The Role of Reactive Oxygen Species in Adipogenic Differentiation

  • Danielle de Villiers
  • Marnie Potgieter
  • Melvin A. Ambele
  • Ladislaus Adam
  • Chrisna Durandt
  • Michael S. PepperEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1083)


Interest in reactive oxygen species and adipocyte differentiation/adipose tissue function is steadily increasing. This is due in part to a search for alternative avenues for combating obesity, which results from the excess accumulation of adipose tissue. Obesity is a major risk factor for complex disorders such as cancer, type 2 diabetes, and cardiovascular diseases. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is often used as a model for studying adipogenesis in vitro. A key focus is the effect of both intra- and extracellular reactive oxygen species (ROS) on adipogenesis. The consensus from the majority of studies is that ROS, irrespective of the source, promote adipogenesis.

The effect of ROS on adipogenesis is suppressed by antioxidants or ROS scavengers. Reactive oxygen species are generated during the process of adipocyte differentiation as well as by other cell metabolic processes. Despite many studies in this field, it is still not possible to state with certainty whether ROS measured during adipocyte differentiation are a cause or consequence of this process. In addition, it is still unclear what the exact sources are of the ROS that initiate and/or drive adipogenic differentiation in MSCs in vivo. This review provides an overview of our understanding of the role of ROS in adipocyte differentiation as well as how certain ROS scavengers and antioxidants might affect this process.


Adipogenic differentiation Adipose-derived stromal cells Mesenchymal stem/stromal cells Reactive oxygen species ROS scavengers 



Adipose-derived stem/stromal cells


Adenosine triphosphate


Brown adipose tissue


Brain and muscle ARNT-like protein 1


Bone marrow-derived MSCs


Bone morphogenic protein


CCAAT enhancer-binding protein


CCAAT enhancer-binding protein alpha


CCAAT enhancer-binding protein beta


CCAAT enhancer-binding protein delta




C-C motif chemokine 2 precursor


Oxidized ubiquinone


Reduced ubiquinol


Cyclic AMP response element-binding protein








Endothelial nitric oxide


Endothelial PAS domain protein 1


Electron transport chain


Fatty acid-binding protein 4


Fatty acid translocase (CD36)


Forkhead box A2


Forkhead box O1


One billion years


GATA binding protein 2


GATA binding protein 3


Glutathione peroxidase


Glutathione S-transferase A4






Hydrogen peroxide


Standard adipogenic induction cocktail


Interleukin 10


Interleukin 6


Interleukin 8


Inducible nitric oxide synthase


Kruppel-like factor


Lipoprotein lipase


Classically activated macrophage phenotype


Immortalized murine embryonic fibroblasts


Murine embryonic stem cells


MAP kinase phosphatase-1


Murine mesenchymal stem/stromal cells


Mesenchymal stem/stromal cells




Nonesterified fatty acid


Nitric oxide


Nitric oxide synthase


NADPH oxidase






Proliferator-activated receptor-gamma


Preadipocyte factor-1


Peroxiredoxin 3


Reactive oxygen species


Histone deacetylase sirtuin 1


Superoxide dismutase


Superoxide dismutase 2


Sterol regulatory element-binding transcription factor 1


Signal transducer and activator of transcription-5a


Transcriptional coactivator with PDZ-binding motif




Tumor necrosis factor alpha


White adipose tissue


Zinc finger protein 423



This research was funded by the South African Medical Research Council in terms of the SAMRC's Flagship Award Project SAMRC-RFA-UFSP-01-2013/STEM CELLS, the SAMRC Extramural Unit for Stem Cell Research and Therapy and the Institute for Cellular and Molecular Medicine of the University of Pretoria.

Conflicts of Interest Statement

The authors have no conflicts of interest to declare.

Author Contributions

Danielle de Villiers drafted the first version of the manuscript with input from Marnie Potgieter and Michael Pepper. Melvin Ambele, Chrisna Durandt, and Ladislaus Adam provided intellectual input and contributed to the writing of the manuscript. All authors vetted and approved the final version of the manuscript. Michael Pepper conceived the project.


