Detection of Biofilms in Biopsies from Chronic Rhinosinusitis Patients: In Vitro Biofilm Forming Ability and Antimicrobial Susceptibility Testing in Biofilm Mode of Growth of Isolated Bacteria

  • Mariagrazia Di Luca
  • Elena Navari
  • Semih Esin
  • Melissa Menichini
  • Simona Barnini
  • Andrej Trampuz
  • Augusto Casani
  • Giovanna Batoni
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1057)

Abstract

Chronic rhinosinusitis (CRS) is the most common illness among chronic disorders that remains poorly understood from a pathogenic standpoint and has a significant impact on patient quality of life, as well as healthcare costs. Despite being widespread, little is known about the etiology of the CRS. Recent evidence, showing the presence of biofilms within the paranasal sinuses, suggests a role for biofilm in the pathogenesis. To elucidate the role of biofilm in the pathogenesis of CRS, we assessed the presence of biofilm at the infection site and the ability of the aerobic flora isolated from CRS patients to form biofilm in vitro. For selected bacterial strains the susceptibility profiles to antibiotics in biofilm condition was also evaluated.

Staphylococci represented the majority of the isolates obtained from the infection site, with S. epidermidis being the most frequently isolated species. Other isolates were represented by Enterobacteriaceae or by species present in the oral flora. Confocal laser scanning microscopy (CLSM) of the mucosal biopsies taken from patients with CRS revealed the presence of biofilm in the majority of the samples. Strains isolated from the specific infection site of the CRS patients were able to form biofilm in vitro at moderate or high levels, when tested in optimized conditions. No biofilm was observed by CLSM in the biopsies from control patients, although the same biopsies were positive for staphylococci in microbiological culture analysis. Drug-susceptibility tests demonstrated that the susceptibility profile of planktonic bacteria differs from that of sessile bacteria in biofilms.

Keywords

Adherent bacteria Antibiotic resistance Sinus infection Isothermal microcalorimetry Confocal fluorescence microscopy 

Notes

Acknowledgments

Authors thank Dr. Ranieri Bizzarri for the helpful discussion related to the microscopy analysis. This work was supported by funds from University of Pisa and Consiglio Nazionale delle Ricerche.

