Skip to main content

Dental Pulp Stem Cells and Neurogenesis

  • Conference paper
  • First Online:
Stem Cells: Biology and Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((ICRRM,volume 1083))

Abstract

Recent advances in regenerative medicine and cell-based therapy are bringing promising perspectives for the use of stem cells in clinical trials. Stem cells are undifferentiated cells capable of multilineage differentiation and available in numerous sources in the human body. Dental pulp constitutes an attractive source of these cells since collecting mesenchymal stem cells from this site is a noninvasive procedure which can be done following a common surgical extraction of supernumerary or wisdom teeth. Thus tissue sacrifice is very low and several cytotypes can be obtained owing to these cells’ multipotency, in addition to the fact that they can be cryopreserved and stored for long periods. Mesenchymal stem cells have high proliferation rates making them favorable for clinical application. These multipotent cells present in a biological waste constitute an appropriate support in the management of many neurological disorders. After a brief overview on the different types of dental stem cells, this chapter will focus on the characteristics of dental pulp stem cells, their handling and applications in neural tissue engineering, as well as neural induction protocols leading to their potential therapeutic use in the management of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

a-MEM:

Minimum essential medium, alpha modification

ATRA:

All-trans retinoic acid

BMMSCs:

Bone marrow mesenchymal stem cells

DFPCs:

Dental follicle progenitor cells

DFSCs:

Dental follicle stem cells

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

DSCs:

Dental stem cells

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

MAP 2:

Microtubule-associated protein 2

MSCs:

Mesenchymal stem cells

NSE:

Neuron-specific enolase

PDLSCs:

Periodontal ligament stem cells

rMSCs:

Rat bone marrow mesenchymal stem cells

SCAP:

Stem cells from apical papilla

SHED:

Stem cells from human exfoliated deciduous teeth

TNC:

Tenascin C

References

  • About, I. (2013). Dentin–pulp regeneration: The primordial role of the microenvironment and its modification by traumatic injuries and bioactive materials. Endodontic Topics, 28, 61–89.

    Article  Google Scholar 

  • Alge, D. L., Zhou, D., Adams, L. L., Wyss, B. K., Shadday, M. D., Woods, E. J., Chu, T. M. G., & Goebel, W. S. (2010). Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. Journal of Tissue Engineering and Regenerative Medicine, 4, 73–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aloe, L., Rocco, M. L., Omar Balzamino, B., & Micera, A. (2015). Nerve growth factor: A focus on Neuroscience and therapy. Current Neuropharmacology, 13, 294–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakopoulou, A., Leyhausen, G., Volk, J., Tsiftsoglou, A., Garefis, P., Koidis, P., & Geurtsen, W. (2011). Assessment of the impact of two different isolation methods on the osteo/odontogenic differentiation potential of human dental stem cells derived from deciduous teeth. Calcified Tissue International, 88, 130–141.

    Article  CAS  PubMed  Google Scholar 

  • Baume, L. J. (1980). The biology of pulp and dentine. A historic, terminologic-taxonomic, histologic-biochemical, embryonic and clinical survey. Monographs in Oral Science, 8, 1–220.

    CAS  PubMed  Google Scholar 

  • Blau, H. M., & Baltimore, D. (1991). Differentiation requires continuous regulation. The Journal of Cell Biology, 112, 781–783.

    Article  CAS  PubMed  Google Scholar 

  • Brewer, G. J., Torricelli, J. R., Evege, E. K., & Price, P. J. (1993). Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. Journal of Neuroscience Research, 35, 567–576.

    Article  CAS  PubMed  Google Scholar 

  • Chai, Y., Jiang, X., Ito, Y., Bringas, P., Jr., Han, J., Rowitch, D. H., Soriano, P., Mcmahon, A. P., & Sucov, H. M. (2000). Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 127, 1671–1679.

    CAS  PubMed  Google Scholar 

  • Dai, J. W., Yuan, H., Shen, S. Y., Lu, J. T., Zhu, X. F., Yang, T., Zhang, J. F., & Shen, G. F. (2013). p75 neurotrophin receptor positive dental pulp stem cells: New hope for patients with neurodegenerative disease and neural injury. Shanghai Kou Qiang Yi Xue, 22, 469–472.

