Skip to main content

Safety and Efficacy of Epigenetically Converted Human Fibroblasts Into Insulin-Secreting Cells: A Preclinical Study

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1079))

Abstract

Type 1 Diabetes Mellitus (T1DM) is a chronic disease that leads to loss of insulin secreting β-cells, causing high levels of blood glucose. Exogenous insulin administration is not sufficient to mimic the normal function of β-cells and, consequently, diabetes mellitus often progresses and can lead to major chronic complications and morbidity. The physiological control of glucose levels can only be restored by replacing the β-cell mass.

We recently developed a new strategy that allows for epigenetic conversion of dermal fibroblasts into insulin-secreting cells (EpiCC), using a brief exposure to the demethylating agent 5-aza-cytidine (5-aza-CR), followed by a pancreatic induction protocol. This method has notable advantages compared to the alternative available procedures and may represent a promising tool for clinical translation as a therapy for T1DM. However, a thought evaluation of its therapeutic safety and efficacy is mandatory to support preclinical studies based on EpiCC treatment.

We here report the data obtained using human fibroblasts isolated from diabetic and healthy individuals, belonging the two genders. EpiCC were injected into 650 diabetic severe combined immunodeficiency (SCID) mice and demonstrated to be able to restore and maintain glycemic levels within the physiological range. Cells had the ability to self-regulate and not to cause hypoglycemia, when transplanted in healthy animals. Efficacy tests showed that EpiCC successfully re-established normoglycemia in diabetic mice, using a dose range that appeared clinically relevant to the concentration 0.6 × 106 EpiCC. Necropsy and histopathological investigations demonstrated the absence of malignant transformation and cell migration to organs and lymph nodes.

The present preclinical study demonstrates safety and efficacy of human EpiCC in diabetic mice and supports the use of epigenetic converted cells for regenerative medicine of diabetes mellitus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alejandro R, Barton FB, Hering BJ, Wease S (2008) 2008 update from the collaborative islet transplant registry. Transplantation 86(12):1783–1788

    Article  PubMed  Google Scholar 

  • Brevini TA, Pennarossa G, Antonini S, Paffoni A, Tettamanti G, Montemurro T, Radaelli E, Lazzari L, Rebulla P, Scanziani E, de Eguileor M, Benvenisty N, Ragni G, Gandolfi F (2009) Cell lines derived from human parthenogenetic embryos can display aberrant centriole distribution and altered expression levels of mitotic spindle check-point transcripts. Stem Cell Rev 5(4):340–52

    Google Scholar 

  • Brevini TA, Pennarossa G, Rahman MM, Paffoni A, Antonini S, Ragni G, deEguileor M, Tettamanti G, Gandolfi F (2014) Morphological and molecular changes of human Granulosa cells exposed to 5-Azacytidine and addressed toward muscular differentiation. Stem Cell Rev 10(5):633–642

    Article  CAS  Google Scholar 

  • Brevini TA, Pennarossa G, Maffei S, Zenobi A, Gandolfi F (2016) Epigenetic conversion as a safe and simple method to obtain insulin-secreting cells from adult skin fibroblasts. J Vis Exp: JoVE 109:e53880

    Google Scholar 

  • Brevini T, Manzoni E, Gandolfi F (2018) Methylation mechanisms and biomechanical effectors controlling cell fate. Reprod Fertil Dev 30:64–72

    CAS  Google Scholar 

  • Butler AE, Galasso R, Meier JJ, Basu R, Rizza RA, Butler PC (2007) Modestly increased beta cell apoptosis but no increased beta cell replication in recent-onset type 1 diabetic patients who died of diabetic ketoacidosis. Diabetologia 50(11):2323–2331

    Article  CAS  PubMed  Google Scholar 

  • Chandrakanthan V, Yeola A, Kwan JC, Oliver RA, Qiao Q, Kang YC, Zarzour P, Beck D, Boelen L, Unnikrishnan A, Villanueva JE, Nunez AC, Knezevic K, Palu C, Nasrallah R, Carnell M, Macmillan A, Whan R, Yu Y, Hardy P, Grey ST, Gladbach A, Delerue F, Ittner L, Mobbs R, Walkley CR, Purton LE, Ward RL, Wong JW, Hesson LB, Walsh W, Pimanda JE (2016) PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proc Natl Acad Sci U S A 113(16):E2306–E2315

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14(10):619–633

    Article  CAS  PubMed  Google Scholar 

  • Glover TW, Coyle-Morris J, Pearce-Birge L, Berger C, Gemmill RM (1986) DNA demethylation induced by 5-azacytidine does not affect fragile X expression. Am J Hum Genet 38(3):309–318

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97(4):1607–1611

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Halban PA, German MS, Kahn SE, Weir GC (2010) Current status of islet cell replacement and regeneration therapy. J Clin Endocrinol Metab 95(3):1034–1043

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harris DM, Hazan-Haley I, Coombes K, Bueso-Ramos C, Liu J, Liu Z, Li P, Ravoori M, Abruzzo L, Han L, Singh S, Sun M, Kundra V, Kurzrock R, Estrov Z (2011) Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells. PLoS One 6(6):e21250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jones PA (1985a) Altering gene expression with 5-azacytidine. Cell 40(3):485–486

    Article  CAS  PubMed  Google Scholar 

  • Jones PA (1985b) Effects of 5-azacytidine and its 2′-deoxyderivative on cell differentiation and DNA methylation. Pharmacol Ther 28(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Taylor SM (1981) Hemimethylated duplex DNAs prepared from 5-azacytidine-treated cells. Nucleic Acids Res 9(12):2933–2947