References

  1. Abou-Hamad W, Matar N, Elias M, Nasr M, Sarkis-Karam D, Hokayem N, Haddad A (2009) Bacterial flora in normal adult maxillary sinuses. Am J Rhinol Allergy 23(3):261–263. doi: 10.2500/ajra.2009.23.3317CrossRefPubMedGoogle Scholar
  2. Aly R, Levit S (1987) Adherence of Staphylococcus aureus to squamous epithelium: role of fibronectin and teichoic acid. Rev Infect Dis 9(Suppl 4):S341–S350CrossRefGoogle Scholar
  3. Arciola CR, Campoccia D, Gamberini S, Cervellati M, Donati E, Montanaro L (2002) Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials 23 (21):4233–4239. doi:Pii S0142–9612(02)00171–0. doi: 10.1016/S0142-9612(02)00171-0
  4. Arciola CR, Campoccia D, Gamberini S, Rizzi S, Donati ME, Baldassarri L, Montanaro L (2004) Search for the insertion element IS256 within the ica locus of Staphylococcus epidermidis clinical isolates collected from biomaterial-associated infections. Biomaterials 25(18):4117–4125. doi: 10.1016/j.biomaterials.2003.11.027CrossRefPubMedGoogle Scholar
  5. Arciola CR, Campoccia D, Ravaioli S, Montanaro L (2015) Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Mi 5. doi:ARTN 7.  10.3389/fcimb.2015.00007
  6. Aslam S, Darouiche RO (2007) Prolonged bacterial exposure to minocycline/rifampicin-impregnated vascular catheters does not affect antimicrobial activity of catheters. J Antimicrob Chemother 60(1):148–151. doi: 10.1093/jac/dkm173CrossRefPubMedGoogle Scholar
  7. Batoni G, Maisetta G, Esin S (2016) Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim Biophys Acta 1858(5):1044–1060. doi: 10.1016/j.bbamem.2015.10.013CrossRefPubMedGoogle Scholar
  8. Benninger MS, Ferguson BJ, Hadley JA, Hamilos DL, Jacobs M, Kennedy DW, Lanza DC, Marple BF, Osguthorpe JD, Stankiewicz JA, Anon J, Denneny J, Emanuel I, Levine H (2003) Adult chronic rhinosinusitis: definitions, diagnosis, epidemiology, and pathophysiology. Otolaryngol Head Neck Surg 129(3 Suppl):S1–32CrossRefGoogle Scholar
  9. Bjarnsholt T, Alhede M, Alhede M, Eickhardt-Sorensen SR, Moser C, Kuhl M, Jensen PO, Hoiby N (2013) The in vivo biofilm. Trends Microbiol 21(9):466–474. doi: 10.1016/j.tim.2013.06.002CrossRefPubMedGoogle Scholar
  10. Braissant O, Wirz D, Gopfert B, Daniels AU (2010) Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett 303(1):1–8. doi: 10.1111/j.1574-6968.2009.01819.xCrossRefPubMedGoogle Scholar
  11. Brancatisano FL, Maisetta G, Di Luca M, Esin S, Bottai D, Bizzarri R, Campa M, Batoni G (2014) Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis. Biofouling 30(4):435–446. doi: 10.1080/08927014.2014.888062CrossRefPubMedGoogle Scholar
  12. Brook I (1981) Bacteriologic features of chronic sinusitis in children. JAMA 246(9):967–969CrossRefGoogle Scholar
  13. Brook I (2006) Bacteriology of chronic sinusitis and acute exacerbation of chronic sinusitis. Arch Otolaryngol Head Neck Surg 132(10):1099–1101. doi: 10.1001/archotol.132.10.1099CrossRefPubMedGoogle Scholar
  14. Brook I (2011) Microbiology of sinusitis. Proc Am Thorac Soc 8(1):90–100. doi: 10.1513/pats.201006-038RNCrossRefPubMedGoogle Scholar
  15. Brook I, Frazier EH (2001) Correlation between microbiology and previous sinus surgery in patients with chronic maxillary sinusitis. Ann Otol Rhinol Laryngol 110(2):148–151CrossRefGoogle Scholar
  16. Brooks JL, Jefferson KK (2014) Phase variation of poly-N-acetylglucosamine expression in Staphylococcus aureus. PLoS Pathog 10(7):e1004292. doi: 10.1371/journal.ppat.1004292CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cardile AP, Sanchez CJ Jr, Samberg ME, Romano DR, Hardy SK, Wenke JC, Murray CK, Akers KS (2014) Human plasma enhances the expression of Staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance in vitro. BMC Res Notes 7:457. doi: 10.1186/1756-0500-7-457CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen P, Abercrombie JJ, Jeffrey NR, Leung KP (2012) An improved medium for growing Staphylococcus aureus biofilm. J Microbiol Methods 90(2):115–118. doi: 10.1016/j.mimet.2012.04.009CrossRefPubMedGoogle Scholar
