Skip to main content

Embryonic Stem Cells in Development and Regenerative Medicine

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1079))

Abstract

After progressive improvement in embryonic stem (ES) cell field, several studies have been conducted to explore the usage of ES cells in regenerative medicine. Unlimited self renewal and pluripoteny properties, combined with encouraging preclinical trials, remark that ES cell technology might be promising for clinical practice. ES cells, which can form three germ layers in vitro, are potential candidates to study development at the cellular and molecular level. Understanding the cell fate decision and differentiation processes during development might enable generating functional progenitor cells for tissue restoration. Progression in gene modifications and tissue engineering technology has facilitated the derivation of desired cells for therapy. Success in differentiation protocols and identification the regulatory pathways simplify the research for clinical applications. Although there are established protocols for cell differentiation in vitro and promising preclinical studies in vivo, many challenges need to be adressed before clinical translation. In this review, ES cells are discussed as a model of development in vitro and as a potential candidate for regenerative medicine. This review also dissusses current challenges for ES cell based therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALS:

Amyotrophic Lateral Sclerosis

ASCs:

Adult Stem Cells

BDNF:

Brain-Derived Neurotrophic Factor

BMP:

Bone Morphogenic Protein

EB:

Embryoid Body

ECM:

Extracellular Matrix

EGF:

Epidermal Growth Factor

ES cells:

Embryonic stem cells

FACS:

Fluorescence-Activated Cell Sorting

FGF:

Fibroblast Growth Factor

Flt3L:

Fms-like tyrosine kinase 3 ligand

FoxO1:

Forkhead box O1

G-CSF:

Granulocyte Colony-Stimulating Factor

GDNF:

Glial-Derived Neurotrophic Factor

HSCs:

Hematopoietic Stem Cells

ICM:

Inner Cell Mass

IL:

Interleukins

IPS:

Induced Pluripotent Stem Cells

LIF:

Leukemia Inhibitory Factor

MACS:

Magnetically Activated Cell Sorting

MHC:

Major Histocompatibility Complex

MS:

Multiple Sclerosis

MSCs:

Mesenchymal Stem Cells

NGF:

Nerve Growth Factor

PODXL:

Podocalyxin-like protein-1

RA:

Retinoic Acid

SCF:

Stem Cell Factor

SCNT:

Somatic Cell Nuclear Transfer

SHH:

Sonic Hedgehog

TSCs:

Trophoblast Stem Cells

XENCs:

Extraembryonic Endoderm Cells

References

  • Abbasi N, Hashemi SM, Salehi M, Jahani H, Mowla SJ, Soleimani M, Hosseinkhani H (2016) Influence of oriented nanofibrous PCL scaffolds on quantitative gene expression during neural differentiation of mouse embryonic stem cells. J Biomed Mater Res A 104:155–164

    Article  CAS  PubMed  Google Scholar 

  • Adewumi O et al (2007) Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat Biotechnol 25:803–816

    Article  CAS  PubMed  Google Scholar 

  • Araújo MR, Kyrylenko S, Spejo AB, Castro MV, Junior RSF, Barraviera B, Oliveira ALR (2017) Transgenic human embryonic stem cells overexpressing FGF2 stimulate neuroprotection following spinal cord ventral root avulsion. Exp Neurol 294:45–57

    Article  CAS  PubMed  Google Scholar 

  • Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M (2001) Insulin production by human embryonic stem cells. Diabetes 50:1691–1697

    Article  CAS  PubMed  Google Scholar 

  • Ben-David U, Nudel N, Benvenisty N (2013) Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat Commun 4:1992

    Article  CAS  PubMed  Google Scholar 

  • Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, Reubinoff BE (2004) Transplantation of human embryonic stem cell–derived neural progenitors improves behavioral deficit in parkinsonian rats. Stem Cells 22:1246–1255

    Article  PubMed  Google Scholar 

  • Brolen GK, Heins N, Edsbagge J, Semb H (2005) Signals from the embryonic mouse pancreas induce differentiation of human embryonic stem cells into insulin-producing β-cell–like cells. Diabetes 54:2867–2874