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jones PA, Taylor SM, Wilson VL (1983) Inhibition of DNA methylation by 5-azacytidine. Recent Results Cancer Res 84:202–211

    CAS  PubMed  Google Scholar 

  • Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371(6498):606–609

    Article  CAS  PubMed  Google Scholar 

  • Keymeulen B, Ling Z, Gorus FK, Delvaux G, Bouwens L, Grupping A, Hendrieckx C, Pipeleers-Marichal M, Van Schravendijk C, Salmela K, Pipeleers DG (1998) Implantation of standardized beta-cell grafts in a liver segment of IDDM patients: graft and recipients characteristics in two cases of insulin-independence under maintenance immunosuppression for prior kidney graft. Diabetologia 41(4):452–459

    Article  CAS  PubMed  Google Scholar 

  • Keymeulen B, Gillard P, Mathieu C, Movahedi B, Maleux G, Delvaux G, Ysebaert D, Roep B, Vandemeulebroucke E, Marichal M, In’t Veld P, Bogdani M, Hendrieckx C, Gorus F, Ling Z, van Rood J, Pipeleers D (2006) Correlation between beta cell mass and glycemic control in type 1 diabetic recipients of islet cell graft. Proc Natl Acad Sci U S A 103(46):17444–17449

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–452

    Article  CAS  PubMed  Google Scholar 

  • Lardon J, De Breuck S, Rooman I, Van Lommel L, Kruhoffer M, Orntoft T, Schuit F, Bouwens L (2004) Plasticity in the adult rat pancreas: transdifferentiation of exocrine to hepatocyte-like cells in primary culture. Hepatology 39(6):1499–1507

    Article  CAS  PubMed  Google Scholar 

  • Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292(5520):1389–1394

    Article  CAS  PubMed  Google Scholar 

  • Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):e442

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, Graubert TA (2004) Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes 53(1):91–98

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka TA, Artner I, Henderson E, Means A, Sander M, Stein R (2004) The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc Natl Acad Sci U S A 101(9):2930–2933

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mirakhori F, Zeynali B, Kiani S, Baharvand H (2015) Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell J 17(1):153–158

    PubMed Central  PubMed  Google Scholar 

  • Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329(14):977–986

    Article  CAS  PubMed  Google Scholar 

  • Nicholas CR, Kriegstein AR (2010) Regenerative medicine: cell reprogramming gets direct. Nature 463(7284):1031–1032

    Article  CAS  PubMed  Google Scholar 

  • Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12(2):126–131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pennarossa G, Maffei S, Campagnol M, Tarantini L, Gandolfi F, Brevini TA (2013) Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci U S A 110(22):8948–8953

    Article  PubMed  PubMed Central  Google Scholar 

  • Pennarossa G, Maffei S, Campagnol M, Rahman MM, Brevini TA, Gandolfi F (2014) Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Rev 10(1):31–43

    Article  CAS  Google Scholar 

  • Pennarossa G, Santoro R, Manzoni E, Pesce M, Gandolfi F, Brevini T (2018) Epigenetic erasing and pancreatic differentiation of dermal fibroblasts into insulin-producing cells are boosted by the use of low-stiffness substrate. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-017-9799-0

  • Pinho AV, Rooman I, Reichert M, De Medts N, Bouwens L, Rustgi AK, Real FX (2011) Adult pancreatic acinar cells dedifferentiate to an embryonic progenitor phenotype with concomitant activation of a senescence programme that is present in chronic pancreatitis. Gut 60(7):958–966

    Article  CAS  PubMed  Google Scholar 

  • Pipeleers D, Ling Z (1992) Pancreatic beta cells in insulin-dependent diabetes. Diabetes Metab Rev 8(3):209–227

    Article  CAS  PubMed  Google Scholar 

  • Ryan EA, Lakey JR, Rajotte RV, Korbutt GS, Kin T, Imes S, Rabinovitch A, Elliott JF, Bigam D, Kneteman NM, Warnock GL, Larsen I, Shapiro AM (2001) Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 50(4):710–719

    Article  CAS  PubMed  Google Scholar 

  • Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JR, Shapiro AM (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54(7):2060–2069

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343(4):230–238

    Article  CAS  PubMed  Google Scholar 

  • Sui L, Mfopou JK, Chen B, Sermon K, Bouwens L (2013) Transplantation of human embryonic stem cell-derived pancreatic endoderm reveals a site-specific survival, growth, and differentiation. Cell Transplant 22(5):821–830

    Article  PubMed  Google Scholar 

  • Taylor SM, Jones PA (1982) Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine. J Cell Physiol 111(2):187–194

    Article  CAS  PubMed  Google Scholar 

  • Weir GC, Bonner-Weir S (2013) Islet beta cell mass in diabetes and how it relates to function, birth, and death. Ann N Y Acad Sci 1281:92–105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ziegler AG, Nepom GT (2010) Prediction and pathogenesis in type 1 diabetes. Immunity 32(4):468–478

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by European Foundation for the Study of Diabetes (EFSD) and by Carraresi Foundation. The Authors are members of the COST Action CA16119 In vitro 3-D total cell guidance and fitness (CellFit) and the COST Action CM1406 Epigenetic Chemical Biology (EPICHEM).

Conflict of Interest

The authors declare no conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana A. L. Brevini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brevini, T.A.L., Pennarossa, G., Manzoni, E.F.M., Gandolfi, F. (2018). Safety and Efficacy of Epigenetically Converted Human Fibroblasts Into Insulin-Secreting Cells: A Preclinical Study. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 1. Advances in Experimental Medicine and Biology(), vol 1079. Springer, Cham. https://doi.org/10.1007/5584_2018_172

Download citation

Publish with us

Policies and ethics