  1. Alfadda, A. A., & Sallam, R. M. (2012a). Reactive oxygen species in health and disease. Journal of Biomedicine and Biotechnology, 2012, 14. Scholar
  2. Alfadda, A. A., & Sallam, R. M. (2012b). Reactive oxygen species in health and disease. Journal of Biomedicine & Biotechnology, 2012, 936486. Scholar
  3. Ali, A. T., Hochfeld, W. E., Myburgh, R., & Pepper, M. S. (2013). Adipocyte and adipogenesis. European Journal of Cell Biology, 92(6–7), 229–236. Scholar
  4. Ambele, M. A., & Pepper, M. S. (2017). Identification of transcription factors potentially involved in human adipogenesis in vitro. Molecular Genetics & Genomic Medicine:n/a-n/a., 5, 210. Scholar
  5. Ambele, M. A., Dessels, C., Durandt, C., & Pepper, M. S. (2016). Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Research, 16(3), 725–734. Scholar
  6. Atashi, F., Modarressi, A., & Pepper, M. S. (2015). The role of reactive oxygen species in mesenchymal stem cell Adipogenic and osteogenic differentiation: A review. Stem Cells and Development, 24(10), 1150–1163. Scholar
  7. Babior, B. M., Kipnes, R. S., & Curnutte, J. T. (1973). Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. The Journal of Clinical Investigation, 52(3), 741–744. Scholar
  8. Bassi, G., Pacelli, L., Carusone, R., Zanoncello, J., & Krampera, M. (2012). Adipose-derived stromal cells (ASCs). Transfusion and Apheresis Science : Official Journal of the World Apheresis Association : Official Journal of the European Society for Haemapheresis, 47(2), 193–198. Scholar
  9. Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87(1), 245–313. Scholar
  10. Bekker, A., Holland, H. D., Wang, P. L., Rumble, D., 3rd, Stein, H. J., Hannah, J. L., Coetzee, L. L., & Beukes, N. J. (2004). Dating the rise of atmospheric oxygen. Nature, 427(6970), 117–120. Scholar
  11. Bremer, A. A., & Jialal, I. (2013). Adipose tissue dysfunction in nascent metabolic syndrome. Journal of Obesity, 2013, 393192. Scholar
  12. Carriere, A., Fernandez, Y., Rigoulet, M., Penicaud, L., & Casteilla, L. (2003). Inhibition of preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Letters, 550(1–3), 163–167.CrossRefPubMedGoogle Scholar
  13. Castro, J. P., Grune, T., & Speckmann, B. (2016). The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biological Chemistry, 397(8), 709–724. Scholar
  14. Chen, Y., & Junger, W. G. (2012). Measurement of oxidative burst in neutrophils. Methods in Molecular Biology (Clifton, NJ), 844, 115–124. Scholar
  15. Chen, J.-X., & Stinnett, A. (2008). Ang-1 gene therapy inhibits hypoxia-inducible factor-1α (HIF-1α)-Prolyl-4-Hydroxylase-2, stabilizes HIF-1α expression, and normalizes immature vasculature in db/db mice. Diabetes, 57(12), 3335–3343. Scholar
  16. Commoner, B., Townsend, J., & Pake, G. E. (1954). Free radicals in biological materials. Nature, 174(4432), 689–691.CrossRefPubMedGoogle Scholar
  17. Cotillard, A., Poitou, C., Torcivia, A., Bouillot, J. L., Dietrich, A., Kloting, N., Gregoire, C., Lolmede, K., Bluher, M., & Clement, K. (2014). Adipocyte size threshold matters: Link with risk of type 2 diabetes and improved insulin resistance after gastric bypass. The Journal of Clinical Endocrinology and Metabolism, 99(8), E1466–E1470. Scholar
  18. Curtis, J. M., Grimsrud, P. A., Wright, W. S., Xu, X., Foncea, R. E., Graham, D. W., Brestoff, J. R., Wiczer, B. M., Ilkayeva, O., Cianflone, K., Muoio, D. E., Arriaga, E. A., & Bernlohr, D. A. (2010). Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes, 59(5), 1132–1142. Scholar
  19. D’Autreaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, 8(10), 813–824. Scholar
  20. Den Hartigh, L. J., Omer, M., Goodspeed, L., Wang, S., Wietecha, T., O’Brien, K. D., & Han, C. Y. (2016). Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(3), 466–475.CrossRefGoogle Scholar
