Skip to main content

Role of Mesenchymal Stem Cells in Cancer Development and Their Use in Cancer Therapy

  • Conference paper
  • First Online:
Stem Cells: Biology and Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((ICRRM,volume 1083))

Abstract

Stem cells have the ability to perpetuate themselves through self-renewal and generate mature cells of a particular tissue through differentiation. Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis – supporting tissue regeneration. MSCs are rare pluripotent cells supporting hematopoietic and mesenchymal cell lineages. MSCs have a great therapeutic potential in cancer therapy, as well as stem cell exosome and/or microvesicle-mediated tissue regeneration. In this review, the use of hMSCs in stem cell-mediated cancer therapy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BM-MSC:

Bone marrow-mesenchymal stem cells

GSCs:

Germ line stem cells

HGF:

Hepatocyte growth factor

IDO:

Indoleamine 2,3-dioxygenase

IFNb:

Interferon-b

MHC:

Major histocompatibility complex

MSC:

Mesenchymal stem cells

RA:

Rheumatoid arthritis

References

  • Abdul-Ghani, R., Ohana, P., Matouk, I., Ayesh, S., Ayesh, B., Laster, M., Bibi, O., Giladi, H., Molnar-Kimber, K., Sughayer, M. A., De Groot, N., & Hochberg, A. (2000). Use of transcriptional regulatory sequences of telomerase (hTER and hTERT) for selective killing of cancer cells. Molecular Therapy, 2, 539–544.

    Article  CAS  PubMed  Google Scholar 

  • Aboody, K. S., Najbauer, J., & Danks, M. K. (2008). Stem and progenitor cell-mediated tumor selective gene therapy. Gene Therapy, 15, 739–752.

    Article  CAS  PubMed  Google Scholar 

  • Barcellos-De-Souza, P., Gori, V., Bambi, F., & Chiarugi, P. (2013). Tumor microenvironment: Bone marrow-mesenchymal stem cells as key players. Biochimica et Biophysica Acta, 1836, 321–335.

    CAS  PubMed  Google Scholar 

  • Barkholt, L., Flory, E., Jekerle, V., Lucas-Samuel, S., Ahnert, P., Bisset, L., Buscher, D., Fibbe, W., Foussat, A., Kwa, M., Lantz, O., Maciulaitis, R., Palomaki, T., Schneider, C. K., Sensebe, L., Tachdjian, G., Tarte, K., Tosca, L., & Salmikangas, P. (2013). Risk of tumorigenicity in mesenchymal stromal cell-based therapies–bridging scientific observations and regulatory viewpoints. Cytotherapy, 15, 753–759.

    Article  PubMed  Google Scholar 

  • Barrilleaux, B. L., Fischer-Valuck, B. W., Gilliam, J. K., Phinney, D. G., & O’connor, K. C. (2010). Activation of CD74 inhibits migration of human mesenchymal stem cells. In Vitro Cellular & Developmental Biology Animal, 46, 566–572.

    Article  CAS  Google Scholar 

  • Batsali, A. K., Kastrinaki, M. C., Papadaki, H. A., & Pontikoglou, C. (2013). Mesenchymal stem cells derived from Wharton’s Jelly of the umbilical cord: Biological properties and emerging clinical applications. Current Stem Cell Research & Therapy, 8, 144–155.

    Article  CAS  Google Scholar 

  • Bentzon, J. F., Stenderup, K., Hansen, F. D., Schroder, H. D., Abdallah, B. M., Jensen, T. G., & Kassem, M. (2005). Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene. Biochemical and Biophysical Research Communications, 330, 633–640.

    Article  CAS  PubMed  Google Scholar 

  • Bernardo, M. E., Emons, J. A., Karperien, M., Nauta, A. J., Willemze, R., Roelofs, H., Romeo, S., Marchini, A., Rappold, G. A., Vukicevic, S., Locatelli, F., & Fibbe, W. E. (2007). Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connective Tissue Research, 48, 132–140.

    Article  CAS  PubMed  Google Scholar 

  • Bexell, D., Gunnarsson, S., Tormin, A., Darabi, A., Gisselsson, D., Roybon, L., Scheding, S., & Bengzon, J. (2009). Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Molecular Therapy, 17, 183–190.

    Article  CAS  PubMed  Google Scholar 

  • Bhang, S. H., Lee, S., Shin, J. Y., Lee, T. J. & B.S., K. (2012) Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization. Tissue Engineering. Part A, 18, 2138–2147.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bian, Z. Y., Fan, Q. M., Li, G., Xu, W. T., & Tang, T. T. (2010). Human mesenchymal stem cells promote growth of osteosarcoma: Involvement of interleukin-6 in the interaction between human mesenchymal stem cells and Saos-2. Cancer Science, 101, 2554–2560.