    PubMed  Google Scholar 

  • D’aquino, R., Graziano, A., Sampaolesi, M., Laino, G., Pirozzi, G., De Rosa, A., & Papaccio, G. (2007). Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: A pivotal synergy leading to adult bone tissue formation. Cell Death and Differentiation, 14, 1162–1171.

    Article  CAS  PubMed  Google Scholar 

  • D’aquino, R., De Rosa, A., Laino, G., Caruso, F., Guida, L., Rullo, R., Checchi, V., Laino, L., Tirino, V., & Papaccio, G. (2009). Human dental pulp stem cells: From biology to clinical applications. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 312b, 408–415.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, R. M. (1994). Neural form of voltage-dependent sodium current in human cultured dental pulp cells. Archives of Oral Biology, 39, 613–620.

    Article  CAS  PubMed  Google Scholar 

  • Dezawa, M., Kanno, H., Hoshino, M., Cho, H., Matsumoto, N., Itokazu, Y., Tajima, N., Yamada, H., Sawada, H., Ishikawa, H., Mimura, T., Kitada, M., Suzuki, Y., & Ide, C. (2004). Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. Journal of Clinical Investigation, 113, 1701–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrova-Nakov, S., Baudry, A., Harichane, Y., Kellermann, O., & Goldberg, M. (2014). Pulp stem cells: Implication in reparative dentin formation. Journal of Endodontia, 40, S13–S18.

    Article  Google Scholar 

  • Ding, G., Niu, J., & Wei, F. (2015). Current understanding of orofacial tissue derived mesenchymal stem cells: An immunological perspective. Histology and Histopathology, 30, 255–265.

    CAS  PubMed  Google Scholar 

  • Doi, M., Nagano, A., & Nakamura, Y. (2004). Molecular cloning and characterization of a novel gene, EMILIN-5, and its possible involvement in skeletal development. Biochemical and Biophysical Research Communications, 313, 888–893.

    Article  CAS  PubMed  Google Scholar 

  • Feng, X., Xing, J., Feng, G., Sang, A., Shen, B., Xu, Y., Jiang, J., Liu, S., Tan, W., Gu, Z., & Li, L. (2013). Age-dependent impaired neurogenic differentiation capacity of dental stem cell is associated with Wnt/beta-catenin signaling. Cellular and Molecular Neurobiology, 33, 1023–1031.

    Article  CAS  PubMed  Google Scholar 

  • Feng, X., Lu, X., Huang, D., Xing, J., Feng, G., Jin, G., Yi, X., Li, L., Lu, Y., Nie, D., Chen, X., Zhang, L., Gu, Z., & Zhang, X. (2014). 3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells. Cellular and Molecular Neurobiology, 34, 859–870.

    Article  CAS  PubMed  Google Scholar 

  • Ferro, F., Spelat, R., Beltrami, A. P., Cesselli, D., & Curcio, F. (2012). Isolation and characterization of human dental pulp derived stem cells by using media containing low human serum percentage as clinical grade substitutes for bovine serum. PloS One, 7, e48945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foudah, D., Monfrini, M., Donzelli, E., Niada, S., Brini, A. T., Orciani, M., Tredici, G., & Miloso, M. (2014). Expression of neural markers by undifferentiated mesenchymal-like stem cells from different sources. Journal of Immunology Research, 2014, 16.

    Article  CAS  Google Scholar 

  • Frescaline, G., Bouderlique, T., Mansoor, L., Carpentier, G., Baroukh, B., Sineriz, F., Trouillas, M., Saffar, J.-L., Courty, J., Lataillade, J.-J., Papy-Garcia, D., & Albanese, P. (2013). Glycosaminoglycan mimetic associated to human mesenchymal stem cell-based scaffolds inhibit ectopic bone formation, but induce angiogenesis in vivo. Tissue Engineering. Part A, 19, 1641–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gervois, P., Struys, T., Hilkens, P., Bronckaers, A., Ratajczak, J., Politis, C., BrĂ´ne, B., Lambrichts, I., & Martens, W. (2015). Neurogenic maturation of human dental pulp stem cells following Neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells and Development, 24, 296–311.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, M., & Smith, A. J. (2004). Cells and extracellular matrices of dentin and pulp: A biological basis for repair and tissue engineering. Critical Reviews in Oral Biology and Medicine, 15, 13–27.