  21. Drehmer, D. L., de Aguiar, A. M., Brandt, A. P., Petiz, L., Cadena, S. M., Rebelatto, C. K., Brofman, P. R., Filipak Neto, F., Dallagiovanna, B., & Abud, A. P. (2016). Metabolic switches during the first steps of adipogenic stem cells differentiation. Stem Cell Research, 17(2), 413–421. Scholar
  22. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82(1), 47–95. Scholar
  23. Drong, A. W., Lindgren, C. M., & McCarthy, M. I. (2012). The genetic and epigenetic basis of type 2 diabetes and obesity. Clinical Pharmacology and Therapeutics, 92(6), 707–715. Scholar
  24. Drose, S., & Brandt, U. (2008). The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. The Journal of Biological Chemistry, 283(31), 21649–21654. Scholar
  25. Durandt, C., van Vollenstee, F. A., Dessels, C., Kallmeyer, K., de Villiers, D., Murdoch, C., Potgieter, M., & Pepper, M. S. (2016). Novel flow cytometric approach for the detection of adipocyte sub-populations during adipogenesis. Journal of Lipid Research, 57(4), 729–742. Scholar
  26. Eseberri, I., Miranda, J., Lasa, A., Churruca, I., & Portillo, M. P. (2015). Doses of quercetin in the range of serum concentrations exert delipidating effects in 3T3-L1 preadipocytes by acting on different stages of adipogenesis, but not in mature adipocytes. Oxidative Medicine and Cellular Longevity, 2015, 480943. Scholar
  27. Finkel, T. (2011). Signal transduction by reactive oxygen species. The Journal of Cell Biology, 194(1), 7–15. Scholar
  28. Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., & Shimomura, I. (2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation, 114(12), 1752–1761. Scholar
  29. Furuyashiki, T., Nagayasu, H., Aoki, Y., Bessho, H., Hashimoto, T., Kanazawa, K., & Ashida, H. (2004). Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Bioscience, Biotechnology, and Biochemistry, 68(11), 2353–2359. Scholar
  30. Galinier, A., Carriere, A., Fernandez, Y., Carpene, C., Andre, M., Caspar-Bauguil, S., Thouvenot, J. P., Periquet, B., Penicaud, L., & Casteilla, L. (2006). Adipose tissue proadipogenic redox changes in obesity. The Journal of Biological Chemistry, 281(18), 12682–12687. Scholar
  31. Gregoire, F. M., Smas, C. M., & Sul, H. S. (1998). Understanding adipocyte differentiation. Physiological Reviews, 78(3), 783–809.CrossRefPubMedGoogle Scholar
  32. Guilherme, A., Virbasius, J. V., Puri, V., & Czech, M. P. (2008). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Reviews Molecular Cell Biology, 9(5), 367–377. Scholar
  33. Han, C. Y. (2016). Roles of reactive oxygen species on insulin resistance in adipose tissue. Diabetes & Metabolism Journal, 40(4), 272–279. Scholar
  34. Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology, 11(3), 298–300.CrossRefPubMedGoogle Scholar
  35. Higuchi, M., Dusting, G. J., Peshavariya, H., Jiang, F., Hsiao, S. T., Chan, E. C., & Liu, G. S. (2013). Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and Forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells and Development, 22(6), 878–888. Scholar
  36. Hinkle, P. C., Butow, R. A., Racker, E., & Chance, B. (1967). Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles. The Journal of Biological Chemistry, 242(22), 5169–5173.PubMedGoogle Scholar
  37. Holzerova, E., & Prokisch, H. (2015). Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production? The International Journal of Biochemistry & Cell Biology, 63, 16–20. Scholar
  38. Hou, Y., Xue, P., Bai, Y., Liu, D., Woods, C. G., Yarborough, K., Fu, J., Zhang, Q., Sun, G., Collins, S., Chan, J. Y., Yamamoto, M., Andersen, M. E., & Pi, J. (2012). Nuclear factor erythroid-derived factor 2-related factor 2 regulates transcription of CCAAT/enhancer-binding protein beta during adipogenesis. Free Radical Biology & Medicine, 52(2), 462–472. Scholar
  39. Imhoff, B. R., & Hansen, J. M. (2011). Differential redox potential profiles during adipogenesis and osteogenesis. Cellular & Molecular Biology Letters, 16(1), 149–161. Scholar
