Advertisement

Evolving Role of Natriuretic Peptides from Diagnostic Tool to Therapeutic Modality

  • Ines Pagel-LangenickelEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1067)

Abstract

Natriuretic peptides (NP) are widely recognized as key regulators of blood pressure, water and salt homeostasis. In addition, they play a critical role in physiological cardiac growth and mediate a variety of biological effects including antiproliferative and anti-inflammatory effects in other organs and tissues. The cardiac release of NPs ANP and BNP represents an important compensatory mechanism during acute and chronic cardiac overload and during the pathogenesis of heart failure where their actions counteract the sustained activation of renin-angiotensin-aldosterone and other neurohormonal systems. Elevated circulating plasma NP levels correlate with the severity of heart failure and particularly BNP and the pro-peptide, NT-proBNP have been established as biomarkers for the diagnosis of heart failure as well as prognostic markers for cardiovascular risk. Despite activation of the NP system in heart failure it is inadequate to prevent progressive fluid and sodium retention and cardiac remodeling. Therapeutic approaches included administration of synthetic peptide analogs and the inhibition of NP-degrading enzyme neutral endopeptidase (NEP). Of all strategies only the combined NEP/ARB inhibition with sacubitril/valsartan had shown clinical success in reducing cardiovascular mortality and morbidity in patients with heart failure.

Keywords

Natriuretic peptides ANP BNP NT-proBNP CNP Heart failure Biomarker NP receptors Neprilysin ARNI Sacubitril/valsartan 

References

  1. Abassi ZA, Yahia A, Zeid S, Karram T, Golomb E, Winaver J, Hoffman A (2005) Cardiac and renal effects of omapatrilat, a vasopeptidase inhibitor, in rats with experimental congestive heart failure. Am J Physiol Heart Circ Physiol 288(2):H722–H728PubMedCrossRefGoogle Scholar
  2. Agarwal SK, Chambless LE, Ballantyne CM, Astor B, Bertoni AG, Chang PP, Folsom AR, He M, Hoogeveen RC, Ni H, Quibrera PM, Rosamond WD, Russell SD, Shahar E, Heiss G (2012) Prediction of incident heart failure in general practice: the Atherosclerosis Risk in Communities (ARIC) Study. Circ Heart Fail 5(4):422–429PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anand IS, Fisher LD, Chiang YT, Latini R, Masson S, Maggioni AP, Glazer RD, Tognoni G, Cohn JN (2003) Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 107(9):1278–1283PubMedCrossRefGoogle Scholar
  4. Anand-Srivastava MB, Trachte GJ (1993) Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev 45(4):455–497PubMedGoogle Scholar
  5. Barbee RW, Perry BD, Re RN, Murgo JP, Field LJ (1994) Hemodynamics in transgenic mice with overexpression of atrial natriuretic factor. Circ Res 74(4):747–751PubMedCrossRefGoogle Scholar
  6. Bayes-Genis A, Barallat J, Richards AM (2016) A test in context: neprilysin: function, inhibition, and biomarker. J Am Coll Cardiol 68(6):639–653PubMedCrossRefGoogle Scholar
  7. Biollaz J, Callahan LT, 3rd, Nussberger J, Waeber B, Gomez HJ, Blaine EH, Brunner HR (1987) Pharmacokinetics of synthetic atrial natriuretic peptides in normal men. Clin Pharmacol Ther 41(6):671–677PubMedCrossRefGoogle Scholar
  8. Birkenfeld AL, Budziarek P, Boschmann M, Moro C, Adams F, Franke G, Berlan M, Marques MA, Sweep FC, Luft FC, Lafontan M, Jordan J (2008) Atrial natriuretic peptide induces postprandial lipid oxidation in humans. Diabetes 57(12):3199–3204PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brunner-La Rocca HP, Eurlings L, Richards AM, Januzzi JL, Pfisterer ME, Dahlstrom U, Pinto YM, Karlstrom P, Erntell H, Berger R, Persson H, O’Connor CM, Moertl D, Gaggin HK, Frampton CM, Nicholls MG, Troughton RW (2015) Which heart failure patients profit from natriuretic peptide guided therapy? A meta-analysis from individual patient data of randomized trials. Eur J Heart Fail 17(12):1252–1261PubMedCrossRefGoogle Scholar
  10. Burnett JC Jr (2006) Novel therapeutic directions for the natriuretic peptides in cardiovascular diseases: what’s on the horizon. J Cardiol 48(5):235–241PubMedPubMedCentralGoogle Scholar
  11. Cabiati M, Campan M, Caselli C, Prescimone T, Giannessi D, Del Ry S (2010) Sequencing and cardiac expression of natriuretic peptide receptors A and C in normal and heart failure pigs. Regul Pept 162(1–3):12–17PubMedCrossRefGoogle Scholar
  12. Cao L, Gardner DG (1995) Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 25(2):227–234PubMedCrossRefGoogle Scholar
  13. Carubelli V, Lombardi C, Lazzarini V, Bonadei I, Castrini AI, Gorga E, Richards AM, Metra M (2016) N-terminal pro-B-type natriuretic peptide-guided therapy in patients hospitalized for acute heart failure. J Cardiovasc Med (Hagerstown) 17(11):828–839CrossRefGoogle Scholar
  14. Cataliotti A, Schirger JA, Martin FL, Chen HH, McKie PM, Boerrigter G, Costello-Boerrigter LC, Harty G, Heublein DM, Sandberg SM, James KD, Miller MA, Malkar NB, Polowy K, Burnett JC Jr (2005) Oral human brain natriuretic peptide activates cyclic guanosine 3′,5′-monophosphate and decreases mean arterial pressure. Circulation 112(6):836–840PubMedCrossRefGoogle Scholar