    Article  CAS  PubMed  Google Scholar 

  • Bilsland, A. E., Fletcher-Monaghan, A., & Keith, W. N. (2005). Properties of a telomerase specific Cre/Lox switch for transcriptionally targeted cancer gene therapy. Neoplasia, 7, 1020–1029.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bischoff, D. S., Makhijani, N. S., & Yamaguchi, D. T. (2012). Constitutive expression of human telomerase enhances the proliferation potential of human mesenchymal stem cells. BioResearch Open Access, 1, 273–279.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boiret, N., Rapatel, C., Veyrat-Masson, R., Guillouard, L., Guerin, J. J., Pigeon, P., Descamps, S., Boisgard, S., & Berger, M. G. (2005). Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Experimental Hematology, 33, 219–225.

    Article  CAS  PubMed  Google Scholar 

  • Brooke, G., Cook, M., Blair, C., Han, R., Heazlewood, C., Jones, B., Kambouris, M., Kollar, K., Mctaggart, S., Pelekanos, R., Rice, A., Rossetti, T., & Atkinson, K. (2007). Therapeutic applications of mesenchymal stromal cells. Seminars in Cell & Developmental Biology, 18, 846–858.

    Article  CAS  Google Scholar 

  • Bulman, S. E., Barron, V., Coleman, C. M., & Barry, F. (2013). Enhancing the mesenchymal stem cell therapeutic response: Cell localization and support for cartilage repair. Tissue Engineering. Part B, Reviews, 19, 58–68.

    Article  CAS  PubMed  Google Scholar 

  • Burdon, T., Smith, A., & Savatier, P. (2002). Signalling, cell cycle and pluripotency in embryonic stem cells. Trends in Cell Biology, 12, 432–438.

    Article  CAS  PubMed  Google Scholar 

  • Burns, J. S., Abdallah, B. M., Guldberg, P., Rygaard, J., Schroder, H. D., & Kassem, M. (2005). Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Research, 65, 3126–3135.

    Article  CAS  PubMed  Google Scholar 

  • Calio, M. L., Marinho, D. S., Ko, G. M., Ribeiro, R. R., Carbonel, A. F., Oyama, L. M., Ormanji, M., Guirao, T. P., Calio, P. L., Reis, L. A., Simoes Mde, J., Lisboa-Nascimento, T., Ferreira, A. T., & Bertoncini, C. R. (2014). Transplantation of bone marrow mesenchymal stem cells decreases oxidative stress, apoptosis, and hippocampal damage in brain of a spontaneous stroke model. Free Radical Biology & Medicine, 70, 141–154.

    Article  CAS  Google Scholar 

  • Campagnoli, C., Roberts, I. A., Kumar, S., Bennett, P. R., Bellantuono, I., & Fisk, N. M. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 98, 2396–2402.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, J. L., Braga, V. B., Melo, M. B., Campos, A. C., Oliveira, M. S., Gomes, D. A., Ferreira, A. J., Santos, R. A., & Goes, A. M. (2013). Priming mesenchymal stem cells boosts stem cell therapy to treat myocardial infarction. Journal of Cellular and Molecular Medicine, 17, 617–625.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25, 2739–2749.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y. J., Shih, D. T., Tseng, C. P., Hsieh, T. B., Lee, D. C., & Hwang, S. M. (2006). Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells, 24, 679–685.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Shao, J. Z., Xiang, L. X., Dong, X. J., & Zhang, G. R. (2008). Mesenchymal stem cells: A promising candidate in regenerative medicine. The International Journal of Biochemistry & Cell Biology, 40, 815–820.

    Article  CAS  Google Scholar 

  • Christensen, R., Alsner, J., Brandt Sorensen, F., Dagnaes-Hansen, F., Kolvraa, S., & Serakinci, N. (2008) Transformation of human mesenchymal stem cells in radiation carcinogenesis: Long-term effect of ionizing radiation. Regenerative Medicine, 3, 849–861.

    Article  CAS  PubMed  Google Scholar 

  • Cipriani, P., Di Benedetto, P., Liakouli, V., Del Papa, B., Di Padova, M., Di Ianni, M., Marrelli, A., Alesse, E., & Giacomelli, R. (2013). Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype: Implications for cellular-based therapy. Clinical and Experimental Immunology, 173, 195–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coffelt, S. B., Marini, F. C., Watson, K., Zwezdaryk, K. J., Dembinski, J. L., Lamarca, H. L., Tomchuck, S. L., Honer Zu Bentrup, K., Danka, E. S., Henkle, S. L., & Scandurro, A. B. (2009). The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 3806–3811.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Correa, P., & Houghton, J. (2007). Carcinogenesis of helicobacter pylori. Gastroenterology, 133, 659–672.