  19. Coffey CS, Sonnenburg RE, Melroy CT, Dubin MG, Senior BA (2006) Endoscopically guided aerobic cultures in postsurgical patients with chronic rhinosinusitis. Am J Rhinol 20(1):72–76PubMedGoogle Scholar
  20. Cook HE, Haber J (1987) Bacteriology of the maxillary sinus. J Oral Maxillofac Surg 45(12):1011–1014CrossRefGoogle Scholar
  21. Costerton JW, Post JC, Ehrlich GD, Hu FZ, Kreft R, Nistico L, Kathju S, Stoodley P, Hall-Stoodley L, Maale G, James G, Sotereanos N, DeMeo P (2011) New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol Med Microbiol 61(2):133–140. doi: 10.1111/j.1574-695X.2010.00766.xCrossRefPubMedGoogle Scholar
  22. Cue D, Lei MG, Luong TT, Kuechenmeister L, Dunman PM, O'Donnell S, Rowe S, O'Gara JP, Lee CY (2009) Rbf promotes biofilm formation by Staphylococcus Aureus via repression of icaR, a negative regulator of icaADBC. J Bacteriol 191(20):6363–6373. doi: 10.1128/jb.00913-09CrossRefPubMedPubMedCentralGoogle Scholar
  23. Danielsen KA, Eskeland O, Fridrich-Aas K, Orszagh VC, Bachmann-Harildstad G, Burum-Auensen E (2014) Bacterial biofilms in patients with chronic rhinosinusitis: a confocal scanning laser microscopy study. Rhinology 52(2):150–155. doi: 10.4193/RhinCrossRefPubMedGoogle Scholar
  24. Desrosiers M, Evans GA, Keith PK, Wright ED, Kaplan A, Bouchard J, Ciavarella A, Doyle PW, Javer AR, Leith ES, Mukherji A, Robert Schellenberg R, Small P, Witterick IJ (2011) Canadian clinical practice guidelines for acute and chronic rhinosinusitis. J Otolaryngol Head Neck Surg 40(Suppl 2):S99–193PubMedGoogle Scholar
  25. Di Domenico EG, Toma L, Provot C, Ascenzioni F, Sperduti I, Prignano G, Gallo MT, Pimpinelli F, Bordignon V, Bernardi T, Ensoli F (2016) Development of an in vitro assay, based on the BioFilm ring test(R), for rapid profiling of biofilm-growing bacteria. Front Microbiol 7:1429. doi: 10.3389/fmicb.2016.01429CrossRefPubMedPubMedCentralGoogle Scholar
  26. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193CrossRefGoogle Scholar
  27. Dunne WM Jr, Mason EO Jr, Kaplan SL (1993) Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 37(12):2522–2526CrossRefGoogle Scholar
  28. Fey PD (2010) Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? Curr Opin Microbiol 13(5):610–615. doi: 10.1016/j.mib.2010.09.007CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, Cohen N, Cervin A, Douglas R, Gevaert P, Georgalas C, Goossens H, Harvey R, Hellings P, Hopkins C, Jones N, Joos G, Kalogjera L, Kern B, Kowalski M, Price D, Riechelmann H, Schlosser R, Senior B, Thomas M, Toskala E, Voegels R, de Wang Y, Wormald PJ (2012) European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinol Suppl (23):3 p preceding table of contents, 1–298Google Scholar
  30. Foreman A, Psaltis AJ, Tan LW, Wormald PJ (2009) Characterization of bacterial and fungal biofilms in chronic rhinosinusitis. Am J Rhinol Allergy 23(6):556–561. doi: 10.2500/ajra.2009.23.3413CrossRefPubMedGoogle Scholar
  31. Foreman A, Singhal D, Psaltis AJ, Wormald PJ (2010) Targeted imaging modality selection for bacterial biofilms in chronic rhinosinusitis. Laryngoscope 120(2):427–431. doi: 10.1002/lary.20705CrossRefPubMedGoogle Scholar
  32. Freeman DJ, Falkiner FR, Keane CT (1989) New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 42(8):872–874CrossRefGoogle Scholar