  15. Cataliotti A, Chen HH, Schirger JA, Martin FL, Boerrigter G, Costello-Boerrigter LC, James KD, Polowy K, Miller MA, Malkar NB, Bailey KR, Burnett JC Jr (2008) Chronic actions of a novel oral B-type natriuretic peptide conjugate in normal dogs and acute actions in angiotensin II-mediated hypertension. Circulation 118(17):1729–1736PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chahal H, Bluemke DA, CO W, McClelland R, Liu K, Shea SJ, Burke G, Balfour P, Herrington D, Shi P, Post W, Olson J, Watson KE, Folsom AR, Lima JA (2015) Heart failure risk prediction in the Multi-Ethnic Study of Atherosclerosis. Heart 101(1):58–64PubMedCrossRefGoogle Scholar
  17. Chai SY, Sexton PM, Allen AM, Figdor R, Mendelsohn FA (1986) In vitro autoradiographic localization of ANP receptors in rat kidney and adrenal gland. Am J Physiol 250(4 Pt 2):F753–F757PubMedGoogle Scholar
  18. Charles CJ, Espiner EA, Nicholls MG, Richards AM, Yandle TG, Protter A, Kosoglou T (1996) Clearance receptors and endopeptidase 24.11: equal role in natriuretic peptide metabolism in conscious sheep. Am J Physiol 271(2 Pt 2):R373–R380PubMedGoogle Scholar
  19. Chen YF (2005) Atrial natriuretic peptide in hypoxia. Peptides 26(6):1068–1077PubMedCrossRefGoogle Scholar
  20. Chen HH, Lainchbury JG, Burnett JC Jr (2002) Natriuretic peptide receptors and neutral endopeptidase in mediating the renal actions of a new therapeutic synthetic natriuretic peptide dendroaspis natriuretic peptide. J Am Coll Cardiol 40(6):1186–1191PubMedCrossRefGoogle Scholar
  21. Chow SL, Maisel AS, Anand I, Bozkurt B, de Boer RA, Felker GM, Fonarow GC, Greenberg B, Januzzi JL Jr, Kiernan MS, Liu PP, Wang TJ, Yancy CW, Zile MR (2017) Role of biomarkers for the prevention, assessment, and management of heart failure: a scientific statement from the American Heart Association. Circulation 135(22):e1054–e1091PubMedCrossRefGoogle Scholar
  22. Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, Nakamura K, Nakao K, Kurihara T, Komatsu Y, Itoh H, Tanaka K, Saito Y, Katsuki M (2001) Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci U S A 98(7):4016–4021PubMedPubMedCentralCrossRefGoogle Scholar
  23. Clavell AL, Stingo AJ, Wei CM, Heublein DM, Burnett JC Jr (1993) C-type natriuretic peptide: a selective cardiovascular peptide. Am J Physiol 264(2 Pt 2):R290–R295PubMedGoogle Scholar
  24. Cody RJ, Atlas SA, Laragh JH, Kubo SH, Covit AB, Ryman KS, Shaknovich A, Pondolfino K, Clark M, Camargo MJ et al (1986) Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J Clin Invest 78(5):1362–1374PubMedPubMedCentralCrossRefGoogle Scholar
  25. Collins S (2014) A heart-adipose tissue connection in the regulation of energy metabolism. Nat Rev Endocrinol 10(3):157–163PubMedCrossRefGoogle Scholar
  26. Collins S, Storrow AB, Albert NM, Butler J, Ezekowitz J, Felker GM, Fermann GJ, Fonarow GC, Givertz MM, Hiestand B, Hollander JE, Lanfear DE, Levy PD, Pang PS, Peacock WF, Sawyer DB, Teerlink JR, Lenihan DJ (2015) Early management of patients with acute heart failure: state of the art and future directions. A consensus document from the society for academic emergency medicine/heart failure society of America acute heart failure working group. J Card Fail 21(1):27–43PubMedCrossRefGoogle Scholar
  27. Colucci WS, Elkayam U, Horton DP, Abraham WT, Bourge RC, Johnson AD, Wagoner LE, Givertz MM, Liang CS, Neibaur M, Haught WH, LeJemtel TH (2000) Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med 343(4):246–253PubMedCrossRefGoogle Scholar
  28. Corthorn J, Cantin M, Thibault G (1991) Rat atrial secretory granules and pro-ANF processing enzyme. Mol Cell Biochem 103(1):31–39PubMedCrossRefGoogle Scholar
  29. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28(1):89–94PubMedCrossRefGoogle Scholar
  30. Dickey DM, Potter LR (2011) Dendroaspis natriuretic peptide and the designer natriuretic peptide, CD-NP, are resistant to proteolytic inactivation. J Mol Cell Cardiol 51(1):67–71PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dickstein K, De Voogd HJ, Miric MP, Willenbrock R, Mitrovic V, Pacher R, Koopman PA (2004) Effect of single doses of SLV306, an inhibitor of both neutral endopeptidase and endothelin-converting enzyme, on pulmonary pressures in congestive heart failure. Am J Cardiol 94(2):237–239PubMedCrossRefGoogle Scholar
  32. Dietz R, Lang RE, Purgaj J, Merkel A, Schomig A, Kubler W (1986) Relationships between haemodynamic parameters and concentrations of atrial natriuretic peptide in human plasma. J Hypertens Suppl 4(6):S512–S515PubMedGoogle Scholar
  33. Dietz JR, Vesely DL, Gower WR Jr, Nazian SJ (1995) Secretion and renal effects of ANF prohormone peptides. Clin Exp Pharmacol Physiol 22(2):115–120PubMedCrossRefGoogle Scholar
  34. Engeli S, Birkenfeld AL, Badin PM, Bourlier V, Louche K, Viguerie N, Thalamas C, Montastier E, Larrouy D, Harant I, de Glisezinski I, Lieske S, Reinke J, Beckmann B, Langin D, Jordan J, Moro C (2012) Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest 122(12):4675–4679PubMedPubMedCentralCrossRefGoogle Scholar
  35. Eskay R, Zukowska-Grojec Z, Haass M, Dave JR, Zamir N (1986) Circulating atrial natriuretic peptides in conscious rats: regulation of release by multiple factors. Science 232(4750):636–639PubMedCrossRefGoogle Scholar
  36. Espiner EA, Crozier IG, Nicholls MG, Cuneo R, Yondle TG, Ikram H (1985) Cardiac secretion of atrial natriuretic peptide. Lancet 2(8451):398–399PubMedCrossRefGoogle Scholar
  37. FDA (2001) Clinical chemistry and clinical toxicology devices; classification of B-type natriuretic peptide test system. Food and Drug Administration, HHS. Final rule. Fed Regist 66(40):12733–12734Google Scholar
  38. Feller SM, Gagelmann M, Forssmann WG (1989) Urodilatin: a newly described member of the ANP family. Trends Pharmacol Sci 10(3):93–94PubMedCrossRefGoogle Scholar