  40. Iyer, G. Y. N., Islam, M. F., & Quastel, J. H. (1961). Biochemical aspects of phagocytosis. Nature, 192(4802), 535–541.CrossRefGoogle Scholar
  41. Jiang, F., Zhang, Y., & Dusting, G. J. (2011). NADPH oxidase-mediated redox signaling: Roles in cellular stress response, stress tolerance, and tissue repair. Pharmacological Reviews, 63(1), 218–242. Scholar
  42. Jiang, Y., Jo, A. Y., & Graff, J. M. (2012). SnapShot: Adipocyte life cycle. Cell, 150(1), 234–234.e232. Scholar
  43. Kanda, Y., Hinata, T., Kang, S. W., & Watanabe, Y. (2011). Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sciences, 89(7–8), 250–258. Scholar
  44. Kawagishi, H., & Finkel, T. (2014). Unraveling the truth about antioxidants: ROS and disease: Finding the right balance. Nature Medicine, 20(7), 711–713. Scholar
  45. Krieger-Brauer, H. I., Medda, P. K., & Kather, H. (1997). Insulin-induced activation of NADPH-dependent H2O2 generation in human adipocyte plasma membranes is mediated by Galphai2. The Journal of Biological Chemistry, 272(15), 10135–10143.CrossRefPubMedGoogle Scholar
  46. Lalucque, H., & Silar, P. (2003). NADPH oxidase: An enzyme for multicellularity? Trends in Microbiology, 11(1), 9–12.CrossRefPubMedGoogle Scholar
  47. Le Lay, S., Simard, G., Martinez, M. C., & Andriantsitohaina, R. (2014). Oxidative stress and metabolic pathologies: From an adipocentric point of view. Oxidative Medicine and Cellular Longevity, 2014, 18. Scholar
  48. Lee, H., Lee, Y. J., Choi, H., Ko, E. H., & J-w, K. (2009). Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. The Journal of Biological Chemistry, 284(16), 10601–10609. Scholar
  49. Lefterova, M. I., & Lazar, M. A. (2009). New developments in adipogenesis. Trends in Endocrinology and Metabolism: TEM, 20(3), 107–114. Scholar
  50. Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J. A., & Robinson, J. P. (2003). Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. The Journal of Biological Chemistry, 278(10), 8516–8525. Scholar
  51. Li, Y., Mouche, S., Sajic, T., Veyrat-Durebex, C., Supale, R., Pierroz, D., Ferrari, S., Negro, F., Hasler, U., Feraille, E., Moll, S., Meda, P., Deffert, C., Montet, X., Krause, K. H., & Szanto, I. (2012). Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity. International Journal of Obesity, 36(12), 1503–1513. Scholar
  52. Lindahl, P. E., & Oberg, K. E. (1960). Mechanism of the physiological action of rotenone. Nature, 187, 784.CrossRefPubMedGoogle Scholar
  53. Liu, G.-S., Chan, E. C., Higuchi, M., Dusting, G. J., & Jiang, F. (2012a). Redox mechanisms in regulation of adipocyte differentiation: Beyond a general stress response. Cell, 1(4), 976–993. Scholar
  54. Liu, H., Yang, X., Zhang, Y., Dighe, A., Li, X., & Cui, Q. (2012b). Fullerol antagonizes dexamethasone-induced oxidative stress and adipogenesis while enhancing osteogenesis in a cloned bone marrow mesenchymal stem cell. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 30(7), 1051–1057. Scholar
  55. Loschen, G., Azzi, A., Richter, C., & Flohe, L. (1974). Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Letters, 42(1), 68–72.CrossRefPubMedGoogle Scholar
  56. MacFie, T. S., Poulsom, R., Parker, A., Warnes, G., Boitsova, T., Nijhuis, A., Suraweera, N., Poehlmann, A., Szary, J., Feakins, R., Jeffery, R., Harper, R. W., Jubb, A. M., Lindsay, J. O., & Silver, A. (2014). DUOX2 and DUOXA2 form the predominant enzyme system capable of producing the reactive oxygen species H2O2 in active ulcerative colitis and are modulated by 5-aminosalicylic acid. Inflammatory Bowel Diseases, 20(3), 514–524. Scholar
  57. Mahadev, K., Motoshima, H., Wu, X., Ruddy, J. M., Arnold, R. S., Cheng, G., Lambeth, J. D., & Goldstein, B. J. (2004). The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Molecular and Cellular Biology, 24(5), 1844–1854.CrossRefPubMedPubMedCentralGoogle Scholar