    Article  CAS  PubMed  Google Scholar 

  • Counter, C. M., Avilion, A. A., Lefeuvre, C. E., Stewart, N. G., Greider, C. W., Harley, C. B., & Bacchetti, S. (1992). Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. The EMBO Journal, 11, 1921–1929.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Das, B., Tsuchida, R., Malkin, D., Koren, G., Baruchel, S., & Yeger, H. (2008). Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells, 26, 1818–1830.

    Article  PubMed  Google Scholar 

  • De Bari, C., Dell’accio, F., Tylzanowski, P., & Luyten, F. P. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatism, 44, 1928–1942.

    Article  PubMed  Google Scholar 

  • De Boeck, A., Pauwels, P., Hensen, K., Rummens, J. L., Westbroek, W., Hendrix, A., Maynard, D., Denys, H., Lambein, K., Braems, G., Gespach, C., Bracke, M., & De Wever, O. (2013). Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut, 62, 550–560.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, J. E., Cohen, N., Goldberg, V. M., & Caplan, A. I. (2004). Targeted delivery of progenitor cells for cartilage repair. Journal of Orthopaedic Research, 22, 735–741.

    Article  CAS  PubMed  Google Scholar 

  • Di Bella, C., Farlie, P., & Penington, A. J. (2008). Bone regeneration in a rabbit critical-sized skull defect using autologous adipose-derived cells. Tissue Engineering. Part A, 14, 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Di Rocco, G., Tritarelli, A., Toietta, G., Gatto, I., Iachininoto, M. G., Pagani, F., Mangoni, A., Straino, S., & Capogrossi, M. C. (2008). Spontaneous myogenic differentiation of Flk-1-positive cells from adult pancreas and other nonmuscle tissues. American Journal of Physiology. Cell Physiology, 294, C604–C612.

    Article  PubMed  CAS  Google Scholar 

  • Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noel, D., & Jorgensen, C. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102, 3837–3844.

    Article  CAS  PubMed  Google Scholar 

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  PubMed  Google Scholar 

  • D’souza, N., Burns, J. S., Grisendi, G., Candini, O., Veronesi, E., Piccinno, S., Horwitz, E. M., Paolucci, P., Conte, P., & Dominici, M. (2012). MSC and tumors: Homing, differentiation, and secretion influence therapeutic potential. Advances in Biochemical Engineering/Biotechnology, 130, 209–266.

    Article  Google Scholar 

  • Erices, A., Conget, P., & Minguell, J. J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology, 109, 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Forbes, G. M., Sturm, M. J., Leong, R. W., Sparrow, M. P., Segarajasingam, D., Cummins, A. G., Phillips, M., & Herrmann, R. P. (2014). A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clinical Gastroenterology and Hepatology, 12, 64–71.

    Article  PubMed  Google Scholar 

  • Friedenstein, A. Y. (1968). Induction of bone tissue by transitional epithelium. Clinical Orthopaedics and Related Research, 59, 21–37.

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3, 393–403.

    CAS  PubMed  Google Scholar 

  • Fukuchi, Y., Nakajima, H., Sugiyama, D., Hirose, I., Kitamura, T., & Tsuji, K. (2004). Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells, 22, 649–658.

    Article  CAS  PubMed  Google Scholar 

  • Furlani, D., Li, W., Pittermann, E., Klopsch, C., Wang, L., Knopp, A., Jungebluth, P., Thedinga, E., Havenstein, C., Westien, I., Ugurlucan, M., Li, R. K., Ma, N., & Steinhoff, G. (2009). A transformed cell population derived from cultured mesenchymal stem cells has no functional effect after transplantation into the injured heart. Cell Transplantation, 18, 319–331.

    Article  PubMed  Google Scholar 

  • Gao, Z., Zhang, L., Hu, J., & Sun, Y. (2013). Mesenchymal stem cells: A potential targeted-delivery vehicle for anti-cancer drug, loaded nanoparticles. Nanomedicine, 9, 174–184.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin, H. S., Bicknese, A. R., Chien, S. N., Bogucki, B. D., Quinn, C. O., & Wall, D. A. (2001). Multilineage differentiation activity by cells isolated from umbilical cord blood: Expression of bone, fat, and neural markers. Biology of Blood and Marrow Transplantation, 7, 581–588.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, W. C., & Weinberg, R. A. (2002). Modelling the molecular circuitry of cancer. Nature Reviews Cancer, 2, 331–341.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  • Hanna, J., Cheng, A. W., Saha, K., Kim, J., Lengner, C. J., Soldner, F., Cassady, J. P., Muffat, J., Carey, B. W., & Jaenisch, R. (2010). Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences of the United States of America, 107, 9222–9227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harbo, M., Koelvraa, S., Serakinci, N., & Bendix, L. (2012). Telomere dynamics in human mesenchymal stem cells after exposure to acute oxidative stress. DNA Repair (Amst), 11, 774–779.

    Article  CAS  Google Scholar 

  • Honoki, K., Fujii, H., & Tsujiuchi, T. (2011) Cancer stem cell niche: The role of Mesenchymal stem cells in tumor microenvironment.