  39. Feng JA, Perry G, Mori T, Hayashi T, Oparil S, Chen YF (2003) Pressure-independent enhancement of cardiac hypertrophy in atrial natriuretic peptide-deficient mice. Clin Exp Pharmacol Physiol 30(5-6):343–349PubMedCrossRefGoogle Scholar
  40. Fifer MA, Molina CR, Quiroz AC, Giles TD, Herrmann HC, De Scheerder IR, Clement DL, Kubo S, Cody RJ, Cohn JN et al (1990) Hemodynamic and renal effects of atrial natriuretic peptide in congestive heart failure. Am J Cardiol 65(3):211–216PubMedCrossRefGoogle Scholar
  41. Florkowski CM, Richards AM, Espiner EA, Yandle TG, Frampton C (1994) Renal, endocrine, and hemodynamic interactions of atrial and brain natriuretic peptides in normal men. Am J Physiol 266(4 Pt 2):R1244–R1250PubMedGoogle Scholar
  42. Forssmann WG, Richter R, Meyer M (1998) The endocrine heart and natriuretic peptides: histochemistry, cell biology, and functional aspects of the renal urodilatin system. Histochem Cell Biol 110(4):335–357PubMedCrossRefGoogle Scholar
  43. Fruhwald FM, Fahrleitner-Pammer A, Berger R, Leyva F, Freemantle N, Erdmann E, Gras D, Kappenberger L, Tavazzi L, Daubert JC, Cleland JG (2007) Early and sustained effects of cardiac resynchronization therapy on N-terminal pro-B-type natriuretic peptide in patients with moderate to severe heart failure and cardiac dyssynchrony. Eur Heart J 28(13):1592–1597PubMedCrossRefGoogle Scholar
  44. Furuya M, Miyazaki T, Honbou N, Kawashima K, Ohno T, Tanaka S, Kangawa K, Matsuo H (1995) C-type natriuretic peptide inhibits intimal thickening after vascular injury. Ann N Y Acad Sci 748:517–523PubMedCrossRefGoogle Scholar
  45. Gardner DG, Hane S, Trachewsky D, Schenk D, Baxter JD (1986) Atrial natriuretic peptide mRNA is regulated by glucocorticoids in vivo. Biochem Biophys Res Commun 139(3):1047–1054PubMedCrossRefGoogle Scholar
  46. George SG, Kenny J (1973) Studies on the enzymology of purified preparations of brush border from rabbit kidney. Biochem J 134(1):43–57PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gong B, Wu Z, Li Z (2016) Efficacy and safety of nesiritide in patients with decompensated heart failure: a meta-analysis of randomised trials. BMJ Open 6(1):e008545PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hamet P, Tremblay J (1991) Evaluating atrial natriuretic peptide-induced cGMP production by particulate guanylyl cyclase stimulation in vitro and in vivo. Methods Enzymol 195:447–461PubMedCrossRefGoogle Scholar
  49. Hasegawa K, Fujiwara H, Itoh H, Nakao K, Fujiwara T, Imura H, Kawai C (1991) Light and electron microscopic localization of brain natriuretic peptide in relation to atrial natriuretic peptide in porcine atrium. Immunohistocytochemical study using specific monoclonal antibodies. Circulation 84(3):1203–1209PubMedCrossRefGoogle Scholar
  50. Hauptman PJ, Schnitzler MA, Swindle J, Burroughs TE (2006) Use of nesiritide before and after publications suggesting drug-related risks in patients with acute decompensated heart failure. Jama 296(15):1877–1884PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hill SA, Booth RA, Santaguida PL, Don-Wauchope A, Brown JA, Oremus M, Ali U, Bustamam A, Sohel N, McKelvie R, Balion C, Raina P (2014) Use of BNP and NT-proBNP for the diagnosis of heart failure in the emergency department: a systematic review of the evidence. Heart Fail Rev 19(4):421–438PubMedCrossRefGoogle Scholar
  52. Horio T, Tokudome T, Maki T, Yoshihara F, Suga S, Nishikimi T, Kojima M, Kawano Y, Kangawa K (2003) Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology 144(6):2279–2284PubMedCrossRefGoogle Scholar
  53. Huang Y, Ng XW, Lim SG, Chen HH, Burnett JC Jr, Boey YC, Venkatraman SS (2016) In vivo evaluation of cenderitide-eluting stent (CES) II. Ann Biomed Eng 44(2):432–441PubMedCrossRefGoogle Scholar
  54. Hutchinson HG, Trindade PT, Cunanan DB, CF W, Pratt RE (1997) Mechanisms of natriuretic-peptide-induced growth inhibition of vascular smooth muscle cells. Cardiovasc Res 35(1):158–167PubMedCrossRefGoogle Scholar
  55. Ichiki T, Huntley BK, Burnett JC Jr (2013) BNP molecular forms and processing by the cardiac serine protease corin. Adv Clin Chem 61:1–31PubMedPubMedCentralCrossRefGoogle Scholar
  56. Itoh T, Nagaya N, Murakami S, Fujii T, Iwase T, Ishibashi-Ueda H, Yutani C, Yamagishi M, Kimura H, Kangawa K (2004) C-type natriuretic peptide ameliorates monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med 170(11):1204–1211PubMedCrossRefGoogle Scholar
  57. Januzzi JL Jr, Camargo CA, Anwaruddin S, Baggish AL, Chen AA, Krauser DG, Tung R, Cameron R, Nagurney JT, Chae CU, Lloyd-Jones DM, Brown DF, Foran-Melanson S, Sluss PM, Lee-Lewandrowski E, Lewandrowski KB (2005) The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol 95(8):948–954PubMedCrossRefGoogle Scholar
  58. Januzzi JL Jr, Rehman SU, Mohammed AA, Bhardwaj A, Barajas L, Barajas J, Kim HN, Baggish AL, Weiner RB, Chen-Tournoux A, Marshall JE, Moore SA, Carlson WD, Lewis GD, Shin J, Sullivan D, Parks K, Wang TJ, Gregory SA, Uthamalingam S, Semigran MJ (2011) Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol 58(18):1881–1889PubMedCrossRefGoogle Scholar
  59. John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, Flynn TG, Smithies O (1995) Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267(5198):679–681PubMedCrossRefGoogle Scholar
