Skip to main content

P2Y11 Receptors: Properties, Distribution and Functions

  • Chapter
  • First Online:
Protein Reviews

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 1051))

Abstract

The P2Y11 receptor is a G protein-coupled receptor that is stimulated by endogenous purine nucleotides, particularly ATP. Amongst P2Y receptors it has several unique properties; (1) it is the only human P2Y receptor gene that contains an intron in the coding sequence; (2) the gene does not appear to be present in the rodent genome; (3) it couples to stimulation of both phospholipase C and adenylyl cyclase. Its absence in mice and rats, along with a limited range of selective pharmacological tools, has hampered the development of our knowledge and understanding of its properties and functions. Nonetheless, through a combination of careful use of the available tools, suppression of receptor expression using siRNA and genetic screening for SNPs, possible functions of native P2Y11 receptors have been identified in a variety of human cells and tissues. Many are in blood cells involved in inflammatory responses, consistent with extracellular ATP being a damage-associated signalling molecule in the immune system. Thus proposed potential therapeutic applications relate, in the main, to modulation of acute and chronic inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADP:

adenosine 5′-diphosphate

AMI:

acute myocardial infarction

ATP:

adenosine 5′-triphosphate

cP2Y11 receptor:

canine P2Y11 receptor

DAMPs:

damage-associated molecular patterns

GPCR:

G protein-coupled receptors

GTP:

guanosine 5′-triphosphate

hP2Y11 receptor:

human P2Y11 receptor

IP3 :

inositol 1,4,5-trisphosphate

IPs:

inositol phosphates

ITP:

inosine 5′-triphosphate

LXA4 :

lipoxin A4

MDC:

Malmo Diet and Cancer

NAADP+ :

nicotinic acid adenine dinucleotide phosphate

NAD+ :

nicotinamide adenine dinucleotide

PKC:

protein kinase C

PLC:

phospholipase C

SNPs:

single nucleotide polymorphisms

UDP:

uridine 5′diphosphate

UTP:

uridine 5′-triphosphate

References

  • Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, King BF, Gachet C, Jacobson KA, Weisman GA (2005) The recently deorphanized GPR80 (GPR99) proposed to be the P2Y15 receptor is not a genuine P2Y receptor. Trends Pharmacol Sci 26:8–9

    Article  CAS  PubMed  Google Scholar 

  • Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology: update of the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amisten S, Melander O, Wihlborg AK, Berglund G, Erlinge D (2007) Increased risk of acute myocardial infarction and elevated levels of C-reactive protein in carriers of the Thr-87 variant of the ATP receptor P2Y11. Eur Heart J 28:13–18

    Article  CAS  PubMed  Google Scholar 

  • Azimi I, Beilby H, Davis FM, Marcial DL, Kenny PA, Thompson EW, Roberts-Thomson SJ, Monteith GR (2016) Altered purinergic receptor-Ca2+ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Mol Oncol 10:166–178

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333–372

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    Article  CAS  PubMed  Google Scholar 

  • Chadet S, Ivanes F, Benoist L, Salmon-Gandonnière C, Guibon R, Velge-Roussel F, Babuty D, Baron C, Roger S, Angoulvant D (2015) Hypoxia/reoxygenation inhibits P2Y11 receptor expression and its immunosuppressive activity in human dendritic cells. J Immunol 195:651–660

    Article  CAS  PubMed  Google Scholar 

  • Choi SY, Kim KT (1997) Extracellular ATP-stimulated increase of cytosolic cAMP in HL-60 cells. Biochem Pharmacol 53:429–432

    Article  CAS  PubMed  Google Scholar 

  • Choi RCY, Simon J, Tsim KWK, Barnard EA (2008) Constitutive and agonist-induced dimerizations of the P2Y1 receptor: relationship to internalization and scaffolding. J Biol Chem 283:11050–11063

    Article  CAS  PubMed  Google Scholar 

  • Communi D, Govaerts C, Parmentier M, Boeynaems JM (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272:31969–31973

    Article  CAS  PubMed  Google Scholar 

  • Communi D, Robaye B, Boeynaems J-M (1999) Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol 128:1199–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Communi D, Suarez-Huerta N, Dussossoy D, Savi P, Boeynaems JM (2001) Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes. J Biol Chem 276:16561–16566

    Article  CAS  PubMed  Google Scholar 

  • d’Ambrosi N, Iafrate M, Vacca F, Amadio S, Tozzi A, Mercuri N, Volonté C (2006) The P2Y4 receptor forms homo-oligomeric complexes in several CNS and PNS neuronal cells. Purinergic Signal 2:575–582