  33. Furustrand Tafin U, Meis JF, Trampuz A (2012) Isothermal microcalorimetry for antifungal susceptibility testing of Mucorales, Fusarium spp., and Scedosporium spp. Diagn Microbiol Infect Dis 73(4):330–337. doi: 10.1016/j.diagmicrobio.2012.05.009CrossRefPubMedGoogle Scholar
  34. Furustrand Tafin U, Orasch C, Trampuz A (2013) Activity of antifungal combinations against Aspergillus species evaluated by isothermal microcalorimetry. Diagn Microbiol Infect Dis 77(1):31–36. doi: 10.1016/j.diagmicrobio.2013.06.004CrossRefPubMedGoogle Scholar
  35. Gil C, Solano C, Burgui S, Latasa C, Garcia B, Toledo-Arana A, Lasa I, Valle J (2014) Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection. Infect Immun 82(3):1017–1029. doi: 10.1128/iai.01419-13CrossRefPubMedPubMedCentralGoogle Scholar
  36. Givskov M, Ostling J, Eberl L, Lindum PW, Christensen AB, Christiansen G, Molin S, Kjelleberg S (1998) Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol 180(3):742–745PubMedPubMedCentralGoogle Scholar
  37. Hall-Stoodley L, Stoodley P, Kathju S, Hoiby N, Moser C, Costerton JW, Moter A, Bjarnsholt T (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65(2):127–145. doi: 10.1111/j.1574-695X.2012.00968.xCrossRefPubMedGoogle Scholar
  38. Hoiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, Hall-Stoodley L, Hola V, Imbert C, Kirketerp-Moller K, Lebeaux D, Oliver A, Ullmann AJ, Williams C, Biofilms ESGf, Consulting External Expert, Werner Z (2015) ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 21(Suppl 1):S1–25. doi: 10.1016/j.cmi.2014.10.024CrossRefPubMedGoogle Scholar
  39. Jefferson KK, Goldmann DA, Pier GB (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49(6):2467–2473. doi: 10.1128/aac.49.6.2467-2473.2005CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jiang RS, Liang KL, Jang JW, Hsu CY (1999) Bacteriology of endoscopically normal maxillary sinuses. J Laryngol Otol 113(9):825–828PubMedGoogle Scholar
  41. Jost GF, Wasner M, Taub E, Walti L, Mariani L, Trampuz A (2014) Sonication of catheter tips for improved detection of microorganisms on external ventricular drains and ventriculo-peritoneal shunts. J Clin Neurosci 21(4):578–582. doi: 10.1016/j.jocn.2013.05.025CrossRefPubMedGoogle Scholar
  42. Kim R, Freeman J, Waldvogel-Thurlow S, Roberts S, Douglas R (2013a) The characteristics of intramucosal bacteria in chronic rhinosinusitis: a prospective cross-sectional analysis. Int Forum Allergy Rhinol 3(5):349–354. doi: 10.1002/alr.21117CrossRefPubMedGoogle Scholar
  43. Kim RJ, Yin T, Chen CJ, Mansell CJ, Wood A, Dunbar PR, Douglas RG (2013b) The interaction between bacteria and mucosal immunity in chronic rhinosinusitis: a prospective cross-sectional analysis. Am J Rhinol Allergy 27(6):e183–e189. doi: 10.2500/ajra.2013.27.3974CrossRefPubMedGoogle Scholar
  44. Kim YM, Jin J, Choi JA, Cho SN, Lim YJ, Lee JH, Seo JY, Chen HY, Rha KS, Song CH (2014) Staphylococcus aureus enterotoxin B-induced endoplasmic reticulum stress response is associated with chronic rhinosinusitis with nasal polyposis. Clin Biochem 47(1–2):96–103. doi: 10.1016/j.clinbiochem.2013.10.030CrossRefPubMedGoogle Scholar
  45. Knobloch JK, Bartscht K, Sabottke A, Rohde H, Feucht HH, Mack D (2001) Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 183(8):2624–2633. doi: 10.1128/JB.183.8.2624-2633.2001CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lam K, Schleimer R, Kern RC (2015) The etiology and pathogenesis of chronic Rhinosinusitis: a review of current hypotheses. Curr Allergy Asthma Rep 15(7):41. doi: 10.1007/s11882-015-0540-2CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lanza DC, Kennedy DW (1997) Adult rhinosinusitis defined. Otolaryngol Head Neck Surg 117(3 Pt 2):S1–S7CrossRefGoogle Scholar