    Google Scholar 

  • Hoogduijn, M. J., Popp, F., Verbeek, R., Masoodi, M., Nicolaou, A., Baan, C., & Dahlke, M. H. (2010). The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. International Immunopharmacology, 10, 1496–1500.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M., Hiramatsu, H., Kobayashi, K., Suzue, K., Kawahata, M., Hioki, K., Ueyama, Y., Koyanagi, Y., Sugamura, K., Tsuji, K., Heike, T., & Nakahata, T. (2002). NOD/SCID/gamma(c)(null) mouse: An excellent recipient mouse model for engraftment of human cells. Blood, 100, 3175–3182.

    Article  CAS  PubMed  Google Scholar 

  • Ji, K. H., Xiong, J., Fan, L. X., Hu, K. M., & Liu, H. Q. (2009). Multilineage differentiation capability comparison between Mesenchymal stem cells and Multipotent adult progenitor cells. Advanced Studies in Biology, 1, 25–35.

    Google Scholar 

  • Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., & Verfaillie, C. M. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.

    Article  CAS  PubMed  Google Scholar 

  • Jung, Y., Kim, J. K., Shiozawa, Y., Wang, J., Mishra, A., Joseph, J., Berry, J. E., Mcgee, S., Lee, E., Sun, H., Jin, T., Zhang, H., Dai, J., Krebsbach, P. H., Keller, E. T., Pienta, K. J., & Taichman, R. S. (2013). Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nature Communications, 4, 1795.

    Article  PubMed  CAS  Google Scholar 

  • Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., Richardson, A. L., Polyak, K., Tubo, R., & Weinberg, R. A. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449, 557–563.

    Article  CAS  PubMed  Google Scholar 

  • Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.

    Article  CAS  PubMed  Google Scholar 

  • Kidd, S., Spaeth, E., Dembinski, J. L., Dietrich, M., Watson, K., Klopp, A., Battula, V. L., Weil, M., Andreeff, M., & Marini, F. C. (2009). Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells, 27, 2614–2623.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, N., & Cho, S. G. (2013). Clinical applications of mesenchymal stem cells. The Korean Journal of Internal Medicine, 28, 387–402.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L., & Shay, J. W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science, 266, 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. B., O’hare, M. J., & Stein, R. (2004). Models of breast cancer: Is merging human and animal models the future? Breast Cancer Research, 6, 22–30.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. W., Ha, K. Y., Molon, J. N., & Kim, Y. H. (2013a). Bone marrow-derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: Comparative study between intralesional and intravenous transplantation. Spine (Phila Pa 1976), 38, E1065–E1074.

    Article  Google Scholar 

  • Kim, N., Im, K. I., Lim, J. Y., Jeon, E. J., Nam, Y. S., Kim, E. J., & Cho, S. G. (2013b). Mesenchymal stem cells for the treatment and prevention of graft-versus-host disease: Experiments and practice. Annals of Hematology, 92, 1295–1308.

    Article  CAS  PubMed  Google Scholar 

  • Kitamura, H., Okudela, K., Yazawa, T., Sato, H., & Shimoyamada, H. (2009). Cancer stem cell: Implications in cancer biology and therapy with special reference to lung cancer. Lung Cancer, 66, 275–281.

    Article  PubMed  Google Scholar 

  • Komata, T., Kondo, Y., Kanzawa, T., Hirohata, S., Koga, S., Sumiyoshi, H., Srinivasula, S. M., Barna, B. P., Germano, I. M., Takakura, M., Inoue, M., Alnemri, E. S., Shay, J. W., Kyo, S., & Kondo, S. (2001). Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter. Cancer Research, 61, 5796–5802.

    CAS  PubMed  Google Scholar 

  • Korbling, M., Estrov, Z., & Champlin, R. (2003). Adult stem cells and tissue repair. Bone Marrow Transplantation, 32(Suppl 1), S23–S24.

    Article  PubMed  CAS  Google Scholar 

  • Kortesidis, A., Zannettino, A., Isenmann, S., Shi, S., Lapidot, T., & Gronthos, S. (2005). Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood, 105, 3793–3801.

    Article  CAS  PubMed  Google Scholar 

  • Lazennec, G., & Jorgensen, C. (2008). Concise review: Adult multipotent stromal cells and cancer: Risk or benefit? Stem Cells, 26, 1387–1394.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li, L., & Xie, T. (2005). Stem cell niche: Structure and function. Annual Review of Cell and Developmental Biology, 21, 605–631.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Fu, X., Ouyang, Y., Cai, C., Wang, J., & Sun, T. (2006). Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages. Cell and Tissue Research, 326, 725–736.