    Article  PubMed  PubMed Central  Google Scholar 

  • d’Ambrosi N, Iafrate M, Saba E, Rosa P, Volonté C (2007) Comparative analysis of P2Y4 and P2Y6 receptor architecture in native and transfected neuronal systems. Biochim Biophys Acta 1768:1592–1599

    Article  PubMed  Google Scholar 

  • del Puerto A, Diaz-Hernandez JI, Tapia M, Gomez-Villafuertes R, Benitez MJ, Zhang J, Miras-Portugal MT, Wandosell F, Diaz-Hernandez M, Garrido JJ (2012) Adenylate cyclase 5 coordinates the action of ADP, P2Y1, P2Y13 and ATP-gated P2X7 receptors on axonal elongation. J Cell Sci 125:176–188

    Article  PubMed  Google Scholar 

  • Devader C, Drew CM, Geach TJ, Tabler J, Townsend-Nicholson A, Dale L (2007) A novel nucleotide receptor in Xenopus activates the cAMP second messenger pathway. FEBS Lett 581:5332–5336

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Ma W, Littmann T, Camp R, Shen J (2011) The P2Y2 nucleotide receptor mediates tissue factor expression in human coronary artery endothelial cells. J Biol Chem 286:27027–27038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreisig K, Kornum B (2016) A critical look at the function of the P2Y11 receptor. Purinergic Signal 12:427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreisig K, Degn M, Sund L, Hadaczek P, Samaranch L, San Sebastian W, Bankiewicz K, Rahbek Kornum B (2016) Validation of antibodies for neuroanatomical localization of the P2Y11 receptor in macaque brain. J Chem Neuroanat 78:25–33

    Article  CAS  PubMed  Google Scholar 

  • Ecke D, Fischer B, Reiser G (2008a) Diastereoselectivity of the P2Y11 nucleotide receptor: mutational analysis. Br J Pharmacol 155:1250–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ecke D, Hanck T, Tulapurkar ME, Schäfer R, Kassack M, Stricker R, Reiser G (2008b) Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem J 409:107–116

    Article  CAS  PubMed  Google Scholar 

  • Ferré S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KDG, Pin JP, Volkow ND, Waldhoer M, Woods AS, Franco R (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5:131–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferré S, Casadó V, Devi LA, Filizola M, Jockers R, Lohse MJ, Milligan G, Pin JP, Guitart X (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66:413–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Fruscione F, Scarfì S, Ferraris C, Bruzzone S, Benvenuto F, Guida L, Uccelli A, Salis A, Usai C, Jacchetti E, Ilengo C, Scaglione S, Quarto R, Zocchi E, De Flora A (2011) Stem Cells Dev 20:1183–1198

    Article  CAS  PubMed  Google Scholar 

  • Gao Z-G, Wei Q, Jayasekara MPS, Jacobson KA (2013) The role of P2Y14 and other P2Y receptors in degranulation of human LAD2 mast cells. Purinergic Signal 9:31–40

    Article  CAS  PubMed  Google Scholar 

  • Grahnert A, Klein C, Hauschildt S (2009) Involvement of P2X receptors in the NAD+-induced rise in [Ca2+]i in human monocytes. PUSI 5:309–319

    CAS  Google Scholar 

  • Grahnert A, Grahnert A, Klein C, Schilling E, Wehrhahn J, Hauschildt S (2011) NAD +: a modulator of immune functions. Innate Immun 17:212–233

    Article  CAS  PubMed  Google Scholar 

  • Haas M, Shaaban A, Reiser G (2014) Alanine-(87)-threonine polymorphism impairs signaling and internalization of the human P2Y11 receptor, when co-expressed with the P2Y1 receptor. J Neurochem 129:602–613

    Article  CAS  PubMed  Google Scholar 

  • Han F, Faraco J, Dong XS et al (2013) Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet 9:e1003880

    Article  PubMed  PubMed Central  Google Scholar 

  • Higgins G, Buchanan P, Perriere M, Al-Alawi M, Costello RW, Verriere V, McNally P, Harvey BJ, Urbach V (2014) Activation of P2RY11 and ATP release by lipoxin A4 restores the airway surface liquid layer and epithelial repair in cystic fibrosis. Am J Respir Cell Mol Biol 51:178–190

    PubMed  Google Scholar 

  • Hoffmann C, Ziegler N, Reiner S, Krasel C, Lohse MJ (2008) Agonist-selective, receptor-specific interaction of human P2Y receptors with β-arrestin-1 and -2. J Biol Chem 283:30933–30941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimaru M, Tsukimoto M, Harada H, Kojima S (2013) Involvement of P2Y11 receptor in IFN-γ -induced IL-6 production in human keratinocytes. Eur J Pharmacol 703:67–73

