Left Ventricular Assist Devices – A State of the Art Review

  • Christina Feldmann
  • Anamika Chatterjee
  • Axel Haverich
  • Jan D. SchmittoEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1067)


Cardiovascular diseases are the leading cause of mortality rates throughout the world. Next to an insufficient number of healthy donors, this has led to increasing numbers of patients on heart transplant waiting lists with prolonged waiting times. Innovative technological advancements have led to the production of ventricular assist devices that play an increasingly important role in end stage heart failure therapy. This review is intended to provide an overview of current implantable left ventricular assist devices, different design concepts and implantation techniques. Challenges such as infections and thromboembolic events that may occur during LVAD implantations have also been discussed.


End-stage heart failure Mechanical circulatory support Ventricular assist device VAD 


  1. Aissaoui N, Morshuis M, Maoulida H, Salem JE et al (2017) Management of end-stage heart failure patients with or without ventricular assist device: an observational comparison of clinical and economic outcomes. Eur J Cardiothorac Surg 53:170–177CrossRefGoogle Scholar
  2. Berlin Heart [Internet]. [cited 2016 Oct 24]. Available from
  3. Birks EJ (2010) The comparative use of ventricular assist devices. Tex Heart Inst J 37(5):565–567PubMedPubMedCentralGoogle Scholar
  4. Camboni D, Zerdzitzki M, Hirt S, Tandler R, Weyand M, Schmid C (2016) Reduction of INCOR® driveline infection rate with silicone at the driveline exit site. Interact Cardiovasc Thorac Surg 24:222–228Google Scholar
  5. Dean D, Kallel F, Ewald GA, Tatooles A, Sheridan BC, Brewer RJ et al (2015) Reduction in driveline infection rates: results from the HeartMate II multicenter driveline silicone skin interface (SSI) registry. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 34(6):781–789CrossRefGoogle Scholar
  6. Der Deutsche Herzbericht [Internet]. [cited 2016 Oct 24]. Available from
  7. Eurotransplant – Statistics [Internet]. [cited 2016 Oct 24]. Available from
  8. Fleissner F, Avsar M, Malehsa D, Strueber M, Haverich A, Schmitto JD (2013) Reduction of driveline infections through doubled driveline tunneling of left ventricular assist devices. Artif Organs 37(1):102–107CrossRefPubMedGoogle Scholar
  9. Frazier OH, Khalil HA, Benkowski RJ, Cohn WE (2010) Optimization of axial-pump pressure sensitivity for a continuous-flow total artificial heart. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 29(6):687–691CrossRefGoogle Scholar
  10. Frazier OH, Baldwin ACW, Demirozu ZT, Segura AM, Hernandez R, Taegtmeyer H et al (2015) Ventricular reconditioning and pump explantation in patients supported by continuous-flow left ventricular assist devices. J Heart Lung Transplant 34(6):766–772CrossRefPubMedGoogle Scholar
  11. Geidl L, Zrunek P, Deckert Z, Zimpfer D, Sandner S, Wieselthaler G et al (2009) Usability and safety of ventricular assist devices: human factors and design aspects. Artif Organs 33(9):691–695CrossRefPubMedGoogle Scholar
  12. Girdhar G, Xenos M, Alemu Y, Chiu W-C, Lynch BE, Jesty J et al (2012) Device thrombogenicity emulation: a novel method for optimizing mechanical circulatory support device thromboresistance. PLoS One [Internet]. [cited 2016 Oct 24]; 7(3). Available from Scholar
  13. Hanke JS, Rojas SV, Avsar M, Haverich A, Schmitto JD (2015) Minimally-invasive LVAD implantation: state of the art. Curr Cardiol Rev 11(3):246–251CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hanke JS, Rojas SV, Poyanmehr R, Deniz E, Avsar M, Berliner D et al (2016a) Left ventricular assist device implantation with outflow graft tunneling through the transverse sinus. Artif Organs 40(6):610–612CrossRefPubMedGoogle Scholar
  15. Hanke JS, ElSherbini A, Rojas SV, Avsar M, Shrestha M, Schmitto JD (2016b) Aortic outflow graft stenting in patient with left ventricular assist device outflow graft thrombosis. Artif Organs 40(4):414–416CrossRefPubMedGoogle Scholar
  16. Heart Assist Devices – Texas Heart Institute [Internet]. [cited 2016 Oct 24]. Available from
  17. Heart-Lung Machine HL 20 — Maquet [Internet]. [cited 2016 Oct 24]. Available from
  18. HeartWare [Internet]. [cited 2016 Oct 24]. Available from
  19. Jarvik Heart Inc. The Jarvik 2000 [Internet]. Jarvik Heart Inc. The Jarvik 2000. [cited 2016 Oct 24]. Available from
  20. johan.van.der.heide[at] J van der H. 14003 Medolution [Internet]. [cited 2016 Oct 24]. Available from