  48. Lebeaux D, Ghigo JM, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78(3):510–543. doi: 10.1128/MMBR.00013-14CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131PubMedGoogle Scholar
  50. Lim Y, Jana M, Luong TT, Lee CY (2004) Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. J Bacteriol 186(3):722–729CrossRefGoogle Scholar
  51. Lubbert C, Wendt K, Feisthammel J, Moter A, Lippmann N, Busch T, Mossner J, Hoffmeister A, Rodloff AC (2016) Epidemiology and resistance patterns of bacterial and fungal colonization of biliary plastic stents: a prospective cohort study. PLoS One 11(5):e0155479. doi: 10.1371/journal.pone.0155479CrossRefPubMedPubMedCentralGoogle Scholar
  52. Macia MD, Rojo-Molinero E, Oliver A (2014) Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 20(10):981–990. doi: 10.1111/1469-0691.12651CrossRefPubMedGoogle Scholar
  53. Maisetta G, Grassi L, Di Luca M, Bombardelli S, Medici C, Brancatisano FL, Esin S, Batoni G (2016) Anti-biofilm properties of the antimicrobial peptide temporin 1Tb and its ability, in combination with EDTA, to eradicate Staphylococcus epidermidis biofilms on silicone catheters. Biofouling 32(7):787–800. doi: 10.1080/08927014.2016.1194401CrossRefPubMedGoogle Scholar
  54. Mallmann C, Siemoneit S, Schmiedel D, Petrich A, Gescher DM, Halle E, Musci M, Hetzer R, Gobel UB, Moter A (2010) Fluorescence in situ hybridization to improve the diagnosis of endocarditis: a pilot study. Clin Microbiol Infect 16(6):767–773. doi: 10.1111/j.1469-0691.2009.02936.xCrossRefPubMedGoogle Scholar
  55. Martin-Rodriguez AJ, Gonzalez-Orive A, Hernandez-Creus A, Morales A, Dorta-Guerra R, Norte M, Martin VS, Fernandez JJ (2014) On the influence of the culture conditions in bacterial antifouling bioassays and biofilm properties: Shewanella algae, a case study. BMC Microbiol 14:102. doi: 10.1186/1471-2180-14-102CrossRefPubMedPubMedCentralGoogle Scholar
  56. Merino N, Toledo-Arana A, Vergara-Irigaray M, Valle J, Solano C, Calvo E, Lopez JA, Foster TJ, Penades JR, Lasa I (2009) Protein A-mediated multicellular behavior in Staphylococcus Aureus. J Bacteriol 191(3):832–843. doi: 10.1128/jb.01222-08CrossRefPubMedGoogle Scholar
  57. Mladina R, Skitarelic N, Music S, Ristic M (2010) A biofilm exists on healthy mucosa of the paranasal sinuses: a prospectively performed, blinded, scanning electron microscope study. Clin Otolaryngol 35(2):104–110. doi: 10.1111/j.1749-4486.2010.02097.xCrossRefPubMedGoogle Scholar
  58. Oliva A, Furustrand Tafin U, Maiolo EM, Jeddari S, Betrisey B, Trampuz A (2014) Activities of fosfomycin and rifampin on planktonic and adherent Enterococcus faecalis strains in an experimental foreign-body infection model. Antimicrob Agents Chemother 58(3):1284–1293. doi: 10.1128/AAC.02583-12CrossRefPubMedPubMedCentralGoogle Scholar
  59. Paes Leme AF, Koo H, Bellato CM, Bedi G, Cury JA (2006) The role of sucrose in cariogenic dental biofilm formation--new insight. J Dent Res 85(10):878–887CrossRefGoogle Scholar
  60. Penesyan A, Gillings M, Paulsen IT (2015) Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20(4):5286–5298. doi: 10.3390/molecules20045286CrossRefPubMedGoogle Scholar
  61. Peters AT, Spector S, Hsu J, Hamilos DL, Baroody FM, Chandra RK, Grammer LC, Kennedy DW, Cohen NA, Kaliner MA, Wald ER, Karagianis A, Slavin RG, Joint Task Force on Practice Parameters rtAAoAA, Immunology tACoAA, Immunology, the Joint Council of Allergy A, Immunology (2014) Diagnosis and management of rhinosinusitis: a practice parameter update. Ann Allergy Asthma Immunol 113(4):347–385. doi: 10.1016/j.anai.2014.07.025CrossRefPubMedGoogle Scholar