  60. Jordan J, Stinkens R, Jax T, Engeli S, Blaak EE, May M, Havekes B, Schindler C, Albrecht D, Pal P, Heise T, Goossens GH, Langenickel TH (2017) Improved insulin sensitivity with angiotensin receptor neprilysin inhibition in individuals with obesity and hypertension. Clin Pharmacol Ther 101(2):254–263PubMedCrossRefGoogle Scholar
  61. Kambayashi Y, Nakao K, Mukoyama M, Saito Y, Ogawa Y, Shiono S, Inouye K, Yoshida N, Imura H (1990) Isolation and sequence determination of human brain natriuretic peptide in human atrium. FEBS Lett 259(2):341–345PubMedCrossRefGoogle Scholar
  62. Kashiwagi M, Katafuchi T, Kato A, Inuyama H, Ito T, Hagiwara H, Takei Y, Hirose S (1995) Cloning and properties of a novel natriuretic peptide receptor, NPR-D. Eur J Biochem 233(1):102–109PubMedCrossRefGoogle Scholar
  63. Kentsch M, Ludwig D, Drummer C, Gerzer R, Muller-Esch G (1992) Haemodynamic and renal effects of urodilatin in healthy volunteers. Eur J Clin Invest 22(5):319–325PubMedCrossRefGoogle Scholar
  64. Kimura T, Nojiri T, Hino J, Hosoda H, Miura K, Shintani Y, Inoue M, Zenitani M, Takabatake H, Miyazato M, Okumura M, Kangawa K (2016) C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice. Respir Res 17(19)Google Scholar
  65. Kistorp C, Raymond I, Pedersen F, Gustafsson F, Faber J, Hildebrandt P (2005) N-terminal pro-brain natriuretic peptide, C-reactive protein, and urinary albumin levels as predictors of mortality and cardiovascular events in older adults. JAMA 293(13):1609–1616PubMedCrossRefGoogle Scholar
  66. Knecht M, Pagel I, Langenickel T, Philipp S, Scheuermann-Freestone M, Willnow T, Bruemmer D, Graf K, Dietz R, Willenbrock R (2002) Increased expression of renal neutral endopeptidase in severe heart failure. Life Sci 71(23):2701–2712PubMedCrossRefGoogle Scholar
  67. Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV (1991) Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252(5002):120–123PubMedCrossRefGoogle Scholar
  68. Kostis JB, Packer M, Black HR, Schmieder R, Henry D, Levy E (2004) Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens 17(2):103–111PubMedCrossRefGoogle Scholar
  69. Kroon MH, van den Hurk K, Alssema M, Kamp O, Stehouwer CD, Henry RM, Diamant M, Boomsma F, Nijpels G, Paulus WJ, Dekker JM (2012) Prospective associations of B-type natriuretic peptide with markers of left ventricular function in individuals with and without type 2 diabetes: an 8-year follow-up of the Hoorn Study. Diabetes Care 35(12):2510–2514PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kuhn M (2016) Molecular physiology of membrane guanylyl cyclase receptors. Physiol Rev 96(2):751–804PubMedCrossRefGoogle Scholar
  71. Lang RE, Unger T, Ganten D (1987) Atrial natriuretic peptide: a new factor in blood pressure control. J Hypertens 5(3):255–271PubMedCrossRefGoogle Scholar
  72. Langenickel TH, Buttgereit J, Pagel-Langenickel I, Lindner M, Monti J, Beuerlein K, Al-Saadi N, Plehm R, Popova E, Tank J, Dietz R, Willenbrock R, Bader M (2006) Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci U S A 103(12):4735–4740PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lee CY, Chen HH, Lisy O, Swan S, Cannon C, Lieu HD, Burnett JC Jr (2009) Pharmacodynamics of a novel designer natriuretic peptide, CD-NP, in a first-in-human clinical trial in healthy subjects. J Clin Pharmacol 49(6):668–673PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lee CY, Huntley BK, McCormick DJ, Ichiki T, Sangaralingham SJ, Lisy O, Burnett JC Jr (2016) Cenderitide: structural requirements for the creation of a novel dual particulate guanylyl cyclase receptor agonist with renal-enhancing in vivo and ex vivo actions. Eur Heart J Cardiovasc Pharmacother 2(2):98–105PubMedCrossRefGoogle Scholar
  75. Lisy O, Jougasaki M, Heublein DM, Schirger JA, Chen HH, Wennberg PW, Burnett JC (1999) Renal actions of synthetic dendroaspis natriuretic peptide. Kidney Int 56(2):502–508PubMedCrossRefGoogle Scholar
  76. Lisy O, Lainchbury JG, Leskinen H, Burnett JC Jr (2001) Therapeutic actions of a new synthetic vasoactive and natriuretic peptide, dendroaspis natriuretic peptide, in experimental severe congestive heart failure. Hypertension 37(4):1089–1094PubMedCrossRefGoogle Scholar
  77. Lisy O, Huntley BK, McCormick DJ, Kurlansky PA, Burnett JC Jr (2008) Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP. J Am Coll Cardiol 52(1):60–68PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lu SY, Wang DS, Zhu MZ, Zhang QH, YZ H, Pei JM (2005) Inhibition of hypoxia-induced proliferation and collagen synthesis by vasonatrin peptide in cultured rat pulmonary artery smooth muscle cells. Life Sci 77(1):28–38PubMedCrossRefGoogle Scholar
  79. Luchner A, Stevens TL, Borgeson DD, Redfield M, Wei CM, Porter JG, Burnett JC Jr (1998) Differential atrial and ventricular expression of myocardial BNP during evolution of heart failure. Am J Physiol 274(5 Pt 2):H1684–H1689PubMedGoogle Scholar
  80. Luss H, Mitrovic V, Seferovic PM, Simeunovic D, Ristic AD, Moiseyev VS, Forssmann WG, Hamdy AM, Meyer M (2008) Renal effects of ularitide in patients with decompensated heart failure. Am Heart J 155(6):1012 e1011-1018CrossRefGoogle Scholar
  81. Maeda K, Tsutamoto T, Wada A, Hisanaga T, Kinoshita M (1998) Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J 135(5 Pt 1):825–832PubMedCrossRefGoogle Scholar
  82. Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, Omland T, Storrow AB, Abraham WT, AH W, Clopton P, Steg PG, Westheim A, Knudsen CW, Perez A, Kazanegra R, Herrmann HC, McCullough PA (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347(3):161–167PubMedCrossRefGoogle Scholar
