Skip to main content

Indoor Exposure to Volatile Organic Compounds in Children: Health Risk Assessment in the Context of Physiological Development

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((NR,volume 1021))

Abstract

Indoor air quality is strongly affected by the contamination of ambient air and that related to building and finishing materials and to human activity. Poor ventilation of closed spaces facilitates retention of greater quantity of pollutants. Infants and children are at particular risk of exposure to indoor air pollutants as they undergo rapid physiological and biochemical changes and demonstrate activity patterns unlike those in adults. Health risk assessment in children should be carried out with regard to children-specific factors, since these factors may constitute a source of errors. In this article we weigh up two different: Scenario 1 in which risk assessment was carried out in five age-groups (0–1, 2–3, 4–6, 7–11, and 12–16 years of age) and Scenario 2 encompassing only two age-groups (0–6 and 7–16 years of age). The findings indicate that data on carcinogenic and non-carcinogenic effects obtained by applying the second scenario were overestimated or averaged; either giving much reduced information that may lead to a false judgment on actual risk. This kind of fallacy is avoided when applying the age stratification into a greater number of groups for the health risk assessment in children.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert RE (1989) Carcinogen risk assessment. Environ Health Perspect 81:103–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Billionnet C, Gay E, Kirchner S, Leynaert B, Annesi-Maesano I (2011) Quantitative assessments of indoor air pollution and respiratory health in a population-based sample of French dwellings. Environ Res 111(3):425–434

    Article  CAS  PubMed  Google Scholar 

  • Brosselin P, Rudant J, Orsi L, Leverger G, Baruchel A, Bertrand Y, Nelken B, Robert A, Michel G, Margueritte G, Perel Y, Mechinaud F, Bordigoni P, Hémon D, Clavel J (2009) Acute childhood leukaemia and residence next to petrol stations and automotive repair garages: the ESCALE study (SFCE). Occup Environ Med 66(9):598–606

    Article  CAS  PubMed  Google Scholar 

  • Coebergh JW, Pastore G, Gatta G, Corazziari I, Kamps W, EUROCARE Working Group (2001) Variation in survival of European children with acute lymphoblastic leukaemia, diagnosed in 1978-1992: the EUROCARE study. Eur J Cancer 37(6):687–694

    Article  CAS  PubMed  Google Scholar 

  • Cohen Hubal EA, de Wet T, Du Toit L, Firestone MP, Ruchirawat M, van Engelen J, Vickers C (2014) Identifying important life stages for monitoring and assessing risks from exposures to environmental contaminants: results of a World Health Organization review. Regul Toxicol Pharmacol 69(1):113–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Crosignani P, Tittarelli A, Borgini A, Codazzi T, Rovelli A, Porro E, Contiero P, Bianchi N, Tagliabue G, Fissi R, Rossitto F, Berrino F (2004) Childhood leukemia and road traffic: a population-based case-control study. Int J Cancer 108(4):596–599

    Article  CAS  PubMed  Google Scholar 

  • Davis JA, Gift JS, Zhao QJ (2011) Introduction to benchmark dose methods and U.S. EPA’s benchmark dose software (BMDS) version 2.1.1. Toxicol Appl Pharmacol 254(2):181–191

    Article  CAS  PubMed  Google Scholar 

  • Diez U, Kroessner T, Rehwagen M, Richter M, Wetzig H, Schulz R, Borte M, Metzner G, Krumbiegel P, Herbarth O (2000) Effects of indoor painting and smoking on airway symptoms in atopy risk children in the first year of life results of the LARS-study. Leipzig Allergy High-Risk Children Study. Int J Hyg Environ Health 203(1):23–28

    Article  CAS  PubMed  Google Scholar 

  • Etzel RA (2007) Indoor and outdoor air pollution: tobacco smoke, moulds and diseases in infants and children. Int J Hyg Environ Health 210(5):611–616

    Article  CAS  PubMed  Google Scholar 

  • FAO and WHO (2009) Principles and methods for the risk assessment of chemicals in food. Environmental Health Criteria 240; ISBN: 978 92 4 157240 8; Retrieved from http://www.who.int/foodsafety/publications/chemical-food/en/. Accessed 16 Feb 2017

  • Franklin P, Dingle P, Stick S (2000) Raised exhaled nitric oxide in healthy children is associated with domestic formaldehyde levels. Am J Respir Crit Care Med 161(5):1757–1759

    Article  CAS  PubMed  Google Scholar 

  • Garrett MH, Hooper MA, Hooper BM, Rayment PR, Abramson MJ (1999) Increased risk of allergy in children due to formaldehyde exposure in homes. Allergy 54(4):330–337