    Article  CAS  PubMed  Google Scholar 

  • Carpenter MK et al (2004) Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev Dyn 229:243–258

    Article  CAS  PubMed  Google Scholar 

  • Caspi O et al (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50:1884–1893

    Article  PubMed  Google Scholar 

  • Chen H et al (2015) Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat Commun 6:7095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng A, Kapacee Z, Peng J, Lu S, Lucas RJ, Hardingham TE, Kimber SJ (2014) Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Transl Med 3:1287–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choo AB et al (2008) Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26:1454–1463

    Article  CAS  PubMed  Google Scholar 

  • Christoforou N et al (2010) Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PLoS One 5:e11536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coraux C et al (2003) Reconstituted skin from murine embryonic stem cells. Curr Biol 13:849–853

    Article  CAS  PubMed  Google Scholar 

  • de Pooter RF, Cho SK, Carlyle JR, Zúñiga-Pflücker JC (2003) In vitro generation of T lymphocytes from embryonic stem cell–derived prehematopoietic progenitors. Blood 102:1649–1653

    Article  CAS  PubMed  Google Scholar 

  • Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. Development 87:27–45

    CAS  Google Scholar 

  • Dvash T, Ben-Yosef D, Eiges R (2006) Human embryonic stem cells as a powerful tool for studying human embryogenesis. Pediatr Res 60:111–117

    Article  PubMed  Google Scholar 

  • English K, Wood KJ (2011) Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Curr Opin Organ Transplant 16:90–95

    Article  CAS  PubMed  Google Scholar 

  • Fecek C et al (2008) Chondrogenic derivatives of embryonic stem cells seeded into 3D polycaprolactone scaffolds generated cartilage tissue in vivo. Tissue Eng Part A 14:1403–1413

    Article  CAS  PubMed  Google Scholar 

  • Gibson JD, O’sullivan MB, Alaee F, Paglia DN, Yoshida R, Guzzo RM, Drissi H (2017) Regeneration of articular cartilage by human ESC-derived mesenchymal progenitors treated sequentially with BMP-2 and Wnt5a. Stem Cells Transl Med 6:40–50

    Article  CAS  PubMed  Google Scholar 

  • Ginis I et al (2004) Differences between human and mouse embryonic stem cells. Dev Biol 269:360–380

    Article  CAS  PubMed  Google Scholar 

  • Hay DC, Sutherland L, Clark J, Burdon T (2004) Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22:225–235

    Article  CAS  PubMed  Google Scholar 

  • Hegert C et al (2002) Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells. J Cell Sci 115:4617–4628

    Article  CAS  PubMed  Google Scholar 

  • Hwang NS, Varghese S, Zhang Z, Elisseeff J (2006) Chondrogenic differentiation of human embryonic stem cell–derived cells in arginine-glycine-aspartate–modified hydrogels. Tissue Eng 12:2695–2706

    Article  CAS  PubMed  Google Scholar 

  • Hwang NS, Varghese S, Elisseeff J (2008a) Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One 3:e2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang NS et al (2008b) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci 105:20641–20646

    Article  PubMed  Google Scholar 

  • Itskovitz-Eldor J et al (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G, Majumdar AS (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953

    Article  CAS  PubMed  Google Scholar 

  • Joannides AJ et al (2007) A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells 25:731–737

    Article  CAS  PubMed  Google Scholar 

  • Jopling C, Boue S, Belmonte JCI (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89

    Article  CAS  PubMed  Google Scholar 

  • Jukes JM, Both SK, Leusink A, Lotus MT, Van Blitterswijk CA, De Boer J (2008a) Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci 105:6840–6845

    Article  PubMed  Google Scholar 

  • Jukes JM, Moroni L, Van Blitterswijk CA, De Boer J (2008b) Critical steps toward a tissue-engineered cartilage implant using embryonic stem cells. Tissue Eng Part A 14:135–147

    Article  CAS  PubMed  Google Scholar 

  • Karlsson C et al (2009) Human embryonic stem cell-derived mesenchymal progenitors—potential in regenerative medicine. Stem Cell Res 3:39–50

    Article  PubMed  Google Scholar 

  • Kawasaki H et al (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell–derived inducing activity. Neuron 28:31–40