  83. Marcus LS, Hart D, Packer M, Yushak M, Medina N, Danziger RS, Heitjan DF, Katz SD (1996) Hemodynamic and renal excretory effects of human brain natriuretic peptide infusion in patients with congestive heart failure. A double-blind, placebo-controlled, randomized crossover trial. Circulation 94(12):3184–3189PubMedCrossRefGoogle Scholar
  84. Marin-Grez M, Fleming JT, Steinhausen M (1986) Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature 324(6096):473–476PubMedCrossRefGoogle Scholar
  85. Martin FL, Sangaralingham SJ, Huntley BK, McKie PM, Ichiki T, Chen HH, Korinek J, Harders GE, Burnett JC Jr (2012) CD-NP: a novel engineered dual guanylyl cyclase activator with anti-fibrotic actions in the heart. PLoS One 7(12):e52422PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mathisen P, Hall C, Simonsen S (1993) Comparative study of atrial peptides ANF (1-98) and ANF (99-126) as diagnostic markers of atrial distension in patients with cardiac disease. Scand J Clin Lab Invest 53(1):41–49PubMedCrossRefGoogle Scholar
  87. Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M, Smithies O (1999) The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci U S A 96(13):7403–7408PubMedPubMedCentralCrossRefGoogle Scholar
  88. Matsumoto T, Wada A, Tsutamoto T, Omura T, Yokohama H, Ohnishi M, Nakae I, Takahashi M, Kinoshita M (1999) Vasorelaxing effects of atrial and brain natriuretic peptides on coronary circulation in heart failure. Am J Physiol 276(6 Pt 2):H1935–H1942PubMedGoogle Scholar
  89. Mattingly MT, Brandt RR, Heublein DM, Wei CM, Nir A, Burnett JC Jr (1994) Presence of C-type natriuretic peptide in human kidney and urine. Kidney Int 46(3):744–747PubMedCrossRefGoogle Scholar
  90. McKie PM, Cataliotti A, Sangaralingham SJ, Ichiki T, Cannone V, Bailey KR, Redfield MM, Rodeheffer RJ, Burnett JC Jr (2011) Predictive utility of atrial, N-terminal pro-atrial, and N-terminal pro-B-type natriuretic peptides for mortality and cardiovascular events in the general community: a 9-year follow-up study. Mayo Clin Proc 86(12):1154–1160PubMedPubMedCentralCrossRefGoogle Scholar
  91. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004PubMedPubMedCentralCrossRefGoogle Scholar
  92. Melenovsky V, Kotrc M, Borlaug BA, Marek T, Kovar J, Malek I, Kautzner J (2013) Relationships between right ventricular function, body composition, and prognosis in advanced heart failure. J Am Coll Cardiol 62(18):1660–1670PubMedCrossRefGoogle Scholar
  93. Mellin V, Jeng AY, Monteil C, Renet S, Henry JP, Thuillez C, Mulder P (2005) Triple ACE-ECE-NEP inhibition in heart failure: a comparison with ACE and dual ECE-NEP inhibition. J Cardiovasc Pharmacol 46(3):390–397PubMedCrossRefGoogle Scholar
  94. Miyashita K, Itoh H, Tsujimoto H, Tamura N, Fukunaga Y, Sone M, Yamahara K, Taura D, Inuzuka M, Sonoyama T, Nakao K (2009) Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 58(12):2880–2892PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mulder P, Barbier S, Monteil C, Jeng AY, Henry JP, Renet S, Thuillez C (2004) Sustained improvement of cardiac function and prevention of cardiac remodeling after long-term dual ECE-NEP inhibition in rats with congestive heart failure. J Cardiovasc Pharmacol 43(4):489–494PubMedCrossRefGoogle Scholar
  96. Nagendran J, Archer SL, Soliman D, Gurtu V, Moudgil R, Haromy A, St Aubin C, Webster L, Rebeyka IM, Ross DB, Light PE, Dyck JR, Michelakis ED (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116(3):238–248PubMedCrossRefGoogle Scholar
  97. Nayer J, Aggarwal P, Galwankar S (2014) Utility of point-of-care testing of natriuretic peptides (brain natriuretic peptide and n-terminal pro-brain natriuretic peptide) in the emergency department. Int J Crit Illn Inj Sci 4(3):209–215PubMedPubMedCentralCrossRefGoogle Scholar
  98. Nobata S, Ventura A, Kaiya H, Takei Y (2010) Diversified cardiovascular actions of six homologous natriuretic peptides (ANP, BNP, VNP, CNP1, CNP3, and CNP4) in conscious eels. Am J Physiol Regul Integr Comp Physiol 298(6):R1549–R1559PubMedCrossRefGoogle Scholar
  99. Northridge DB, Currie PF, Newby DE, McMurray JJ, Ford M, Boon NA, Dargie HJ (1999) Placebo-controlled comparison of candoxatril, an orally active neutral endopeptidase inhibitor, and captopril in patients with chronic heart failure. Eur J Heart Fail 1(1):67–72PubMedCrossRefGoogle Scholar
  100. Nussenzveig DR, Lewicki JA, Maack T (1990) Cellular mechanisms of the clearance function of type C receptors of atrial natriuretic factor. J Biol Chem 265(34):20952–20958PubMedGoogle Scholar
  101. O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, Heizer GM, Komajda M, Massie BM, McMurray JJ, Nieminen MS, Reist CJ, Rouleau JL, Swedberg K, Adams KF Jr, Anker SD, Atar D, Battler A, Botero R, Bohidar NR, Butler J, Clausell N, Corbalan R, Costanzo MR, Dahlstrom U, Deckelbaum LI, Diaz R, Dunlap ME, Ezekowitz JA, Feldman D, Felker GM, Fonarow GC, Gennevois D, Gottlieb SS, Hill JA, Hollander JE, Howlett JG, Hudson MP, Kociol RD, Krum H, Laucevicius A, Levy WC, Mendez GF, Metra M, Mittal S, Oh BH, Pereira NL, Ponikowski P, Tang WH, Tanomsup S, Teerlink JR, Triposkiadis F, Troughton RW, Voors AA, Whellan DJ, Zannad F, Califf RM (2011) Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 365(1):32–43PubMedCrossRefGoogle Scholar