  58. McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). The Journal of Biological Chemistry, 244(22), 6049–6055.PubMedGoogle Scholar
  59. Meier, B., Cross, A. R., Hancock, J. T., Kaup, F. J., & Jones, O. T. (1991). Identification of a superoxide-generating NADPH oxidase system in human fibroblasts. The Biochemical Journal, 275(Pt 1), 241–245.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mitchell, J. B., Xavier, S., DeLuca, A. M., Sowers, A. L., Cook, J. A., Krishna, M. C., Hahn, S. M., & Russo, A. (2003). A low molecular weight antioxidant decreases weight and lowers tumor incidence. Free Radical Biology & Medicine, 34(1), 93–102.CrossRefGoogle Scholar
  61. Moseti, D., Regassa, A., & Kim, W. K. (2016). Molecular regulation of Adipogenesis and potential anti-Adipogenic bioactive molecules. International Journal of Molecular Sciences, 17(1), 124. Scholar
  62. Mouche, S., Mkaddem, S. B., Wang, W., Katic, M., Tseng, Y. H., Carnesecchi, S., Steger, K., Foti, M., Meier, C. A., Muzzin, P., Kahn, C. R., Ogier-Denis, E., & Szanto, I. (2007). Reduced expression of the NADPH oxidase NOX4 is a hallmark of adipocyte differentiation. Biochimica et Biophysica Acta, 1773(7), 1015–1027. Scholar
  63. Munekata, K., & Sakamoto, K. (2009). Forkhead transcription factor Foxo1 is essential for adipocyte differentiation. In Vitro Cellular & Developmental Biology Animal, 45(10), 642–651. Scholar
  64. Murphy, S., Martin, S., & Parton, R. G. (2009). Lipid droplet-organelle interactions; sharing the fats. Biochimica et Biophysica Acta, 1791(6), 441–447. Scholar
  65. Nakae, J., Kitamura, T., Kitamura, Y., Biggs, W. H., 3rd, Arden, K. C., & Accili, D. (2003). The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Developmental Cell, 4(1), 119–129.CrossRefPubMedGoogle Scholar
  66. Nam, W. S., Park, K. M., & Park, J. W. (2012). RNA interference targeting cytosolic NADP(+)-dependent isocitrate dehydrogenase exerts anti-obesity effect in vitro and in vivo. Biochimica et Biophysica Acta, 1822(8), 1181–1188. Scholar
  67. Nguyen, A., Guo, J., Banyard, D. A., Fadavi, D., Toranto, J. D., Wirth, G. A., Paydar, K. Z., Evans, G. R., & Widgerow, A. D. (2016). Stromal vascular fraction: A regenerative reality? Part 1: Current concepts and review of the literature. Journal of Plastic, Reconstructive & Aesthetic Surgery: JPRAS, 69(2), 170–179. Scholar
  68. Otto, T. C., & Lane, M. D. (2005). Adipose development: From stem cell to adipocyte. Critical Reviews in Biochemistry and Molecular Biology, 40(4), 229–242. Scholar
  69. Panday, A., Sahoo, M. K., Osorio, D., & Batra, S. (2015). NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cellular & Molecular Immunology, 12(1), 5–23. Scholar
  70. Pieralisi, A., Martini, C., Soto, D., Vila, M. C., Calvo, J. C., & Guerra, L. N. (2016). N-acetylcysteine inhibits lipid accumulation in mouse embryonic adipocytes. Redox Biology, 9, 39–44. Scholar
  71. Quinlan, C. L., Orr, A. L., Perevoshchikova, I. V., Treberg, J. R., Ackrell, B. A., & Brand, M. D. (2012). Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. The Journal of Biological Chemistry, 287(32), 27255–27264. Scholar
  72. Riordan, N. H., Ichim, T. E., Min, W. P., Wang, H., Solano, F., Lara, F., Alfaro, M., Rodriguez, J. P., Harman, R. J., Patel, A. N., Murphy, M. P., Lee, R. R., & Minev, B. (2009). Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. Journal of Translational Medicine, 7, 29. Scholar
  73. Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology, 7(12), 885–896. Scholar
  74. Rossi, F., & Zatti, M. (1964). Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia, 20(1), 21–23.CrossRefPubMedGoogle Scholar
  75. Roy, J., Galano, J.-M., Durand, T., Le Guennec, J.-Y., & Lee, J. C.-Y. (2017). Physiological role of reactive oxygen species as promoters of natural defenses. The FASEB Journal, 31, 3729. Scholar