  21. Khvilivitzky K, Mountis MM, Gonzalez-Stawinski GV (2012) Heartmate II outflow graft ligation and driveline excision without pump removal for left ventricular recovery. Proc Bayl Univ Med Cent 25(4):344–345CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED et al (2015) Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 34(12):1495–1504CrossRefGoogle Scholar
  23. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, Simone GD et al (2010) Heart disease and stroke statistics—2010 update. Circulation 121(7):e46–215CrossRefPubMedGoogle Scholar
  24. Loree HM, Bourque K, Gernes DB, Richardson JS, Poirier VL, Barletta N et al (2001) The Heartmate III: design and in vivo studies of a maglev centrifugal left ventricular assist device. Artif Organs 25(5):386–391CrossRefPubMedGoogle Scholar
  25. Mancini D, Colombo PC (2015) Left ventricular assist devices: a rapidly evolving alternative to transplant. J Am Coll Cardiol 65(23):2542–2555CrossRefPubMedGoogle Scholar
  26. Mehta SM, Pae WE, Rosenberg G, Snyder AJ, Weiss WJ, Lewis JP et al (2001) The LionHeart LVD-2000: a completely implanted left ventricular assist device for chronic circulatory support. Ann Thorac Surg 71(3 Suppl):S156–S161. discussion S183–184CrossRefPubMedGoogle Scholar
  27. Pagani FD, Miller LW, Russell SD, Aaronson KD, John R, Boyle AJ et al (2009) Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol 54(4):312–321CrossRefPubMedGoogle Scholar
  28. Reul HM, Akdis M (2000) Blood pumps for circulatory support. Perfusion 15(4):295–311CrossRefPubMedGoogle Scholar
  29. Rodriguez LE, Suarez EE, Loebe M, Bruckner BA (2013) Ventricular assist devices (VAD) therapy: new technology, new hope? Methodist Debakey Cardiovasc J 9(1):32–37CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sabashnikov A, Högerle BA, Mohite PN, Popov A-F, Sáez DG, Fatullayev J et al (2013) Successful bridge to recovery using two-stage HeartWare LVAD explantation approach after embolic stroke. J Cardiothorac Surg 8:233CrossRefPubMedPubMedCentralGoogle Scholar
  31. Schmitto JD, Rojas SV, Hanke JS, Avsar M, Haverich A (2014) Minimally invasive left ventricular assist device explantation after cardiac recovery: surgical technical considerations. Artif Organs 38(6):507–510CrossRefPubMedGoogle Scholar
  32. Schmitto JD, Hanke JS, Rojas S, Avsar M, Malehsa D, Bara C et al (2015) Circulatory support exceeding five years with a continuous-flow left ventricular assist device for advanced heart failure patients. J Cardiothorac Surg 10:107CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schmitto JD, Pya Y, Zimpfer D, Krabatsch T, Garbade J, Rao V, et al. (2017) HeartMate 3 fully magnetically levitated left ventricular assist device for the treatment of advanced heart failure - CE mark study 2-year results. J Heart Lung Transplant 36(4):S66CrossRefGoogle Scholar
  34. Seco M, Zhao DF, Byrom MJ, Wilson MK, Vallely MP, Fraser JF, Bannon PG (2017) Long-term prognosis and cost-effectiveness of left ventricular assist device as bridge to transplantation: a systematic review. Int J Cardiol 235:22–32CrossRefPubMedGoogle Scholar
  35. Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD et al (2010) Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 29(4 Suppl):S1–39CrossRefGoogle Scholar
  36. Tang DG, Oyer PE, Mallidi HR (2009) Ventricular assist devices: history, patient selection, and timing of therapy. J Cardiovasc Transl Res 2(2):159–167CrossRefPubMedGoogle Scholar
  37. Thoratec – Innovative Therapies for Advanced Heart Failure [Internet]. [cited 2016 Oct 24]. Available from
  38. U S Food and Drug Administration Home Page [Internet]. [cited 2016 Oct 24]. Available from
  39. Welcome to Reliant Heart [Internet]. [cited 2016 Oct 24]. Available from
  40. WHO|NCD mortality and morbidity [Internet]. WHO. [cited 2016 Oct 24]. Available from
  41. Wieselthaler GM, O Driscoll G, Jansz P, Khaghani A, Strueber M, HVAD Clinical Investigators (2010) Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 29(11):1218–1225CrossRefGoogle Scholar
  42. Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-Fernandez R, Burns R, Rayner M, Townsend N (2017) European cardiovascular disease statistics 2017. European Heart Network, BrusselsGoogle Scholar
  43. Zucchetta F, Tarzia V, Bottio T, Gerosa G (2014) The Jarvik-2000 ventricular assist device implantation: how we do it. Ann Cardiothorac Surg 3(5):525–531PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Christina Feldmann
    • 1
  • Anamika Chatterjee
    • 1
  • Axel Haverich
    • 1
  • Jan D. Schmitto
    • 1
    Email author
  1. 1.Department of Cardiac-, Thoracic-, Transplantation and Vascular SurgeryHannover Medical SchoolHannoverGermany

Personalised recommendations