  102. Ogawa Y, Itoh H, Tamura N, Suga S, Yoshimasa T, Uehira M, Matsuda S, Shiono S, Nishimoto H, Nakao K (1994) Molecular cloning of the complementary DNA and gene that encode mouse brain natriuretic peptide and generation of transgenic mice that overexpress the brain natriuretic peptide gene. J Clin Invest 93(5):1911–1921PubMedPubMedCentralCrossRefGoogle Scholar
  103. Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci U S A 94(26):14730–14735PubMedPubMedCentralCrossRefGoogle Scholar
  104. Omland T, Aakvaag A, Bonarjee VV, Caidahl K, Lie RT, Nilsen DW, Sundsfjord JA, Dickstein K (1996) Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and long-term survival after acute myocardial infarction. Comparison with plasma atrial natriuretic peptide and N-terminal proatrial natriuretic peptide. Circulation 93(11):1963–1969PubMedCrossRefGoogle Scholar
  105. Packer M, Califf RM, Konstam MA, Krum H, McMurray JJ, Rouleau JL, Swedberg K (2002) Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation 106(8):920–926PubMedCrossRefGoogle Scholar
  106. Packer M, O’Connor C, McMurray JJV, Wittes J, Abraham WT, Anker SD, Dickstein K, Filippatos G, Holcomb R, Krum H, Maggioni AP, Mebazaa A, Peacock WF, Petrie MC, Ponikowski P, Ruschitzka F, van Veldhuisen DJ, Kowarski LS, Schactman M, Holzmeister J (2017) Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med 376(20):1956–1964PubMedCrossRefGoogle Scholar
  107. Pagel-Langenickel I, Bao J, Pang L, Sack MN (2010) The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr Rev 31(1):25–51PubMedCrossRefGoogle Scholar
  108. Pandey KN, Pavlou SN, Inagami T (1988) Identification and characterization of three distinct atrial natriuretic factor receptors. Evidence for tissue-specific heterogeneity of receptor subtypes in vascular smooth muscle, kidney tubular epithelium, and Leydig tumor cells by ligand binding, photoaffinity labeling, and tryptic proteolysis. J Biol Chem 263(26):13406–13413PubMedGoogle Scholar
  109. Pfisterer M, Buser P, Rickli H, Gutmann M, Erne P, Rickenbacher P, Vuillomenet A, Jeker U, Dubach P, Beer H, Yoon SI, Suter T, Osterhues HH, Schieber MM, Hilti P, Schindler R, Brunner-La Rocca HP (2009) BNP-guided vs symptom-guided heart failure therapy: the trial of intensified vs standard medical therapy in elderly patients with congestive heart failure (TIME-CHF) randomized trial. JAMA 301(4):383–392PubMedCrossRefGoogle Scholar
  110. Pokreisz P, Vandenwijngaert S, Bito V, Van den Bergh A, Lenaerts I, Busch C, Marsboom G, Gheysens O, Vermeersch P, Biesmans L, Liu X, Gillijns H, Pellens M, Van Lommel A, Buys E, Schoonjans L, Vanhaecke J, Verbeken E, Sipido K, Herijgers P, Bloch KD, Janssens SP (2009) Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation 119(3):408–416PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200PubMedPubMedCentralCrossRefGoogle Scholar
  112. Potter LR (2011) Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol Ther 130(1):71–82PubMedCrossRefGoogle Scholar
  113. Potter LR, Hunter T (1998) Identification and characterization of the major phosphorylation sites of the B-type natriuretic peptide receptor. J Biol Chem 273(25):15533–15539PubMedCrossRefGoogle Scholar
  114. Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM (2009) Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol 191:341–366CrossRefGoogle Scholar
  115. Publication Committee for the VMAC Investigators (Vasodilation in the Management of Acute CHF) (2002) Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA 287(12):1531–1540Google Scholar
  116. Rademaker MT, Richards AM (2005) Cardiac natriuretic peptides for cardiac health. Clin Sci (Lond) 108(1):23–36CrossRefGoogle Scholar
  117. Rademaker MT, Charles CJ, Kosoglou T, Protter AA, Espiner EA, Nicholls MG, Richards AM (1997) Clearance receptors and endopeptidase: equal role in natriuretic peptide metabolism in heart failure. Am J Physiol 273(5 Pt 2):H2372–H2379PubMedGoogle Scholar
  118. Raine AE, Erne P, Burgisser E, Muller FB, Bolli P, Burkart F, Buhler FR (1986) Atrial natriuretic peptide and atrial pressure in patients with congestive heart failure. N Engl J Med 315(9):533–537PubMedCrossRefGoogle Scholar
  119. Ramos HR, Birkenfeld AL, de Bold AJ (2015) INTERACTING DISCIPLINES: cardiac natriuretic peptides and obesity: perspectives from an endocrinologist and a cardiologist. Endocr Connect 4(3):R25–R36PubMedPubMedCentralCrossRefGoogle Scholar
  120. Richards AM, Crozier IG, Espiner EA, Yandle TG, Nicholls MG (1993) Plasma brain natriuretic peptide and endopeptidase 24.11 inhibition in hypertension. Hypertension 22(2):231–236PubMedCrossRefGoogle Scholar
  121. Richards M, Di Somma S, Mueller C, Nowak R, Peacock WF, Ponikowski P, Mockel M, Hogan C, AH W, Clopton P, Filippatos GS, Anand I, Ng L, Daniels LB, Neath SX, Shah K, Christenson R, Hartmann O, Anker SD, Maisel A (2013) Atrial fibrillation impairs the diagnostic performance of cardiac natriuretic peptides in dyspneic patients: results from the BACH Study (Biomarkers in ACute Heart Failure). JACC Heart Fail 1(3):192–199PubMedCrossRefGoogle Scholar
  122. Roberts E, Ludman AJ, Dworzynski K, Al-Mohammad A, Cowie MR, McMurray JJ, Mant J (2015) The diagnostic accuracy of the natriuretic peptides in heart failure: systematic review and diagnostic meta-analysis in the acute care setting. BMJ 350:h910PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ruskoaho H, Leskinen H, Magga J, Taskinen P, Mantymaa P, Vuolteenaho O, Leppaluoto J (1997) Mechanisms of mechanical load-induced atrial natriuretic peptide secretion: role of endothelin, nitric oxide, and angiotensin II. J Mol Med (Berl) 75(11–12):876–885CrossRefGoogle Scholar
