. Kozień
    • 3
  • I. Kotela
    • 1
  1. 1.Department of Orthopedics and TraumatologyCentral Clinical Hospital of Ministry of InteriorWarsawPoland
  2. 2.Health Rehabilitation CenterCracowPoland
  3. 3.Department of Material Systems Dynamics, Faculty of Mechanical Engineering, Institute of Applied MechanicsCracow University of TechnologyCracowPoland

Personalised recommendations