    Article  CAS  PubMed  Google Scholar 

  • Gatta G, Capocaccia R, Stiller C, Kaatsch P, Berrino F, Terenziani M, EUROCARE Working Group (2005) Childhood cancer survival trends in Europe: a EUROCARE Working Group study. J Clin Oncol 23(16):3742–3751

    Article  PubMed  Google Scholar 

  • Ginsberg G, Hattis D, Sonawane B (2004) Incorporating pharmacokinetic differences between children and adults in assessing children’s risks to environmental toxicants. Toxicol Appl Pharmacol 198(2):164–183

    Article  CAS  PubMed  Google Scholar 

  • Gouveia-Vigeant T, Tickner J (2003) Toxic chemicals and childhood cancer: a review of the evidence. A Publication of the Lowell Center for Sustainable Production, University of Massachusetts Lowell

    Google Scholar 

  • Gunier RB, Reynolds P, Metayer C, Hertz A, Rull RP, Buffler PA (2008) Passive air monitoring for a childhood leukemia study. Epidemiology 19(6):S267

    Google Scholar 

  • Guo H, Lee S, Chan L, Li W (2004) Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res 94(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Hänninen O, Vardoulakis S, Sarigiannis DA, Incecik S, Sokhi RS (2011) Focus on exposure to air pollution and related health impacts. Air Qual Atmos Health 4(3):159–160

    Article  Google Scholar 

  • Hoddinott KB, Lee AP (2000) The use of environmental risk assessment methodologies for an indoor air quality investigation. Chemosphere 41(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • IARC (1999) Monographs on The Evaluation of Carcinogenic Risks to Humans. Volume 73: Chemicals That Cause Tumours of the Kidney or Urinary Bladder in Rodents and some other Substances. IARC, Lyon CEDEX 08, France

    Google Scholar 

  • Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36(4):277–285

    Article  PubMed  Google Scholar 

  • Knox EG (2005) Childhood cancers and atmospheric carcinogens. J Epidemiol Community Health 59(2):101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyle AD, Woodruff TJ, Axelrad DA (2006) Integrated assessment of environment and health: America’s children and the environment. Environ Health Perspect 114(3):447–452

    Article  PubMed  Google Scholar 

  • Lagidze L, Matchavariani L, Tsivtsivadze N, Khidasheli N, Paichadze N, Motsonelidze N, Vakhtangishvili M (2015) Medical aspects of atmosphere pollution in Tbilisi, Georgia. J Environ Biol 36 Spec No:101-106

    Google Scholar 

  • Landrigan PJ, Kimmel CA, Correa A, Eskenazi B (2004) Children’s health and the environment: public health issues and challenges for risk assessment. Environ Health Perspect 112(2):257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin GZ, Li L, Song YF, Zhou YX, Shen SQ, Ou CQ (2016) The impact of ambient air pollution on suicide mortality: a case-crossover study in Guangzhou, China. Environ Health 15(1):90; doi.org/10.1186/s12940-016-0177-1

  • Luo D, Corey R, Propper R, Collins J, Komorniczak A, Davis M et al (2011) Comprehensive environmental impact assessment of exempt volatile organic compounds in California. Environ Sci Policy 14(6):585–593

    Article  CAS  Google Scholar 

  • Qian Z, He Q, Kong L, Xu F, Wei F, Chapman RS, Chen W, Edwards RD, Bascom R (2007) Respiratory responses to diverse indoor combustion air pollution sources. Indoor Air 17(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Remy S, Nawrot T, Fierens F, Petit P, Vanderstraeten P, Nemery B, Bouland C (2011) Health impact of urban air pollution in Belgium. Air Qual Atmos Health 4(3):243–246

    Article  CAS  Google Scholar 

  • Reynolds P, Von Behren J, Gunier RB, Goldberg DE, Hertz A, Smith DF (2003) Childhood cancer incidence rates and hazardous air pollutants in California: an exploratory analysis. Environ Health Perspect 111(4):663–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rumchev KB, Spickett JT, Bulsara MK, Phillips MR, Stick SM (2002) Domestic exposure to formaldehyde significantly increases the risk of asthma in young children. Eur Respir J 20(2):403–440

    Article  CAS  PubMed  Google Scholar 

  • Rumchev K, Spickett J, Bulsara M, Phillips M, Stick S (2004) Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 59(9):746–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saenen ND, Provost EB, Viaene MK, Vanpoucke C, Lefebvre W, Vrijens K., Roels HA, Nawrot, T. S (2016) Recent versus chronic exposure to particulate matter air pollution in association with neurobehavioral performance in a panel study of primary schoolchildren. Environ Int 95:112-119

    Google Scholar 

  • Scheuplein R, Charnley G, Dourson M (2002) Differential sensitivity of children and adults to chemical toxicity. Regul Toxicol Pharmacol 35(3):429–447