    Article  CAS  PubMed  Google Scholar 

  • Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705

    Article  CAS  PubMed  Google Scholar 

  • Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19:1129–1155

    Article  CAS  PubMed  Google Scholar 

  • Kim SU, De Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87:2183–2200

    Article  CAS  PubMed  Google Scholar 

  • Kimura H et al (2005) Transplantation of embryonic stem cell-derived neural stem cells for spinal cord injury in adult mice. Neurol Res 27:812–819

    Article  PubMed  Google Scholar 

  • Kolossov E et al (2006) Engraftment of engineered ES cell–derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J Exp Med 203:2315–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konig N et al (2017) Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion. J Tissue Eng Regen Med 11:129–137

    Article  CAS  PubMed  Google Scholar 

  • Laflamme MA et al (2005) Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 167:663–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laflamme MA et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F, Mobarra N (2016) Pancreatic islet differentiation of human embryonic stem cells by microRNA overexpression. J Tissue Eng Regen Med 10:527–534

    Article  CAS  PubMed  Google Scholar 

  • Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci 99:4391–4396

    Article  CAS  PubMed  Google Scholar 

  • McDonald JW et al (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412

    Article  CAS  PubMed  Google Scholar 

  • McKee C, Hong Y, Yao D, Chaudhry GR (2017) Compression induced chondrogenic differentiation of embryonic stem cells in three-dimensional polydimethylsiloxane scaffolds. Tissue Eng A 23:426–435

    Article  CAS  Google Scholar 

  • Ménard C et al (2005) Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 366:1005–1012

    Article  PubMed  Google Scholar 

  • Menasché P et al (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36:2011–2017

    Article  PubMed  Google Scholar 

  • Menasché P et al (2018) Transplantation of human embryonic stem cell–derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol 71:429–438

    Article  PubMed  Google Scholar 

  • Min J-Y et al (2003) Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J Thorac Cardiovasc Surg 125:361–369

    Article  PubMed  Google Scholar 

  • Mohseni R, Hamidieh AA, Verdi J, Shoae-Hassani A (2014) Safe transplantation of pluripotent stem cell by preventing teratoma formation. Stem Cell Res Ther 4:212

    Google Scholar 

  • Mummery C et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes. Circulation 107:2733–2740

    Article  CAS  PubMed  Google Scholar 

  • Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor β1. Arthritis Rheum 60:3686–3692

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Kodama H, Honjo T (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265:1098–1101

    Article  CAS  Google Scholar 

  • Nishikawa S-I, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H (1998) Progressive lineage analysis by cell sorting and culture identifies FLK1+ VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125:1747–1757

    PubMed  CAS  Google Scholar 

  • Nishikawa S-I, Jakt LM, Era T (2007) Embryonic stem-cell culture as a tool for developmental cell biology. Nat Rev Mol Cell Biol 8:502–507

    Article  CAS  PubMed  Google Scholar 

  • Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49:385–396

    Article  PubMed  Google Scholar 

  • Park CH et al (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J Neurochem 92:1265–1276

    Article  CAS  PubMed  Google Scholar 

  • Pearl JI et al (2011) Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell 8:309–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pera MF, Trounson AO (2004) Human embryonic stem cells: prospects for development. Development 131:5515–5525

    Article  CAS  PubMed  Google Scholar 

  • Pera MF, Reubinoff B, Trounson A (2000) Human embryonic stem cells. J Cell Sci 113:5–10

    PubMed  CAS  Google Scholar 

  • Pera MF et al (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Rambhatla L, Chiu C-P, Kundu P, Peng Y, Carpenter MK (2003) Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 12:1–11

    Article  PubMed  Google Scholar 

  • Ritner C, Bernstein HS (2010) Fate mapping of human embryonic stem cells by teratoma formation. J Vis Exp 42:2036

    Google Scholar 

  • Rossant J (2015) Mouse and human blastocyst-derived stem cells: vive les differences. Development 142:9–12

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  CAS  PubMed  Google Scholar 

  • Saxena P, Bojar D, Zulewski H, Fussenegger M (2017) Generation of glucose-sensitive insulin-secreting beta-like cells from human embryonic stem cells by incorporating a synthetic lineage-control network. J Biotechnol 259:39–45