    Article  CAS  PubMed  Google Scholar 

  • Lin, H. (2002). The stem-cell niche theory: Lessons from flies. Nature Reviews. Genetics, 3, 931–940.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Ginestier, C., Ou, S. J., Clouthier, S. G., Patel, S. H., Monville, F., Korkaya, H., Heath, A., Dutcher, J., Kleer, C. G., Jung, Y., Dontu, G., Taichman, R., & Wicha, M. S. (2011). Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Research, 71, 614–624.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loebinger, M. R., Kyrtatos, P. G., Turmaine, M., Price, A. N., Pankhurst, Q., Lythgoe, M. F., & Janes, S. M. (2009). Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Research, 69, 8862–8867.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Louis, S. A., Zapf, R., Clarke, E., Thomas, T. E., & Sutherland, H. J. (2001). A negative-selection strategy for depleting myeloma cells from patients’ BM and/or leukapheresis blood. Cytotherapy, 3, 489–504.

    Article  CAS  PubMed  Google Scholar 

  • Ma, T. (2010). Mesenchymal stem cells: From bench to bedside. World Journal of Stem Cells, 2, 13–17.

    Article  PubMed Central  PubMed  Google Scholar 

  • Madrigal, M., Rao, K. S., & Riordan, N. H. (2014). A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. Journal of Translational Medicine, 12, 260.

    Article  PubMed Central  PubMed  Google Scholar 

  • Marinova-Mutafchieva, L., Williams, R. O., Mauri, C., Mason, L. J., Walmsley, M. J., Taylor, P. C., Feldmann, M., & Maini, R. N. (2000). A comparative study into the mechanisms of action of anti-tumor necrosis factor alpha, anti-CD4, and combined anti-tumor necrosis factor alpha/anti-CD4 treatment in early collagen-induced arthritis. Arthritis and Rheumatism, 43, 638–644.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, C., Hofmann, T. J., Marino, R., Dominici, M., & Horwitz, E. M. (2007). Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: A novel surface marker for the identification of MSCs. Blood, 109, 4245–4248.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menon, L. G., Picinich, S., Koneru, R., Gao, H., Lin, S. Y., Koneru, M., Mayer-Kuckuk, P., Glod, J., & Banerjee, D. (2007). Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells, 25, 520–528.

    Article  CAS  PubMed  Google Scholar 

  • Menon, L. G., Kelly, K., Yang, H. W., Kim, S. K., Black, P. M., & Carroll, R. S. (2009). Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells, 27, 2320–2330.

    Article  CAS  PubMed  Google Scholar 

  • Meza-Zepeda, L. A., Noer, A., Dahl, J. A., Micci, F., Myklebost, O., & Collas, P. (2008). High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. Journal of Cellular and Molecular Medicine, 12, 553–563.

    Article  CAS  PubMed  Google Scholar 

  • Miura, M., Miura, Y., Padilla-Nash, H. M., Molinolo, A. A., Fu, B., Patel, V., Seo, B. M., Sonoyama, W., Zheng, J. J., Baker, C. C., Chen, W., Ried, T., & Shi, S. (2006). Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells (Dayton, Ohio), 24(4), 1095–1103.

    Article  Google Scholar 

  • Momin, E. N., Vela, G., Zaidi, H. A., & Quinones-Hinojosa, A. (2010). The oncogenic potential of mesenchymal stem cells in the treatment of cancer: Directions for future research. Current Immunology Reviews, 6, 137–148.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598–611.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller, S. M., & Glowacki, J. (2001). Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. Journal of Cellular Biochemistry, 82, 583–590.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, S. T., Pham, V. Q., Phan, N. K., & Pham, P. V. (2014). Mesenchymal stem cell-based cancer gene therapy: Application and unresolved problems. Annual Research & Review in Biology, 4, 1387–1396.

    Article  Google Scholar 

  • Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., Mckay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., & Anversa, P. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.

    Article  CAS  PubMed  Google Scholar 

  • Patel, S. A., Meyer, J. R., Greco, S. J., Corcoran, K. E., Bryan, M., & Rameshwar, P. (2010). Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-beta. Journal of Immunology, 184, 5885–5894.

    Article  CAS  Google Scholar 

  • Peault, B., Rudnicki, M., Torrente, Y., Cossu, G., Tremblay, J. P., Partridge, T., Gussoni, E., Kunkel, L. M., & Huard, J. (2007). Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Molecular Therapy, 15, 867–877.

    Article  CAS  PubMed  Google Scholar 

  • Pevsner-Fischer, M., Levin, S., & Zipori, D. (2011). The origins of mesenchymal stromal cell heterogeneity. Stem Cell Reviews, 7, 560–568.

    Article  CAS  Google Scholar 

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Placencio, V. R., Li, X., Sherrill, T. P., Fritz, G., & Bhowmick, N. A. (2010). Bone marrow derived mesenchymal stem cells incorporate into the prostate during regrowth. PloS One, 5, e12920.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Plumb, J. A., Bilsland, A., Kakani, R., Zhao, J., Glasspool, R. M., Knox, R. J., Evans, T. R., & Keith, W. N. (2001). Telomerase-specific suicide gene therapy vectors expressing bacterial nitroreductase sensitize human cancer cells to the pro-drug CB1954. Oncogene, 20, 7797–7803.