    Article  CAS  PubMed  Google Scholar 

  • Selevan SG, Kimmel CA, Mendola P (2000) Identifying critical windows of exposure for children’s health. Environ Health Perspect 108:449–597

    Article  Google Scholar 

  • Sherriff A, Farrow A, Golding J, Henderson J (2005) Frequent use of chemical household products is associated with persistent wheezing in pre-school age children. Thorax 60(1):45–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroop DM, Dietrich KN, Hunt AN, Suddendorf LR, Giangiacomo M (2002) Lead-based paint health risk assessment in dependent children living in military housing. Public Health Rep 117(5):446–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Suk WA, Ahanchian H, Asante KA, Carpenter DO, Diaz-Barriga F, Ha EH, Huo X, King M, Ruchirawat M, da Silva ER, Sly L, Sly PD, Stein RT, van den Berg M, Zar H, Landrigan PJ (2016) Environmental pollution: an under-recognized threat to children’s health, especially in low- and middle-income countries. Environmental Health Perspectives 124(3):A41–A45. doi:10.1289/ehp.1510517

    Article  PubMed  PubMed Central  Google Scholar 

  • US EPA (1989) Risk assessment guidance for superfund, Volume 1: Human health evaluation manual (Part A), Interim Final. Washington, DC. Retrieved from https://www.epa.gov/sites/production/files/2015-09/documents/rags_a.pdf. Accessed 1 Feb 2017

  • US EPA (1997) Exposure factors handbook (1997 Final Report). Washington, DC. Retrieved from https://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=12464; Accessed 1 Feb 2017

    Google Scholar 

  • US EPA (2000) Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures. Risk Assessment Fourm. Retrieved from https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533. Accessed 1 Feb 2017

  • US EPA (2002) Toxicological review of Benzene (Noncancer effects). Washington, DC. Retrieved from https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system. Accessed 1 Feb 2017

  • Wantke F, Demmer CM, Tappler P, Götz M, Jarisch R (1996) Exposure to gaseous formaldehyde induces IgE-mediated sensitization to formaldehyde in school-children. Clin Exp Allergy 26(3):276–280

    Article  CAS  PubMed  Google Scholar 

  • Waters MD, Stack HF, Jackson MA (1999) Short-term tests for defining mutagenic carcinogens. IARC Sci Publ 146:499–536

    CAS  Google Scholar 

  • Wcisło E, Ioven D, Kucharski R, Szdzuj J (2002) Human health risk assessment case study: an abandoned metal smelter site in Poland. Chemosphere 47(5):507–515

    Article  PubMed  Google Scholar 

  • Webster EM, Qian H, Mackay D, Christensen RD, Tietjen B, Zaleski R (2016) Modeling human exposure to indoor contaminants: external source to body tissues. Environ Sci Technol 50(16):8697–8704

    Article  CAS  PubMed  Google Scholar 

  • Weng HH, Tsai SS, Chiu HF, Wu TN, Yang CY (2009) Childhood leukemia and traffic air pollution in Taiwan: petrol station density as an indicator. J Toxicol Environ Health A 72(2):83–87

    Article  CAS  PubMed  Google Scholar 

  • Whitworth KW, Symanski E, Coker AL (2008) Childhood lymphohematopoietic cancer incidence and hazardous air pollutants in southeast Texas, 1995–2004. Environ Health Perspect 116(11):1576–1580

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO (2010) WHO Human Health Risk Assessment Toolkit : Chemical Hazards. IPCS – International Programme on Chemical Safety. Harmonization Project Document No. 8. ISBN 978 92 4 154807 6. Retrieved from https://whqlibdoc.who.int/publications/2010/9789241548076_eng.pdf. Accessed 16 Feb 2017

Download references

Acknowledgements

The authors would like to thank Ms. Jolanta Łubkowska and Dr. Renata Wiglusz for an invaluable help in making the resources of HIGMAT Central Data Base available. The study was supported by Grant 2011/01/N/NZ7/01547 from the National Science Center in Poland.

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur J. Badyda .

Editor information

Editors and Affiliations

Supplementary Material

Supplementary Material

Table A Age-dependent inhalation rates (m3/h)
Table B Percentage of age-dependent duration (hours/24h) of performing specific activity
Table C Children’s body mass

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Czernych, R., Badyda, A.J., Gałęzowska, G., Wolska, L., Zagożdżon, P. (2017). Indoor Exposure to Volatile Organic Compounds in Children: Health Risk Assessment in the Context of Physiological Development. In: Pokorski, M. (eds) Pulmonary Care and Clinical Medicine. Advances in Experimental Medicine and Biology(), vol 1021. Springer, Cham. https://doi.org/10.1007/5584_2017_31

Download citation

Publish with us

Policies and ethics