    Article  PubMed  Google Scholar 

  • Govindasamy, V., Abdullah, A. N., Ronald, V. S., Musa, S., Ab Aziz, Z. A., Zain, R. B., Totey, S., Bhonde, R. R., & Abu Kasim, N. H. (2010). Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. Journal of Endodontia, 36, 1504–1515.

    Article  Google Scholar 

  • Govindasamy, V., Ronald, V. S., Abdullah, A. N., Ganesan Nathan, K. R., Aziz, Z. A., Abdullah, M., Zain, R. B., Kasim, N. H., Musa, S., & Bhonde, R. R. (2011). Human platelet lysate permits scale-up of dental pulp stromal cells for clinical applications. Cytotherapy, 13, 1221–1233.

    Article  CAS  PubMed  Google Scholar 

  • Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 13625–13630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., Denbesten, P., Robey, P. G., & Shi, S. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81, 531–535.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L., Li, J., Qiao, X., Yu, M., Tang, W., Wang, H., Guo, W., & Tian, W. (2013). Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. PloS One, 8, e62332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hata, N., Shinojima, N., Gumin, J., Yong, R., Marini, F., Andreeff, M., & Lang, F. F. (2010). PDGF-BB mediates the tropism of human mesenchymal stem cells for malignant gliomas. Neurosurgery, 66, 144–157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemmat, S., Lieberman, D. M., & Most, S. P. (2010). An introduction to stem cell biology. Facial Plastic Surgery, 26, 343–349.

    Article  CAS  PubMed  Google Scholar 

  • Hilkens, P., Gervois, P., Fanton, Y., Vanormelingen, J., Martens, W., Struys, T., Politis, C., Lambrichts, I., & Bronckaers, A. (2013). Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell and Tissue Research, 353, 65–78.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., Zhang, Y. A. N., Tian, K., Xun, C., Wang, S., & Lv, D. (2016). Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Molecular Medicine Reports, 13, 49–58.

    Article  CAS  PubMed  Google Scholar 

  • Huang, A. H., Chen, Y. K., Lin, L. M., Shieh, T. Y., & Chan, A. W. (2008). Isolation and characterization of dental pulp stem cells from a supernumerary tooth. Journal of Oral Pathology & Medicine, 37, 571–574.

    Article  CAS  Google Scholar 

  • Iwasaki, K., Komaki, M., Yokoyama, N., Tanaka, Y., Taki, A., Kimura, Y., Takeda, M., Oda, S., Izumi, Y., & Morita, I. (2013). Periodontal ligament stem cells possess the characteristics of pericytes. Journal of Periodontology, 84, 1425–1433.

    Article  CAS  PubMed  Google Scholar 

  • Jalali, A., Bassuk, A. G., Kan, L., Israsena, N., Mukhopadhyay, A., Mcguire, T., & Kessler, J. A. (2011). HeyL promotes neuronal differentiation of neural progenitor cells. Journal of Neuroscience Research, 89, 299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, S., Panchalingam, K. M., Rosenberg, L., & Behie, L. A. (2012). Ex vivo expansion of human mesenchymal stem cells in defined serum-free media. Stem Cells International, 2012, 21.

    Article  CAS  Google Scholar 

  • Kadar, K., Kiraly, M., Porcsalmy, B., Molnar, B., Racz, G. Z., Blazsek, J., Kallo, K., Szabo, E. L., Gera, I., Gerber, G., & Varga, G. (2009). Differentiation potential of stem cells from human dental origin - promise for tissue engineering. Journal of Physiology and Pharmacology, 60(Suppl 7), 167–175.