    Google Scholar 

  • Kamal M, Maurice P, Jockers R (2011) Expanding the concept of G protein-coupled receptor (GPCR) dimer asymmetry towards GPCR-interacting proteins. Pharmaceuticals 4:273–284

    Article  CAS  PubMed Central  Google Scholar 

  • Kenakin T (1997) Pharmacologic analysis of drug-receptor interaction, 3rd edn. Lippencott-Raven Publishers, Philadelphia

    Google Scholar 

  • Kennedy C, Chootip K, Mitchell C, Syed NH, Tengah A (2013) P2X and P2Y nucleotide receptors as targets in cardiovascular disease. Future Med Chem 5:431–439

    Article  CAS  PubMed  Google Scholar 

  • Klein C, Grahnert A, Abdelrahman A, Müller CE, Hauschildt S (2009) Extracellular NAD+ induces a rise in [Ca2+]i in activated human monocytes via engagement of P2Y1 and P2Y11 receptors. Cell Calcium 46:263–272

    Article  CAS  PubMed  Google Scholar 

  • Kornum BR, Kawashima M, Faraco J et al (2011) Common variants in P2RY11 are associated with narcolepsy. Nat Genet 43:66–71

    Article  CAS  PubMed  Google Scholar 

  • Lutz S, Freichel-Blomquist A, Yang Y, Rümenapp U, Jakobs KH, Schmidt M, Wieland T (2005) The guanine nucleotide exchange factor p63RhoGEF, a specific link between Gq/11-coupled receptor signaling and RhoA. J Biol Chem 280:11134–11139

    Article  CAS  PubMed  Google Scholar 

  • Meis S, Hamacher A, Hongwiset D, Marzian C, Wiese M, Eckstein N, Royer HD, Communi D, Boeynaems JM, Hausmann R, Schmalzing G, Kassack MU (2010) NF546 [4,4′-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)-carbonylimino))-bis(1,3-xylene-alpha, alpha’-diphosphonic acid) tetrasodium salt] is a non-nucleotide P2Y11 agonist and stimulates release of interleukin-8 from human monocytes. J Pharmacol Exp Ther 332:238–247

    Article  CAS  PubMed  Google Scholar 

  • Milligan G (2013) The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol Pharmacol 84:158–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreschi I, Bruzzone S, Nicholas RA, Fruscione F, Sturla L, Benvenuto F, Usai C, Meis S, Kassack MU, Zocchi E, De Flora A (2006) Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes. J Biol Chem 281:31419–31429

    Article  CAS  PubMed  Google Scholar 

  • Moreschi I, Bruzzone S, Bodrato N, Usai C, Guida L, Nicholas RA, Kassack MU, Zocchi E, De Flora A (2008) NAADP+ is an agonist of the human P2Y11 purinergic receptor. Cell Calcium 43:344–355

    Article  CAS  PubMed  Google Scholar 

  • Morrow GB, Nicholas RA, Kennedy C (2014) UTP is not a biased agonist at human P2Y11 receptors. Purinergic Signal 10:581–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer RK, Boyer JL, Schachter JB, Nicholas RA, Harden TK (1998) Agonist action of adenosine triphosphates at the human P2Y1 receptor. Mol Pharmacol 54:1118–1123

    CAS  PubMed  Google Scholar 

  • Pliyev BK, Ivanova AV, Savchenko VG (2014) Extracellular NAD+ inhibits human neutrophil apoptosis. Apoptosis 19:581–593

    Article  CAS  PubMed  Google Scholar 

  • Qi AD, Kennedy C, Harden TK, Nicholas RA (2001a) Differential coupling of the human P2Y11 receptor to phospholipase C and adenylyl cyclase. Br J Pharmacol 132:318–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi AD, Zambon AC, Insel PA, Nicholas RA (2001b) An arginine/glutamine difference at the juxtaposition of transmembrane domain 6 and the third extracellular loop contributes to the markedly different nucleotide selectivities of human and canine P2Y11 receptors. Mol Pharmacol 60:1375–1382

    CAS  PubMed  Google Scholar 

  • Ribeiro-Filho AC, Buri MV, Barros CC, Dreyfuss JL, Nader HB, Justo GZ, Craveiro RB, Pesquero JB, Miranda A, Ferreira AT, Paredes-Gamero EJ (2016) Functional and molecular evidence for heteromeric association of P2Y1 receptor with P2Y2 and P2Y4 receptors in mouse granulocytes. BMC Pharmacol Toxicol 17:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubartelli A, Lotze MT (2007) Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28:429–436