  124. Sackner-Bernstein JD, Skopicki HA, Aaronson KD (2005) Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation 111(12):1487–1491PubMedCrossRefGoogle Scholar
  125. Saito H, Ogihara T, Nakamaru M, Hara H, Higaki J, Rakugi H, Tateyama H, Minamino T, Iinuma K, Kumahara Y (1987) Hemodynamic, renal, and hormonal responses to alpha-human atrial natriuretic peptide in patients with congestive heart failure. Clin Pharmacol Ther 42(2):142–147PubMedCrossRefGoogle Scholar
  126. Schirger JA, Heublein DM, Chen HH, Lisy O, Jougasaki M, Wennberg PW, Burnett JC Jr (1999) Presence of Dendroaspis natriuretic peptide-like immunoreactivity in human plasma and its increase during human heart failure. Mayo Clin Proc 74(2):126–130PubMedCrossRefGoogle Scholar
  127. Schlueter N, de Sterke A, Willmes DM, Spranger J, Jordan J, Birkenfeld AL (2014) Metabolic actions of natriuretic peptides and therapeutic potential in the metabolic syndrome. Pharmacol Ther 144(1):12–27PubMedCrossRefGoogle Scholar
  128. Schrier RW, Abraham WT (1999) Hormones and hemodynamics in heart failure. N Engl J Med 341(8):577–585PubMedCrossRefGoogle Scholar
  129. Schroter J, Zahedi RP, Hartmann M, Gassner B, Gazinski A, Waschke J, Sickmann A, Kuhn M (2010) Homologous desensitization of guanylyl cyclase A, the receptor for atrial natriuretic peptide, is associated with a complex phosphorylation pattern. Febs J 277(11):2440–2453PubMedPubMedCentralCrossRefGoogle Scholar
  130. Schweitz H, Vigne P, Moinier D, Frelin C, Lazdunski M (1992) A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J Biol Chem 267(20):13928–13932PubMedGoogle Scholar
  131. Sengenes C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J (2000) Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J 14(10):1345–1351PubMedCrossRefPubMedCentralGoogle Scholar
  132. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, Shi V, Bransford T, Takeuchi M, Gong J, Lefkowitz M, Packer M, McMurray JJ (2012) The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 380(9851):1387–1395PubMedPubMedCentralCrossRefGoogle Scholar
  133. Solomon SD, Claggett B, Desai AS, Packer M, Zile M, Swedberg K, Rouleau JL, Shi VC, Starling RC, Kozan O, Dukat A, Lefkowitz MP, McMurray JJ (2016) Influence of ejection fraction on outcomes and efficacy of Sacubitril/Valsartan (LCZ696) in heart failure with reduced ejection fraction: the prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure (PARADIGM-HF) trial. Circ Heart Fail 9(3):e002744PubMedCrossRefGoogle Scholar
  134. Solomon SD, Rizkala AR, Gong J, Wang W, Anand IS, Ge J, Lam CSP, Maggioni AP, Martinez F, Packer M, Pfeffer MA, Pieske B, Redfield MM, Rouleau JL, Van Veldhuisen DJ, Zannad F, Zile MR, Desai AS, Shi VC, Lefkowitz MP, McMurray JJV (2017) Angiotensin receptor neprilysin inhibition in heart failure with preserved ejection fraction: rationale and design of the PARAGON-HF trial. JACC Heart Fail 5(7):471–482PubMedPubMedCentralCrossRefGoogle Scholar
  135. Stephenson SL, Kenny AJ (1987a) The hydrolysis of alpha-human atrial natriuretic peptide by pig kidney microvillar membranes is initiated by endopeptidase-24.11. Biochem J 243(1):183–187PubMedPubMedCentralCrossRefGoogle Scholar
  136. Stephenson SL, Kenny AJ (1987b) Metabolism of neuropeptides. Hydrolysis of the angiotensins, bradykinin, substance P and oxytocin by pig kidney microvillar membranes. Biochem J 241(1):237–247PubMedPubMedCentralCrossRefGoogle Scholar
  137. Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332(6159):78–81PubMedCrossRefPubMedCentralGoogle Scholar
  138. Sudoh T, Minamino N, Kangawa K, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168(2):863–870PubMedCrossRefGoogle Scholar
  139. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci U S A 97(8):4239–4244PubMedPubMedCentralCrossRefGoogle Scholar
  140. Tamura N, Doolittle LK, Hammer RE, Shelton JM, Richardson JA, Garbers DL (2004) Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc Natl Acad Sci U S A 101(49):17300–17305PubMedPubMedCentralCrossRefGoogle Scholar
  141. Toth M, Vuorinen KH, Vuolteenaho O, Hassinen IE, Uusimaa PA, Leppaluoto J, Ruskoaho H (1994) Hypoxia stimulates release of ANP and BNP from perfused rat ventricular myocardium. Am J Physiol 266(4 Pt 2):H1572–H1580PubMedGoogle Scholar
  142. Tremblay J, Desjardins R, Hum D, Gutkowska J, Hamet P (2002) Biochemistry and physiology of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biochem 230(1-2):31–47PubMedCrossRefGoogle Scholar
  143. Troughton RW, Frampton CM, Yandle TG, Espiner EA, Nicholls MG, Richards AM (2000) Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 355(9210):1126–1130PubMedCrossRefGoogle Scholar
  144. Troughton RW, Frampton CM, Brunner-La Rocca HP, Pfisterer M, Eurlings LW, Erntell H, Persson H, O’Connor CM, Moertl D, Karlstrom P, Dahlstrom U, Gaggin HK, Januzzi JL, Berger R, Richards AM, Pinto YM, Nicholls MG (2014) Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: an individual patient meta-analysis. Eur Heart J 35(23):1559–1567PubMedPubMedCentralCrossRefGoogle Scholar
  145. Tsutamoto T, Bito K, Kinoshita M (1989) Plasma atrial natriuretic polypeptide as an index of left ventricular end-diastolic pressure in patients with chronic left-sided heart failure. Am Heart J 117(3):599–606PubMedCrossRefGoogle Scholar