    PubMed  Google Scholar 

  • Karaoz, E., Dogan, B. N., Aksoy, A., Gacar, G., Akyuz, S., Ayhan, S., Genc, Z. S., Yuruker, S., Duruksu, G., Demircan, P. C., & Sariboyaci, A. E. (2010). Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochemistry and Cell Biology, 133, 95–112.

    Article  CAS  PubMed  Google Scholar 

  • Kawashima, N. (2012). Characterisation of dental pulp stem cells: A new horizon for tissue regeneration? Archives of Oral Biology, 57, 1439–1458.

    Article  PubMed  Google Scholar 

  • Kerkis, I., & Caplan, A. I. (2012). Stem cells in dental pulp of deciduous teeth. Tissue Engineering. Part B, Reviews, 18, 129–138.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H., Zahir, T., Tator, C. H., & Shoichet, M. S. (2011). Effects of dibutyryl cyclic-AMP on survival and neuronal differentiation of neural stem/progenitor cells transplanted into spinal cord injured rats. PloS One, 6, e21744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiraly, M., Kadar, K., Horvathy, D. B., Nardai, P., Racz, G. Z., Lacza, Z., Varga, G., & Gerber, G. (2011). Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochemistry International, 59, 371–381.

    Article  CAS  PubMed  Google Scholar 

  • La Noce, M., Mele, L., Tirino, V., Paino, F., De Rosa, A., Naddeo, P., Papagerakis, P., Papaccio, G., & Desiderio, V. (2014). Neural crest stem cell population in craniomaxillofacial development and tissue repair. European Cells & Materials, 28, 348–357.

    Article  CAS  Google Scholar 

  • Laino, G., D’aquino, R., Graziano, A., Lanza, V., Carinci, F., Naro, F., Pirozzi, G., & Papaccio, G. (2005). A new population of human adult dental pulp stem cells: A useful source of living autologous fibrous bone tissue (LAB). Journal of Bone and Mineral Research, 20, 1394–1402.

    Article  CAS  PubMed  Google Scholar 

  • Ledesma-MartĂ­nez, E., Mendoza-Núñez, V. M., & Santiago-Osorio, E. (2016). Mesenchymal stem cells derived from dental pulp: A review. Stem Cells International, 2016, 12.

    Article  CAS  Google Scholar 

  • Lee, J. H., Lee, D. S., Choung, H. W., Shon, W. J., Seo, B. M., Lee, E. H., Cho, J. Y., & Park, J. C. (2011). Odontogenic differentiation of human dental pulp stem cells induced by preameloblast-derived factors. Biomaterials, 32, 9696–9706.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Gronthos, S., & Shi, S. (2006). Dental pulp stem cells. Methods in Enzymology, 419, 99–113.

    Article  CAS  PubMed  Google Scholar 

  • Lizier, N. F., Kerkis, A., Gomes, C. M., Hebling, J., Oliveira, C. F., Caplan, A. I., & Kerkis, I. (2012). Scaling-up of dental pulp stem cells isolated from multiple niches. PloS One, 7, e39885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Y., Yuan, X., Ou, Y., Cai, Y., Wang, S., Sun, Q., & Zhang, W. (2012). Autophagy and apoptosis during adult adipose-derived stromal cells differentiation into neuron-like cells in vitro. Neural Regeneration Research, 7, 1205–1212.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martens, W., Wolfs, E., Struys, T., Politis, C., Bronckaers, A., & Lambrichts, I. (2012). Expression pattern of basal markers in human dental pulp stem cells and tissue. Cells, Tissues, Organs, 196, 490–500.

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay, A., Jarrett, J., Chlon, T., & Kessler, J. A. (2009). HeyL regulates the number of TrkC neurons in dorsal root ganglia. Developmental Biology, 334, 142–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanci, A. (2007). Ten Cate’s oral histology - Pageburst on VitalSource: Development, structure, and function. Elsevier Health Sciences.