    Article  CAS  PubMed  Google Scholar 

  • Sakaki H, Tsukimoto M, Harada H, Moriyama Y, Kojima S (2013) Autocrine regulation of macrophage activation via exocytosis of ATP and activation of P2Y11 receptor. PLoS One 8:e59778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savi P, Zachayus JL, Delesque-Touchard N, Labouret C, Hervé C, Uzabiaga MF, Pereillo JM, Culouscou JM, Bono F, Ferrara P, Herbert JM (2006) The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci U S A 103:11069–11074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakya Shrestha S, Parmar M, Kennedy C, Bushell T (2010) Two-pore potassium ion channels are inhibited by both Gq/11- and Gi-coupled P2Y receptors. Mol Cell Neurosci 43:363–369

    Article  Google Scholar 

  • Suarez-Huerta N, Boeynaems JM, Communi D (2000) Cloning, genomic organization, and tissue distribution of human Ssf-1. Biochem Biophys Res Commun 275:37–42

    Article  CAS  PubMed  Google Scholar 

  • Suh BC, Kim TD, Lee IS, Kim KT (2000) Differential regulation of P2Y11 receptor-mediated signalling to phospholipase C and adenylyl cyclase by protein kinase C in HL-60 promyelocytes. Br J Pharmacol 131:489–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Ann Rev Pharmacol Toxicol 36:461–480

    Article  CAS  Google Scholar 

  • Ullmann H, Meis S, Hongwiset D, Marzian C, Wiese M, Nickel P, Communi D, Boeynaems JM, Wolf C, Hausmann R, Schmalzing G, Kassack MU (2005) Synthesis and structure-activity relationships of suramin-derived P2Y11 receptor antagonists with nanomolar potency. J Med Chem 48:7040–7048

    Article  CAS  PubMed  Google Scholar 

  • van der Weyden L, Adams DJ, Luttrell BM, Conigrave AD, Morris MB (2000) Pharmacological characterisation of the P2Y11 receptor in stably transfected haematological cell lines. Mol Cell Biochem 213:75–81

    Article  PubMed  Google Scholar 

  • Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC, Bergmann JE, Gaitanaris GA (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A 100:4903–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan KR, Stokes L, Prince LR, Marriott HM, Meis S, Kassack MU, Bingle CD, Sabroe I, Surprenant A, Whyte MK (2007) Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. J Immunol 179:8544–8553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vial C, Fung CY, Goodall AH, Mahaut-Smith MP, Evans RJ (2006) Differential sensitivity of human platelet P2X1 and P2Y1 receptors to disruption of lipid rafts. Biochem Biophys Res Comm 343:415–419

    Article  CAS  PubMed  Google Scholar 

  • Von Kügelgen I, Harden TK (2011) Molecular pharmacology, physiology, and structure of the P2Y receptors. Adv Pharmacol 61:373–415

    Article  Google Scholar 

  • White PJ, Webb TE, Boarder MR (2003) Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signalling. Mol Pharmacol 63:1356–1363

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki M, Miyagawa T, Toyoda H, Khor SS, Liu X, Kuwabara H, Kano Y, Shimada T, Sugiyama T, Nishida H, Sugaya N, Tochigi M, Otowa T, Okazaki Y, Kaiya H, Kawamura Y, Miyashita A, Kuwano R, Kasai K, Tanii H, Sasaki T, Honda Y, Honda M, Tokunaga K (2016) Evaluation of polygenic risks for narcolepsy and essential hypersomnia. J Hum Gene 61:873–878

    Article  CAS  Google Scholar 

  • Zambon AC, Brunton LL, Barrett KE, Hughes RJ, Torres B, Insel PA (2001) Cloning, expression, signaling mechanisms, and membrane targeting of P2Y11 receptors in Madin Darby canine kidney cells. Mol Pharmacol 60:26–35

    CAS  PubMed  Google Scholar 

  • Zhang K, Zhang J, Gao ZG, Zhang D, Zhu L, Han GW, Moss SM, Paoletta S, Kiselev E, Lu W, Fenalti G, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509:115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zylberg J, Ecke D, Fischer B, Reiser G (2007) Structure and ligand-binding site characteristics of the human P2Y11 nucleotide receptor deduced from computational modelling and mutational analysis. Biochem J 405:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of Interest

The author declares that he has no conflict of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Kennedy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kennedy, C. (2017). P2Y11 Receptors: Properties, Distribution and Functions. In: Atassi, M. (eds) Protein Reviews. Advances in Experimental Medicine and Biology(), vol 1051. Springer, Singapore. https://doi.org/10.1007/5584_2017_89

Download citation

Publish with us

Policies and ethics