    Article  CAS  PubMed  Google Scholar 

  • Shim J, Kim S, Woo D, Kim S, Oh C, McKay R, Kim J (2007) Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 50:1228–1238

    Article  CAS  PubMed  Google Scholar 

  • Shroff G (2016) Human embryonic stem cell therapy in chronic spinal cord injury: a retrospective study. Clin Transl Sci 9:168–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla DK (2009) Embryonic stem cells in cardiac repair and regeneration. Antioxid Redox Signal 11:1857–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462

    Article  CAS  PubMed  Google Scholar 

  • Snir M, Kehat I, Gepstein A, Coleman R, Itskovitz-Eldor J, Livne E, Gepstein L (2003) Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 285:H2355–H2363

    Article  CAS  PubMed  Google Scholar 

  • Tabar V, Studer L (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 15:82–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi M, Umetsu Y, Fujiwara M, Wakitani S (2007) High inoculation cell density could accelerate the differentiation of human bone marrow mesenchymal stem cells to chondrocyte cells. J Biosci Bioeng 103:98–100

    Article  CAS  PubMed  Google Scholar 

  • Tang C et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  Google Scholar 

  • Toh WS, Lee EH, Guo X-M, Chan JK, Yeow CH, Choo AB, Cao T (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Lee EH, Cao T (2011) Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Rev 7:544–559

    Article  PubMed  Google Scholar 

  • van Laake LW et al (2007) Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res 1:9–24

    Article  PubMed  Google Scholar 

  • Vats A et al (2006) Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng 12:1687–1697

    Article  CAS  PubMed  Google Scholar 

  • Vegas AJ et al (2016) Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice. Nat Med 22:306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vodyanik MA, Thomson JA, Slukvin II (2006) Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 108:2095–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Menendez P, Cerdan C, Bhatia M (2005) Hematopoietic development from human embryonic stem cell lines. Exp Hematol 33:987–996

    Article  CAS  PubMed  Google Scholar 

  • Wei S et al (2016) Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators. Sci Rep 6:19648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Police S, Rao N, Carpenter MK (2002a) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91:501–508

    Article  CAS  PubMed  Google Scholar 

  • Xu R-H et al (2002b) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264

    Article  CAS  PubMed  Google Scholar 

  • Yabut O, Bernstein HS (2011) Human embryonic stem cells in regenerative medicine. In: Tissue engineering in regenerative medicine. Springer, New York, pp 17–38

    Chapter  Google Scholar 

  • Yamashita A, Krawetz R, Rancourt D (2009) Loss of discordant cells during micro-mass differentiation of embryonic stem cells into the chondrocyte lineage. Cell Death Differ 16:278–286

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Chen S, Gao C, Liu X, Zhou Y, Liu P, Cai J (2016) Chemically defined serum-free conditions for cartilage regeneration from human embryonic stem cells. Life Sci 164:9–14

    Article  CAS  PubMed  Google Scholar 

  • Yeo RWY, Lim SK (2011) Embryonic stem cells for therapies–challenges and possibilities. In: Embryonic stem cells-basic biology to bioengineering. InTech, Rijeka

    Google Scholar 

  • Yu F et al (2018) FoxO1 inhibition promotes differentiation of human embryonic stem cells into insulin producing cells. Exp Cell Res 362:227–234

    Article  CAS  PubMed  Google Scholar 

  • Zhu W-Z, Hauch KD, Xu C, Laflamme MA (2009) Human embryonic stem cells and cardiac repair. Transplant Rev 23:53–68

    Article  CAS  Google Scholar 

  • Zhu Q et al (2017) Directed differentiation of human embryonic stem cells to neural crest stem cells, functional peripheral neurons, and corneal Keratocytes. Biotechnol J 12. https://doi.org/10.1002/biot.201700067

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşegül Doğan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doğan, A. (2018). Embryonic Stem Cells in Development and Regenerative Medicine. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 1. Advances in Experimental Medicine and Biology(), vol 1079. Springer, Cham. https://doi.org/10.1007/5584_2018_175

Download citation

Publish with us

Policies and ethics