  146. Tsutamoto T, Kanamori T, Wada A, Kinoshita M (1992) Uncoupling of atrial natriuretic peptide extraction and cyclic guanosine monophosphate production in the pulmonary circulation in patients with severe heart failure. J Am Coll Cardiol 20(3):541–546PubMedCrossRefGoogle Scholar
  147. Tsutamoto T, Wada A, Maeda K, Mabuchi N, Hayashi M, Tsutsui T, Ohnishi M, Sawaki M, Fujii M, Matsumoto T, Matsui T, Kinoshita M (2001) Effect of spironolactone on plasma brain natriuretic peptide and left ventricular remodeling in patients with congestive heart failure. J Am Coll Cardiol 37(5):1228–1233PubMedCrossRefGoogle Scholar
  148. Ueno H, Haruno A, Morisaki N, Furuya M, Kangawa K, Takeshita A, Saito Y (1997) Local expression of C-type natriuretic peptide markedly suppresses neointimal formation in rat injured arteries through an autocrine/paracrine loop. Circulation 96(7):2272–2279PubMedCrossRefGoogle Scholar
  149. Velagaleti RS, Gona P, Larson MG, Wang TJ, Levy D, Benjamin EJ, Selhub J, Jacques PF, Meigs JB, Tofler GH, Vasan RS (2010) Multimarker approach for the prediction of heart failure incidence in the community. Circulation 122(17):1700–1706PubMedPubMedCentralCrossRefGoogle Scholar
  150. Vlasuk GP, Miller J, Bencen GH, Lewicki JA (1986) Structure and analysis of the bovine atrial natriuretic peptide precursor gene. Biochem Biophys Res Commun 136(1):396–403PubMedCrossRefGoogle Scholar
  151. Volpe M (1992) Atrial natriuretic peptide and the baroreflex control of circulation. Am J Hypertens 5(7):488–493PubMedCrossRefGoogle Scholar
  152. von Haehling S, Jankowska EA, Morgenthaler NG, Vassanelli C, Zanolla L, Rozentryt P, Filippatos GS, Doehner W, Koehler F, Papassotiriou J, Kremastinos DT, Banasiak W, Struck J, Ponikowski P, Bergmann A, Anker SD (2007) Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type natriuretic peptide in predicting survival in patients with chronic heart failure. J Am Coll Cardiol 50(20):1973–1980CrossRefGoogle Scholar
  153. von Lueder TG, Sangaralingham SJ, Wang BH, Kompa AR, Atar D, Burnett JC Jr, Krum H (2013) Renin-angiotensin blockade combined with natriuretic peptide system augmentation: novel therapeutic concepts to combat heart failure. Circ Heart Fail 6(3):594–605CrossRefGoogle Scholar
  154. Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, Jacques PF, Rifai N, Selhub J, Robins SJ, Benjamin EJ, D’Agostino RB, Vasan RS (2006) Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med 355(25):2631–2639PubMedCrossRefGoogle Scholar
  155. Weber M, Hamm C (2006) Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart 92(6):843–849PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wei CM, Heublein DM, Perrella MA, Lerman A, Rodeheffer RJ, McGregor CG, Edwards WD, Schaff HV, Burnett JC Jr (1993a) Natriuretic peptide system in human heart failure. Circulation 88(3):1004–1009PubMedCrossRefGoogle Scholar
  157. Wei CM, Kim CH, Miller VM, Burnett JC Jr (1993b) Vasonatrin peptide: a unique synthetic natriuretic and vasorelaxing peptide. J Clin Invest 92(4):2048–2052PubMedPubMedCentralCrossRefGoogle Scholar
  158. Weidmann P, Hasler L, Gnadinger MP, Lang RE, Uehlinger DE, Shaw S, Rascher W, Reubi FC (1986) Blood levels and renal effects of atrial natriuretic peptide in normal man. J Clin Invest 77(3):734–742PubMedPubMedCentralCrossRefGoogle Scholar
  159. Westheim AS, Bostrom P, Christensen CC, Parikka H, Rykke EO, Toivonen L (1999) Hemodynamic and neuroendocrine effects for candoxatril and frusemide in mild stable chronic heart failure. J Am Coll Cardiol 34(6):1794–1801PubMedCrossRefGoogle Scholar
  160. Wilkins MR, Settle SL, Kirk JE, Taylor SA, Moore KP, Unwin RJ (1992) Response to atrial natriuretic peptide, endopeptidase 24.11 inhibitor and C-ANP receptor ligand in the rat. Br J Pharmacol 107(1):50–57PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wong NL, Wong EF, GH A, DC H (1988) Effect of alpha- and beta-adrenergic stimulation on atrial natriuretic peptide release in vitro. Am J Physiol 255(3 Pt 1):E260–E264PubMedGoogle Scholar
  162. Xiong B, Nie D, Cao Y, Zou Y, Yao Y, Tan J, Qian J, Rong S, Wang C, Huang J (2017) Clinical and hemodynamic effects of endothelin receptor antagonists in patients with heart failure. Int Heart J 58(3):400–408PubMedCrossRefGoogle Scholar
  163. Yan W, Wu F, Morser J, Wu Q (2000) Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A 97(15):8525–8529PubMedPubMedCentralCrossRefGoogle Scholar
  164. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128(16):e240–e327PubMedPubMedCentralCrossRefGoogle Scholar
  165. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos G, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C (2016) 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: An update of the 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol 68(13):1476–1488PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yoshimura M, Yasue H, Morita E, Sakaino N, Jougasaki M, Kurose M, Mukoyama M, Saito Y, Nakao K, Imura H (1991) Hemodynamic, renal, and hormonal responses to brain natriuretic peptide infusion in patients with congestive heart failure. Circulation 84(4):1581–1588PubMedCrossRefGoogle Scholar
  167. Zile MR, Claggett BL, Prescott MF, McMurray JJ, Packer M, Rouleau JL, Swedberg K, Desai AS, Gong J, Shi VC, Solomon SD (2016) Prognostic implications of changes in N-terminal pro-B-type natriuretic peptide in patients with heart failure. J Am Coll Cardiol 68(22):2425–2436PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Cardiovascular/Metabolic/RenalCovance Clinical and Periapproval Services AGZurichSwitzerland

Personalised recommendations