Biofilm-Forming Ability and Clonality in Acinetobacter baumannii Strains Isolated from Urine Samples and Urinary Catheters in Different European Hospitals

  • Claudia Vuotto
  • Filipa Grosso
  • Francesca Longo
  • Maria Pia Balice
  • Mariana Carvalho de Barros
  • Luisa Peixe
  • Gianfranco Donelli
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1057)



Biofilm formation has been associated with the persistence of Acinetobacter baumannii in hospital settings and its propensity to cause infection. We investigated the adhesion ability and clonality of 128 A. baumannii isolates recovered from urine and urinary catheters of patients admitted to 5 European hospitals during 1991–2013.


Isolates identification was confirmed by rpoB sequencing and by the presence of blaOXA-51. The presence of carbapenemases was detected by PCR. Clonality was determined by Sequence Group (SG) identification, Pulsed field gel electrophoresis (PFGE) and Multilocus sequence typing. Adhesion ability was defined by quantitative biofilm production assay and biofilms were characterized by Confocal Laser Microscopy and Scanning Electron Microscopy.


The 128 isolates, either resistant (85.9%) or susceptible (14.1%) to carbapenems, and belonging to 50 different PFGE types and 24 different STs, were distributed among SG1 (67.2%), SG2 (10.2%) and other allelic profiles (22.7%). ST218 was the most frequent ST, corresponding to 54,5% of the isolates collected between 2011 and 2013. Among the 109 isolates showing resistance to at least 1 carbapenem, 55% revealed the presence of an acquired carbapenem-hydrolyzing class D - lactamases (CHDL): blaOXA-23 were the most frequent gene detected from 2008 onwards (75%). Among all the clinical isolates, 42.2% were strong biofilm producers, with the older isolates having the highest adhesion ability. Most isolates recovered later, belonging to ST218 and harbouring blaOXA-23, were homogeneously less adhesive.


An evolution towards a decrease in adhesion ability and a CHDL content change was observed along the years in several European countries.


Acinetobacter baumannii Clonality Biofilm Urinary infection Carbapenem resistance 



We thank (in alphabetical order) Edoardo Carretto (Clinical Microbiology Laboratory, IRCCS - Arcispedale Santa Maria Nuova, Reggio Emilia, Italy), Anna Giammanco (Department of Sciences for Health Promotion and Mother-Child Care “G.D’Alessandro”, Palermo, Italy), Ivana Goic-Barisic (Clinical Department of Microbiology and Parasitology, Split University Hospital and School of Medicine, Split, Croatia), Veronica Hola (Institute for Microbiology Masaryk, University Pekarska, Brno, Czech Republic), Piero Marone (Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy), Maria Teresa Mascellino (Dip. Sanita’ Pubblica E Malattie Infettive, Sapienza University, Rome, Italy), Harald Seifert (Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany), Sonja Swidsinski (Department of Microbiology, Vivantes Hospital, Berlin, Germany) for kindly providing us with Acinetobacter baumannii clinical isolates. Italian authors are also indebted to Antonino Salvia, Director of Medical Services of the Fondazione Santa Lucia in Rome, for the useful information and advice on the clinical issues of this research.

Transparency Declaration

The authors declare no conflicts of interest.

Financial Support

This study was partially funded by the ESCMID Study Group for Biofilms with the Research Grant 5833 assigned to Gianfranco Donelli and Luisa Peixe.