    Article  CAS  PubMed  Google Scholar 

  • Prindull, G., Ben-Ishay, Z., Ebell, W., Bergholz, M., Dirk, T., & Prindull, B. (1987). CFU-F circulating in cord blood. Blut, 54, 351–359.

    Article  CAS  PubMed  Google Scholar 

  • Quante, M., Tu, S. P., Tomita, H., Gonda, T., Wang, S. S., Takashi, S., Baik, G. H., Shibata, W., Diprete, B., Betz, K. S., Friedman, R., Varro, A., Tycko, B., & Wang, T. C. (2011). Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 19, 257–272.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quirici, N., Soligo, D., Bossolasco, P., Servida, F., Lumini, C., & Deliliers, G. L. (2002). Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Experimental Hematology, 30, 783–791.

    Article  CAS  PubMed  Google Scholar 

  • Rangarajan, A., & Weinberg, R. A. (2003). Opinion: Comparative biology of mouse versus human cells: Modelling human cancer in mice. Nature Reviews Cancer, 3, 952–959.

    Article  CAS  PubMed  Google Scholar 

  • Resnick, I. B., Barkats, C., Shapira, M. Y., Stepensky, P., Bloom, A. I., Shimoni, A., Mankuta, D., Varda-Bloom, N., Rheingold, L., Yeshurun, M., Bielorai, B., Toren, A., Zuckerman, T., Nagler, A. & Or, R. (2013) Treatment of severe steroid resistant acute GVHD with mesenchymal stromal cells (MSC). American Journal of Blood Research, 3, 225–238.

    Google Scholar 

  • Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L., & Verfaillie, C. M. (2001). Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 98, 2615–2625.

    Article  CAS  PubMed  Google Scholar 

  • Rosen, J. M., & Jordan, C. T. (2009). The increasing complexity of the cancer stem cell paradigm. Science, 324, 1670–1673.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubinstein, P., Dobrila, L., Rosenfield, R. E., Adamson, J. W., Migliaccio, G., Migliaccio, A. R., Taylor, P. E., & Stevens, C. E. (1995). Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proceedings of the National Academy of Sciences of the United States of America, 92, 10119–10122.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubio, D., Garcia-Castro, J., Martin, M. C., De La Fuente, R., Cigudosa, J. C., Lloyd, A. C., & Bernad, A. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65, 3035–3039.

    Article  CAS  PubMed  Google Scholar 

  • Rubio, D., Garcia, S., Paz, M. F., De La Cueva, T., Lopez-Fernandez, L. A., Lloyd, A. C., Garcia-Castro, J., & Bernad, A. (2008). Molecular characterization of spontaneous 17 mesenchymal stem cell transformation. PloS One, 3, e1398.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sarosi, G., Brown, G., Jaiswal, K., Feagins, L. A., Lee, E., Crook, T. W., Souza, R. F., Zou, Y. S., Shay, J. W., & Spechler, S. J. (2008). Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Diseases of the Esophagus, 21, 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Sasportas, L. S., Kasmieh, R., Wakimoto, H., Hingtgen, S., Van De Water, J. A., Mohapatra, G., Figueiredo, J. L., Martuza, R. L., Weissleder, R., & Shah, K. (2009). Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 106, 4822–4827.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seo, S. H., Kim, K. S., Park, S. H., Suh, Y. S., Kim, S. J., Jeun, S. S., & Sung, Y. C. (2011). The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Therapy, 18, 488–495.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serakinci, N., Guldberg, P., Burns, J. S., Abdallah, B., Schrodder, H., Jensen, T., & Kassem, M. (2004). Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene, 23, 5095–5098.

    Article  CAS  PubMed  Google Scholar 

  • Serakinci, N., Christensen, R., Graakjaer, J., Cairney, C. J., Keith, W. N., Alsner, J., Saretzki, G., & Kolvraa, S. (2007). Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart. Experimental Cell Research, 313, 1056–1067.

    Article  CAS  PubMed  Google Scholar 

  • Serakinci, N., Graakjaer, J., & Kolvraa, S. (2008). Telomere stability and telomerase in mesenchymal stem cells. Biochimie, 90, 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Serakinci, N., Christensen, R., Fahrioglu, U., Sorensen, F. B., Dagnæs-Hansen, F., Hajek, M., Jensen, T. H., Kolvraa, S., & Keith, N. W. (2011). Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma. Cancer Biotherapy & Radiopharmaceuticals, 26, 767–773.