    Google Scholar 

  • Ni, L., Wen, Y., Peng, X., & Jonakait, G. M. (2001). Antioxidants N-acetylcysteine (NAC) and 2-mercaptoethanol (2-ME) affect the survival and differentiative potential of cholinergic precursors from the embryonic septal nuclei and basal forebrain: Involvement of ras signaling. Brain Research. Developmental Brain Research, 130, 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Osathanon, T., Manokawinchoke, J., Nowwarote, N., Aguilar, P., Palaga, T., & Pavasant, P. (2013). Notch signaling is involved in neurogenic commitment of human periodontal ligament-derived mesenchymal stem cells. Stem Cells and Development, 22, 1220–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osathanon, T., Sawangmake, C., Nowwarote, N., & Pavasant, P. (2014). Neurogenic differentiation of human dental pulp stem cells using different induction protocols. Oral Diseases, 20, 352–358.

    Article  CAS  PubMed  Google Scholar 

  • Park, H. Y., Kim, J. H., Sun Kim, H., & Park, C. K. (2012). Stem cell-based delivery of brain-derived neurotrophic factor gene in the rat retina. Brain Research, 1469, 10–23.

    Article  CAS  PubMed  Google Scholar 

  • Paschalidis, T., Bakopoulou, A., Papa, P., Leyhausen, G., Geurtsen, W., & Koidis, P. (2014). Dental pulp stem cells’ secretome enhances pulp repair processes and compensates TEGDMA-induced cytotoxicity. Dental Materials, 30, e405–e418.

    Article  CAS  PubMed  Google Scholar 

  • Racz, G. Z., Kadar, K., Foldes, A., Kallo, K., Perczel-Kovach, K., Keremi, B., Nagy, A., & Varga, G. (2014). Immunomodulatory and potential therapeutic role of mesenchymal stem cells in periodontitis. Journal of Physiology and Pharmacology, 65, 327–339.

    CAS  PubMed  Google Scholar 

  • Ranganathan, K., & Lakshminarayanan, V. (2012). Stem cells of the dental pulp. Indian Journal of Dental Research, 23, 558.

    Article  CAS  PubMed  Google Scholar 

  • Raoof, M., Yaghoobi, M. M., Derakhshani, A., Kamal-Abadi, A. M., Ebrahimi, B., Abbasnejad, M., & Shokouhinejad, N. (2014). A modified efficient method for dental pulp stem cell isolation. Dent Res J (Isfahan), 11, 244–250.

    CAS  Google Scholar 

  • Roozafzoon, R., Lashay, A., Vasei, M., AI, J., Khoshzaban, A., Keshel, S. H., Barabadi, Z., & Bahrami, H. (2015). Dental pulp stem cells differentiation into retinal ganglion-like cells in a three dimensional network. Biochemical and Biophysical Research Communications, 457, 154–160.

    Article  CAS  PubMed  Google Scholar 

  • Saito, M. T., SilvĂ©rio, K. G., Casati, M. Z., Sallum, E. A., & Nociti, F. H., Jr. (2015). Tooth-derived stem cells: Update and perspectives. World Journal of Stem Cells, 7, 399–407.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakai, K., Yamamoto, A., Matsubara, K., Nakamura, S., Naruse, M., Yamagata, M., Sakamoto, K., tauchi, R., wakao, N., Imagama, S., Hibi, H., Kadomatsu, K., Ishiguro, N., & Ueda, M. (2012). Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. The Journal of Clinical Investigation, 122, 80–90.

    CAS  PubMed  Google Scholar 

  • Santa-Olalla, J., & Covarrubias, L. (1995). Epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha), and basic fibroblast growth factor (bFGF) differentially influence neural precursor cells of mouse embryonic mesencephalon. Journal of Neuroscience Research, 42, 172–183.