  1. Adams-Haduch JM, Onuoha EO, Bogdanovich T, Tian GB, Marschall J, Urban CM, Spellberg BJ, Rhee D, Halstead DC et al (2011) Molecular epidemiology of carbapenem-non susceptible Acinetobacter baumannii in the United States. J Clin Microbiol 49:3849–3854CrossRefGoogle Scholar
  2. Antunes LCS, Visca P, Towner KJ (2014) Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 71:292–301CrossRefGoogle Scholar
  3. Bartual SG, Seifert H, Hippler C, Luzon MA, Wisplinghoff H, Rodríguez-Valera F (2005) Development of a multi locus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 43:4382–4390CrossRefGoogle Scholar
  4. CLSI. Performance standards for antimicrobial susceptibility testing; twentieth informational supplement (2011) CLSI document M100-S21. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  5. Dettori M, Piana A, Deriu MG, Lo Curto P, Cossu A, Musumeci R et al (2014) Outbreak of multidrug-resistant Acinetobacter baumannii in an intensive care unit. New Microbiol 37:185–191PubMedGoogle Scholar
  6. Djeribi R, Bouchloukh W, Jouenne T, Menaa B (2012) Characterization of bacterial biofilms formed on urinary catheters. Am J Infect Control 40:854–859CrossRefGoogle Scholar
  7. Donelli G, Vuotto C, Cardines R, Mastrantonio P (2012) Biofilm-growing intestinal anaerobic bacteria. FEMS Immunol Med Microbiol 65:318–325CrossRefGoogle Scholar
  8. Eijkelkamp BA, Stroeher UH, Hassan KA, Papadimitrious MS, Paulsen IT, Brown MH (2011) Adherence and motility characteristics of clinical Acinetobacter baumannii isolates. FEMS Microbiol Lett 323:44–51CrossRefGoogle Scholar
  9. Espiral P, Martì S, Vila J (2014) Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect 80:56–60CrossRefGoogle Scholar
  10. Farshadzadeh Z, Hashemi FB, Rahimi S, Pourakbari B, Esmaeili D, Haghighi MA, Majidpour A, Shojaa S, Rahmani M et al (2015) Wide distribution of carbapenem resistant Acinetobacter baumannii in burns patients in Iran. Front Microbiol 6:1146CrossRefGoogle Scholar
  11. Fu Y, Zhou J, Zhou H, Yang Q, Wei Z, Yu Y, Li L (2010) Wide dissemination of OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal complex 22 in multiple cities of China. J Antimicrob Chemother 65:644–650CrossRefGoogle Scholar
  12. Giannouli M, Antunes LC, Marchetti V, Triassi M, Visca P, Zarrilli R (2013) Virulence-related traits of epidemic Acinetobacter baumannii strains belonging to the international clonal lineages I-III and to the emerging genotypes ST25 and ST78. BMC Infect Dis 13:282CrossRefGoogle Scholar
  13. Gniadek TJ, Carroll KC, Simner PJ (2016) Carbapenem-resistant non-glucose-fermenting gram-negative bacilli: the missing piece to the puzzle. J Clin Microbiol 54:1700–1710CrossRefGoogle Scholar
  14. Grosso F, Quinteira S, Peixe L (2011) Understanding the dynamics of imipenem-resistant Acinetobacter baumannii lineages within Portugal. Clin Microbiol Infect 17:1275–1279CrossRefGoogle Scholar
  15. Grosso F, Quinteira S, Poirel L, Novais A, Peixe L (2012) Role of common blaOXA-24/OXA-40-carrying platforms and plasmids in the spread of OXA-24/OXA-40 among Acinetobacter species clinical isolates. Antimicrob Agents Chemother 56:3969–3972CrossRefGoogle Scholar
  16. Gundi VA, Dijkshoorn L, Burignat S, Raoult D, La Scola B (2009) Validation of partial rpoB gene sequence analysis for the identification of clinically important and emerging Acinetobacter species. Microbiology 155:2333–2341CrossRefGoogle Scholar
  17. Jones RN, Flonta M, Gurler N, Cepparulo M, Mendes RE, Castanheira M (2014) Resistance surveillance program report for selected European nations (2011). Diagn Microbiol Infect Dis 78:429–436CrossRefGoogle Scholar
  18. Kohlenberg A, Brümmer S, Higgins PG, Sohr D, Piening BC, de Grahl C, Halle E, Rüden H, Seifert H (2009) Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in a German university medical centre. J Med Microbio 58:1499–1507CrossRefGoogle Scholar
  19. Liu LL, Ji SJ, Ruan Z, Fu Y, YQ F, Wang YF, YS Y (2015) Dissemination of blaOXA-23 in Acinetobacter spp. in China: main roles of conjugative plasmid pAZJ221 and transposon Tn2009. Antimicrob Agents Chemother 59:1998–2005CrossRefGoogle Scholar
  20. Longo F, Vuotto C, Donelli G (2014) Biofilm formation in Acinetobacter baumannii. New Microbiol 37:119–127PubMedGoogle Scholar
  21. Luo TL, Rickard AH, Srinivasan U, Kaye KS, Foxman B (2015) Association of blaOXA-23 and bap with the persistence of Acinetobacter baumannii within a major healthcare system. Front Microbiol 6:182PubMedPubMedCentralGoogle Scholar
  22. McConnell MJ, Actis L, Pachón J (2013) Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 37:130–155CrossRefGoogle Scholar