    Article  CAS  Google Scholar 

  • Serakinci, N., Fahrioglu, U., & Christensen, R. (2014). Mesenchymal stem cells, cancer challenges and new directions. European Journal of Cancer, 50, 1522–1530.

    Article  CAS  PubMed  Google Scholar 

  • Shah, K. (2013). Encapsulated stem cells for cancer therapy. Biomatter, 3(1), e24278.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma, A. K., Fuller, N. J., Sullivan, R. R., Fulton, N., Hota, P. V., Harrington, D. A., Villano, J., Hagerty, J. A., & Cheng, E. Y. (2009). Defined populations of bone marrow derived mesenchymal stem and endothelial progenitor cells for bladder regeneration. The Journal of Urology, 182, 1898–1905.

    Article  PubMed  Google Scholar 

  • Shay, J. W., Pereira-Smith, O. M., & Wright, W. E. (1991). A role for both RB and p53 in the regulation of human cellular senescence. Experimental Cell Research, 196, 33–39.

    Article  CAS  PubMed  Google Scholar 

  • Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18, 696–704.

    Article  PubMed  Google Scholar 

  • Shinagawa, K., Kitadai, Y., Tanaka, M., Sumida, T., Kodama, M., Higashi, Y., Tanaka, S., Yasui, W., & Chayama, K. (2010). Mesenchymal stem cells enhance growth and metastasis of colon cancer. International Journal of Cancer, 127, 2323–2333.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, P. J., & Torok-Storb, B. (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 78, 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Simonsen, J. L., Rosada, C., Serakinci, N., Justesen, J., Stenderup, K., Rattan, S. I., Jensen, T. G., & Kassem, M. (2002). Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nature Biotechnology, 20, 592–596.

    Article  CAS  PubMed  Google Scholar 

  • Sohni, A., & Verfaillie, C. M. (2013). Mesenchymal stem cells migration homing and tracking. Stem Cells International, 2013, 130763.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Soltysova, A., Altanerova, V., & Altaner, C. (2005). Cancer stem cells. Neoplasma, 52, 435–440.

    CAS  PubMed  Google Scholar 

  • Sordi, V., Malosio, M. L., Marchesi, F., Mercalli, A., Melzi, R., Giordano, T., Belmonte, N., Ferrari, G., Leone, B. E., Bertuzzi, F., Zerbini, G., Allavena, P., Bonifacio, E., & Piemonti, L. (2005). Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 106, 419–427.

    Article  CAS  PubMed  Google Scholar 

  • Spaeth, E. L., Dembinski, J. L., Sasser, A. K., Watson, K., Klopp, A., Hall, B., Andreeff, M., & Marini, F. (2009). Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PloS One, 4, e4992.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J., & Andreeff, M. (2002). Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Research, 62, 3603–3608.

    CAS  PubMed  Google Scholar 

  • Studeny, M., Marini, F. C., Dembinski, J. L., Zompetta, C., Cabreira-Hansen, M., Bekele, B. N., Champlin, R. E., & Andreeff, M. (2004). Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. Journal of the National Cancer Institute, 96, 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X. Y., Nong, J., Qin, K., Warnock, G. L., & Dai, L. J. (2011). Mesenchymal stem cell-mediated cancer therapy: A dual-targeted strategy of personalized medicine. World Journal of Stem Cells, 3, 96–103.

    Article  PubMed Central  PubMed  Google Scholar 

  • Suzuki, K., Sun, R., Origuchi, M., Kanehira, M., Takahata, T., Itoh, J., Umezawa, A., Kijima, H., Fukuda, S., & Saijo, Y. (2011). Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Molecular Medicine, 17, 579–587.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terskikh, A. V., Bryant, P. J., & Schwartz, P. H. (2006). Mammalian stem cells. Pediatric Research, 59, 13R–20R.

    Article  PubMed  Google Scholar 

  • Teven, C. M., Liu, X., Hu, N., Tang, N., Kim, S. H., Huang, E., Yang, K., Li, M., Gao, J. L., Liu, H., Natale, R. B., Luther, G., Luo, Q., Wang, L., Rames, R., Bi, Y., Luo, J., Luu, H. H., Haydon, R. C., Reid, R. R., & He, T. C. (2011). Epigenetic regulation of mesenchymal stem cells: A focus on osteogenic and adipogenic differentiation. Stem Cells International, 2011, 201371.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tolar, J., Nauta, A. J., Osborn, M. J., Panoskaltsis Mortari, A., Mcelmurry, R. T., Bell, S., Xia, L., Zhou, N., Riddle, M., Schroeder, T. M., Westendorf, J. J., Mcivor, R. S., Hogendoorn, P. C., Szuhai, K., Oseth, L., Hirsch, B., Yant, S. R., Kay, M. A., Peister, A., Prockop, D. J., Fibbe, W. E., & Blazar, B. R. (2007). Sarcoma derived from cultured mesenchymal stem cells. Stem Cells, 25, 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, M. S., Lee, J. L., Chang, Y. J., & Hwang, S. M. (2004). Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction, 19, 1450–1456.