    Article  CAS  PubMed  Google Scholar 

  • Santos, N. C., Figueira-Coelho, J., Martins-Silva, J., & Saldanha, C. (2003). Multidisciplinary utilization of dimethyl sulfoxide: Pharmacological, cellular, and molecular aspects. Biochemical Pharmacology, 65, 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  • SilvĂ©rio, K. G., Davidson, K. C., James, R. G., Adams, A. M., Foster, B. L., Nociti, F. H., Somermam, M. J., & Moon, R. T. (2012). Wnt/β-catenin pathway regulates Bmp2-mediated differentiation of dental follicle cells. Journal of Periodontal Research, 47. doi:10.1111/j.1600-0765.2011.01433.x.

    Article  CAS  PubMed  Google Scholar 

  • Sonoyama, W., Yamaza, T., Gronthos, S., & Shi, S. (2007). Multipotent stem cells in dental pulp. In Culture of human stem cells. Hoboken: Wiley.

    Google Scholar 

  • Suchanek, J., Visek, B., Soukup, T., El-Din Mohamed, S. K., Ivancaková, R., Mokrỳ, J., Aboul-Ezz, E. H., & Omran, A. (2010). Stem cells from human exfoliated deciduous teeth--isolation, long term cultivation and phenotypical analysis. Acta Medica (Hradec KrálovĂ©), 53, 93–99.

    Article  Google Scholar 

  • Sun, H.-H., Chen, B., Zhu, Q.-L., Kong, H., Li, Q.-H., Gao, L.-N., Xiao, M., Chen, F.-M., & Yu, Q. (2014). Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Biomaterials, 35, 9459–9472.

    Article  CAS  PubMed  Google Scholar 

  • Tamaki, Y., Nakahara, T., Ishikawa, H., & Sato, S. (2013). In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow. Odontology, 101, 121–132.

    Article  CAS  Google Scholar 

  • Tatullo, M., Marrelli, M., Shakesheff, K. M., & White, L. J. (2015). Dental pulp stem cells: Function, isolation and applications in regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 9, 1205–1216.

    Article  PubMed  Google Scholar 

  • Tsiperson, V., Huang, Y., Bagayogo, I., Song, Y., Vondran, M. W., Dicicco-Bloom, E. & Dreyfus, C. F. 2015. Brain-derived neurotrophic factor deficiency restricts proliferation of oligodendrocyte progenitors following Cuprizone-induced demyelination. ASN Neuro, 7, 1759091414566878.

    Article  CAS  Google Scholar 

  • Van Kooten, T. G., Spijker, H. T., & Busscher, H. J. (2004). Plasma-treated polystyrene surfaces: Model surfaces for studying cell-biomaterial interactions. Biomaterials, 25, 1735–1747.

    Article  CAS  PubMed  Google Scholar 

  • Wada, N., Menicanin, D., Shi, S., Bartold, P. M., & Gronthos, S. (2009). Immunomodulatory properties of human periodontal ligament stem cells. Journal of Cellular Physiology, 219, 667–676.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, L., & Nasu, M. (2014). From regenerative dentistry to regenerative medicine: Progress, challenges, and potential applications of oral stem cells. Stem Cells and Cloning: Advances and Applications, 7, 89–99.

    CAS  Google Scholar 

  • Xiao, L., & Tsutsui, T. (2013). Characterization of human dental pulp cells-derived spheroids in serum-free medium: Stem cells in the core. Journal of Cellular Biochemistry, 114, 2624–2636.

    Article  CAS  PubMed  Google Scholar 

  • Yalvac, M. E., Ramazanoglu, M., Rizvanov, A. A., Sahin, F., Bayrak, O. F., Salli, U., Palotas, A., & Kose, G. T. (2010). Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: Implications in neo-vascularization, osteo-, adipo- and neurogenesis. The Pharmacogenomics Journal, 10, 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, H., & Chai, Y. (2015). Stem cells in teeth and craniofacial bones. Journal of Dental Research, 94, 1495–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Mortada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mortada, I., Mortada, R., Al Bazzal, M. (2017). Dental Pulp Stem Cells and Neurogenesis. In: Van Pham, P. (eds) Stem Cells: Biology and Engineering. Advances in Experimental Medicine and Biology(), vol 1083. Springer, Cham. https://doi.org/10.1007/5584_2017_71

Download citation

Publish with us

Policies and ethics