  62. Pettit RK, Weber CA, Kean MJ, Hoffmann H, Pettit GR, Tan R, Franks KS, Horton ML (2005) Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrob Agents Chemother 49(7):2612–2617. doi: 10.1128/AAC.49.7.2612-2617.2005CrossRefPubMedPubMedCentralGoogle Scholar
  63. Portillo ME, Salvado M, Trampuz A, Siverio A, Alier A, Sorli L, Martinez S, Perez-Prieto D, Horcajada JP, Puig-Verdie L (2015) Improved diagnosis of orthopedic implant-associated infection by inoculation of sonication fluid into blood culture bottles. J Clin Microbiol 53(5):1622–1627. doi: 10.1128/JCM.03683-14CrossRefPubMedPubMedCentralGoogle Scholar
  64. Psaltis AJ, Ha KR, Beule AG, Tan LW, Wormald PJ (2007) Confocal scanning laser microscopy evidence of biofilms in patients with chronic rhinosinusitis. Laryngoscope 117(7):1302–1306. doi: 10.1097/MLG.0b013e31806009b0CrossRefPubMedGoogle Scholar
  65. Raad II, Darouiche RO, Hachem R, Abi-Said D, Safar H, Darnule T, Mansouri M, Morck D (1998) Antimicrobial durability and rare ultrastructural colonization of indwelling central catheters coated with minocycline and rifampin. Crit Care Med 26(2):219–224CrossRefGoogle Scholar
  66. Ravaioli S, Selan L, Visai L, Pirini V, Campoccia D, Maso A, Speziale P, Montanaro L, Arciola CR (2012) Staphylococcus lugdunensis, an aggressive coagulase-negative pathogen not to be underestimated. Int J Artif Organs 35(10):742–753. doi: 10.5301/ijao.5000142CrossRefPubMedGoogle Scholar
  67. Richter AL, Gallagher KK (2016) Chronic invasive fungal sinusitis causing a pathologic Le Fort I fracture in an immunocompetent patient. Ear Nose Throat J 95(9):E1–E3PubMedGoogle Scholar
  68. Rosenfeld RM, Piccirillo JF, Chandrasekhar SS, Brook I, Ashok Kumar K, Kramper M, Orlandi RR, Palmer JN, Patel ZM, Peters A, Walsh SA, Corrigan MD (2015) Clinical practice guideline (update): adult sinusitis. Otolaryngol Head Neck Surg 152(2 Suppl):S1–S39. doi: 10.1177/0194599815572097CrossRefPubMedGoogle Scholar
  69. Saginur R, Stdenis M, Ferris W, Aaron SD, Chan F, Lee C, Ramotar K (2006) Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrob Agents Chemother 50(1):55–61. doi: 10.1128/aac.50.1.55-61.2006CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sanchez CJ Jr, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, Murray CK (2013) Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis 13:47. doi: 10.1186/1471-2334-13-47CrossRefPubMedPubMedCentralGoogle Scholar
  71. Shields RC, Mokhtar N, Ford M, Hall MJ, Burgess JG, ElBadawey MR, Jakubovics NS (2013) Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis. PLoS One 8(2):e55339. doi: 10.1371/journal.pone.0055339CrossRefPubMedPubMedCentralGoogle Scholar
  72. Singhal D, Psaltis AJ, Foreman A, Wormald PJ (2010) The impact of biofilms on outcomes after endoscopic sinus surgery. Am J Rhinol Allergy 24(3):169–174. doi: 10.2500/ajra.2010.24.3462CrossRefPubMedGoogle Scholar
  73. Snyman J, Claassen AJ, Botha PL (1988) A microbiological study of acute maxillary sinusitis in Bloemfontein. S Afr Med J 74(9):444–445PubMedGoogle Scholar
  74. Sobin J, Engquist S, Nord CE (1992) Bacteriology of the maxillary sinus in healthy volunteers. Scand J Infect Dis 24(5):633–635CrossRefGoogle Scholar
  75. Speziale P, Pietrocola G, Foster TJ, Geoghegan JA (2014) Protein-based biofilm matrices in staphylococci. Front Cell Infect Microbiol 4:171. doi: 10.3389/fcimb.2014.00171CrossRefPubMedPubMedCentralGoogle Scholar
  76. Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115(8):891–899. doi: 10.1111/j.1600-0463.2007.apm_630.xCrossRefPubMedGoogle Scholar
  77. Sun F, Qu F, Ling Y, Mao P, Xia P, Chen H, Zhou D (2013) Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies. Future Microbiol 8(7):877–886. doi: 10.2217/fmb.13.58CrossRefPubMedGoogle Scholar