    Article  PubMed  Google Scholar 

  • Tsai, K. S., Yang, S. H., Lei, Y. P., Tsai, C. C., Chen, H. W., Hsu, C. Y., Chen, L. L., Wang, H. W., Miller, S. A., Chiou, S. H., Hung, M. C., & Hung, S. C. (2011). Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology, 141, 1046–1056.

    Article  CAS  PubMed  Google Scholar 

  • Van’t Hof, W., Mal, N., Huang, Y., Zhang, M., Popovic, Z., Forudi, F., Deans, R., & Penn, M. S. (2007). Direct delivery of syngeneic and allogeneic large-scale expanded multipotent adult progenitor cells improves cardiac function after myocardial infarct. Cytotherapy, 9, 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Vellasamy, S., Sandrasaigaran, P., Vidyadaran, S., George, E., & Ramasamy, R. (2012). Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue. World Journal of Stem Cells, 4, 53–61.

    Article  PubMed Central  PubMed  Google Scholar 

  • Villaron, E. M., Almeida, J., Lopez-Holgado, N., Alcoceba, M., Sanchez-Abarca, L. I., Sanchez-Guijo, F. M., Alberca, M., Perez-Simon, J. A., San Miguel, J. F., & Del Canizo, M. C. (2004). Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica, 89, 1421–1427.

    PubMed  Google Scholar 

  • Wang, Y., Huso, D. L., Harrington, J., Kellner, J., Jeong, D. K., Turney, J., & Mcniece, I. K. (2005). Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy, 7, 509–519.

    Article  CAS  PubMed  Google Scholar 

  • Wynn, R. F., Hart, C. A., Corradi-Perini, C., O’neill, L., Evans, C. A., Wraith, J. E., Fairbairn, L. J., & Bellantuono, I. (2004). A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104, 2643–2645.

    Article  CAS  PubMed  Google Scholar 

  • Wyrsch, A., Dalle Carbonare, V., Jansen, W., Chklovskaia, E., Nissen, C., Surbek, D., Holzgreve, W., Tichelli, A., & Wodnar-Filipowicz, A. (1999). Umbilical cord blood from preterm human fetuses is rich in committed and primitive hematopoietic progenitors with high proliferative and self-renewal capacity. Experimental Hematology, 27, 1338–1345.

    Article  CAS  PubMed  Google Scholar 

  • Yagi, H., & Kitagawa, Y. (2013). The role of mesenchymal stem cells in cancer development. Frontiers in Genetics, 4, 261.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang, C., Lei, D., Ouyang, W., Ren, J., Li, H., Hu, J., & Huang, S. (2014). Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human glioma cell lines in vitro. BioMed Research International, 2014, 109389.

    Google Scholar 

  • Ye, H., Cheng, J., Tang, Y., Liu, Z., Xu, C., Liu, Y., & Sun, Y. (2012). Human bone marrow-derived mesenchymal stem cells produced TGFbeta contributes to progression and metastasis of prostate cancer. Cancer Investigation, 30, 513–518.

    Article  CAS  PubMed  Google Scholar 

  • Yu, B., Zhang, X., & Li, X. (2014). Exosomes derived from mesenchymal stem cells. International Journal of Molecular Sciences, 15, 4142–4157.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng, H. L., Zhong, Q., Qin, Y. L., Bu, Q. Q., Han, X. A., Jia, H. T., & Liu, H. W. (2011). Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord-derived mesenchymal stem cells. BMC Cell Biology, 12, 32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou, Y. F., Bosch-Marce, M., Okuyama, H., Krishnamachary, B., Kimura, H., Zhang, L., Huso, D. L., & Semenza, G. L. (2006). Spontaneous transformation of cultured mouse bone marrow-derived stromal cells. Cancer Research, 66, 10849–10854.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, W., Xu, W., Jiang, R., Qian, H., Chen, M., Hu, J., Cao, W., Han, C., & Chen, Y. (2006). Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Experimental and Molecular Pathology, 80, 267–274.

    Article  CAS  PubMed  Google Scholar 

  • Zischek, C., Niess, H., Ischenko, I., Conrad, C., Huss, R., Jauch, K. W., Nelson, P. J., & Bruns, C. (2009). Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Annals of Surgery, 250, 747–753.

    Article  PubMed  Google Scholar 

  • Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., & Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nedime Serakinci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Serakinci, N., Tulay, P., Kalkan, R. (2017). Role of Mesenchymal Stem Cells in Cancer Development and Their Use in Cancer Therapy. In: Van Pham, P. (eds) Stem Cells: Biology and Engineering. Advances in Experimental Medicine and Biology(), vol 1083. Springer, Cham. https://doi.org/10.1007/5584_2017_64

Download citation

Publish with us

Policies and ethics