  23. Mosqueda N, Gato E, Roca I, López M, de Alegría CR, Fernández Cuenca F, Martínez-Martínez L, Pachón J, Cisneros JM et al (2014) Characterization of plasmids carrying the blaOXA-24/40 carbapenemase gene and the genes encoding the AbkA/AbkB proteins of a toxin/antitoxin system. J Antimicrob Chemother 69:2629–2633CrossRefGoogle Scholar
  24. Peleg ΑΥ, Seifert Η, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582CrossRefGoogle Scholar
  25. Poirel L, Nordmann P (2006) Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12:826–836CrossRefGoogle Scholar
  26. Principe L, Piazza A, Giani T, Bracco S, Caltagirone MS, Arena F, Nucleo E, Tammaro F, Rossolini GM, et al; AMCLI-CRAb Survey Participants (2014) Epidemic diffusion of OXA-23-producing Acinetobacter baumannii isolates in Italy: results of the first cross-sectional countrywide survey. J Clin Microbiol 52:3004–3010CrossRefGoogle Scholar
  27. Qi L, Li H, Zhang C, Liang B, Li J, Wang L, Du X, Liu X, Qiu S et al (2016) Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Acinetobacter baumannii. Front Microbiol 7:483PubMedPubMedCentralGoogle Scholar
  28. Rao RS, Karthika RU, Singh SP, Shashikala P, Kanungo R, Jayachandran S, Prashanth K (2008) Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii. Indian J Med Microbiol 26:333–337CrossRefGoogle Scholar
  29. Rodríguez-Baño J, Martí S, Soto S, Fernández-Cuenca F, Cisneros JM, Pachón J, Pascual A, Martínez-Martínez L, McQueary C, et al; Spanish Group for the Study of Nosocomial Infections (GEIH) (2008) Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clin Microbiol Infect 14:276–278CrossRefGoogle Scholar
  30. Rolain JM, Loucif L, Al-Maslamani M, Elmagboul E, Al-Ansari N, Taj-Aldeen S, Shaukat A, Ahmedullah H, Hamed M (2016) Emergence of multidrug-resistant Acinetobacter baumannii producing OXA-23 Carbapenemase in Qatar. New Microbes New Infect 11:47–51CrossRefGoogle Scholar
  31. Roux D, Danilchanka O, Guillard T, Cattoir V, Aschard H, Fu Y, Angoulvant F, Messika J, Ricard JD et al (2015) Fitness cost of antibiotic susceptibility during bacterial infection. Sci Transl Med 7:297ra114CrossRefGoogle Scholar
  32. Sahl JW, Del Franco M, Pournaras S, Colman RE, Karah N, Dijkshoorn L, Zarrilli R (2015) Phylogenetic and genomic diversity in isolates from the globally distributed Acinetobacter baumannii ST25 lineage. Sci Rep 5:15188CrossRefGoogle Scholar
  33. Seifert H, Dolzani L, Bressan R, van der Reijden T, van Strijen B, Stefanik D, Heersma H, Dijkshoorn L (2005) Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J Clin Microbiol 43:4328–4335CrossRefGoogle Scholar
  34. Turton JF, Gabriel SN, Valderrey C, Kaufmann ME, Pitt TL (2007) Use of sequence-based typing and multiplex PCR to identify clonal lineages of outbreak strains of Acinetobacter baumannii. Clin Microbiol Infect 13:807–815CrossRefGoogle Scholar
  35. Viana GF, Zago MC, Moreira RR, Zarpellon MN, Menegucci TC, Cardoso CL, Tognim MC (2016) ISAba1/blaOXA-23: a serious obstacle to controlling the spread and treatment of Acinetobacter baumannii strains. Am J Infect Control 44:593–595CrossRefGoogle Scholar
  36. Vuotto C, Donelli G (2014) Field emission scanning electron microscopy of biofilm-growing bacteria involved in nosocomial infections. Methods Mol Biol 1147:73–84CrossRefGoogle Scholar
  37. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore DM (2006) Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27:351–353CrossRefGoogle Scholar
  38. Wu W, He Y, Lu J, Lu Y, Wu J, Liu Y (2015) Transition of blaOXA-58-like to blaOXA-23-like in Acinetobacter baumannii clinical isolates in Southern China: an 8-year study. PLoS One 10:e0137174CrossRefGoogle Scholar
  39. Zarrilli R (2016) Acinetobacter baumannii virulence determinants involved in biofilm growth and adherence to host epithelial cells. Virulence 7:367–368CrossRefGoogle Scholar
  40. Zarrilli R, Pournaras S, Giannouli M, Tsakris A (2013) Global evolution of multidrug-resistant Acinetobacter Baumannii clonal lineages. Int J Antimicrob Agents 41:11–19CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Claudia Vuotto
    • 1
  • Filipa Grosso
    • 3
  • Francesca Longo
    • 1
  • Maria Pia Balice
    • 2
  • Mariana Carvalho de Barros
    • 1
    • 3
  • Luisa Peixe
    • 3
  • Gianfranco Donelli
    • 1
  1. 1.Microbial Biofilm LaboratoryIRCCS Fondazione Santa LuciaRomeItaly
  2. 2.Clinical Microbiology LaboratoryIRCCS Fondazione Santa LuciaRomeItaly
  3. 3.REQUIMTE. Laboratório de Microbiologia, Faculdade de FarmáciaUniversidade do PortoPortoPortugal

Personalised recommendations