  78. Tote K, Vanden Berghe D, Maes L, Cos P (2008) A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett Appl Microbiol 46(2):249–254. doi: 10.1111/j.1472-765X.2007.02298.xCrossRefPubMedGoogle Scholar
  79. Trampuz A, Zimmerli W (2006) Antimicrobial agents in orthopaedic surgery: prophylaxis and treatment. Drugs 66(8):1089–1105CrossRefGoogle Scholar
  80. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, Mandrekar JN, Cockerill FR, Steckelberg JM, Greenleaf JF, Patel R (2007) Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357(7):654–663. doi: 10.1056/NEJMoa061588CrossRefPubMedGoogle Scholar
  81. Vaudaux PE, Huggler E, Lerch PG, Morgenthaler JJ, Nydegger UE, Schumacher-Perdreau F, Lew PD, Waldvogel FA (1989) Inhibition by immunoglobulins of Staphylococcus aureus adherence to fibronectin-coated foreign surfaces. J Invest Surg 2(4):397–408CrossRefGoogle Scholar
  82. Vergara-Irigaray M, Valle J, Merino N, Latasa C, Garcia B, Ruiz de Los Mozos I, Solano C, Toledo-Arana A, Penades JR, Lasa I (2009) Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infect Immun 77(9):3978–3991. doi: 10.1128/iai.00616-09CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wagner C, Aytac S, Hansch GM (2011) Biofilm growth on implants: bacteria prefer plasma coats. Int J Artif Organs 34(9):811–817. doi: 10.5301/ijao.5000061CrossRefPubMedGoogle Scholar
  84. Walker JN, Horswill AR (2012) A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma. Front Cell Infect Microbiol 2:39. doi: 10.3389/fcimb.2012.00039CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wecke J, Kersten T, Madela K, Moter A, Gobel UB, Friedmann A, Bernimoulin J (2000) A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets. FEMS Microbiol Lett 191(1):95–101CrossRefGoogle Scholar
  86. Widmer AF, Gaechter A, Ochsner PE, Zimmerli W (1992) Antimicrobial treatment of orthopedic implant-related infections with rifampin combinations. Clin Infect Dis 14(6):1251–1253CrossRefGoogle Scholar
  87. Wood AJ, Fraser JD, Swift S, Patterson-Emanuelson EA, Amirapu S, Douglas RG (2012) Intramucosal bacterial microcolonies exist in chronic rhinosinusitis without inducing a local immune response. Am J Rhinol Allergy 26(4):265–270. doi: 10.2500/ajra.2012.26.3779CrossRefPubMedGoogle Scholar
  88. Zheng Z, Stewart PS (2002) Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 46(3):900–903CrossRefGoogle Scholar
  89. Ziebuhr W, Krimmer V, Rachid S, Lossner I, Gotz F, Hacker J (1999) A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 32(2):345–356CrossRefGoogle Scholar
  90. Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-body infection (FBI) study group. JAMA 279(19):1537–1541CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG  2017

Authors and Affiliations

  • Mariagrazia Di Luca
    • 1
    • 2
    • 3
  • Elena Navari
    • 4
  • Semih Esin
    • 1
    • 5
  • Melissa Menichini
    • 1
    • 5
  • Simona Barnini
    • 5
  • Andrej Trampuz
    • 3
    • 6
  • Augusto Casani
    • 4
  • Giovanna Batoni
    • 1
    • 5
  1. 1.Department of Translational Research and New Technologies in Medicine and SurgeryPisaItaly
  2. 2.NEST, Istituto Nanoscienze-CNR and Scuola Normale SuperiorePisaItaly
  3. 3.Berlin-Brandenburg Center for Regenerative TherapiesCharité-UniversitätsmedizinBerlinGermany
  4. 4.Department of Medical and Surgical Pathology, Otorhinolaryngology UnitPisa University HospitalPisaItaly
  5. 5.Microbiology UnitPisa University HospitalPisaItaly
  6. 6.Center for Musculoskeletal SurgerySeptic Unit Charité-UniversitätsmedizinBerlinGermany

Personalised recommendations