  76. Ryu, J. M., Lee, H. J., Jung, Y. H., Lee, K. H., Kim, D. I., Kim, J. Y., Ko, S. H., Choi, G. E., Chai, I. I., Song, E. J., JY, O., Lee, S. J., & Han, H. J. (2015). Regulation of stem cell fate by ROS-mediated alteration of metabolism. International Journal of Stem Cells, 8(1), 24–35.  10.15283/ijsc.2015.8.1.24.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sabharwal, S. S., & Schumacker, P. T. (2014). Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles’ heel? Nature Reviews Cancer, 14(11), 709–721. Scholar
  78. Saitoh, Y., Xiao, L., Mizuno, H., Kato, S., Aoshima, H., Taira, H., Kokubo, K., & Miwa, N. (2010). Novel polyhydroxylated fullerene suppresses intracellular oxidative stress together with repression of intracellular lipid accumulation during the differentiation of OP9 preadipocytes into adipocytes. Free Radical Research, 44(9), 1072–1081. Scholar
  79. Samuelsson, L., Stromberg, K., Vikman, K., Bjursell, G., & Enerback, S. (1991). The CCAAT/enhancer binding protein and its role in adipocyte differentiation: Evidence for direct involvement in terminal adipocyte development. The EMBO Journal, 10(12), 3787–3793.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Samuni, Y., Cook, J. A., Choudhuri, R., Degraff, W., Sowers, A. L., Krishna, M. C., & Mitchell, J. B. (2010). Inhibition of adipogenesis by Tempol in 3T3-L1 cells. Free Radical Biology & Medicine, 49(4), 667–673. Scholar
  81. Satish, L., Krill-Burger, J. M., Gallo, P. H., Etages, S. D., Liu, F., Philips, B. J., Ravuri, S., Marra, K. G., LaFramboise, W. A., Kathju, S., & Rubin, J. P. (2015). Expression analysis of human adipose-derived stem cells during in vitro differentiation to an adipocyte lineage. BMC Medical Genomics, 8, 41. Scholar
  82. Sbarra, A. J., & Karnovsky, M. L. (1959). The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. The Journal of Biological Chemistry, 234(6), 1355–1362.PubMedGoogle Scholar
  83. Schroder, K., Wandzioch, K., Helmcke, I., & Brandes, R. P. (2009). Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(2), 239–245. Scholar
  84. Slauch, J. M. (2011). How does the oxidative burst of macrophages kill bacteria? Still an open question. Molecular Microbiology, 80(3), 580–583. Scholar
  85. Stephens, J. M. (2012). The fat controller: Adipocyte development. PLoS Biology, 10(11), e1001436. Scholar
  86. Tahara, E. B., Navarete, F. D., & Kowaltowski, A. J. (2009). Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radical Biology & Medicine, 46(9), 1283–1297. Scholar
  87. Thomas, D., & Apovian, C. (2017). Macrophage functions in lean and obese adipose tissue. Metabolism: Clinical and Experimental, 72, 120–143. Scholar
  88. Tormos, K. V., Anso, E., Hamanaka, R. B., Eisenbart, J., Joseph, J., Kalyanaraman, B., & Chandel, N. S. (2011). Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metabolism, 14(4), 537–544. Scholar
  89. Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. The Journal of Physiology, 552(Pt 2), 335–344. Scholar
  90. Vigilanza, P., Aquilano, K., Baldelli, S., Rotilio, G., & Ciriolo, M. R. (2011). Modulation of intracellular glutathione affects adipogenesis in 3T3-L1 cells. Journal of Cellular Physiology, 226(8), 2016–2024. Scholar
  91. Virtue, S., & Vidal-Puig, A. (2010). Adipose tissue expandability, lipotoxicity and the metabolic syndrome--an allostatic perspective. Biochimica et Biophysica Acta, 1801(3), 338–349. Scholar
  92. Wang, Y., Hudak, C., & Sul, H. S. (2010a). Role of preadipocyte factor 1 in adipocyte differentiation. Clinical Lipidology, 5(1), 109–115. Scholar
  93. Wang, Y., Zhao, L., Smas, C., & Sul, H. S. (2010b). Pref-1 interacts with fibronectin to inhibit adipocyte differentiation. Molecular and Cellular Biology, 30(14), 3480–3492. Scholar
  94. Wang, W., Zhang, Y., Lu, W., & Liu, K. (2015). Mitochondrial reactive oxygen species regulate adipocyte differentiation of mesenchymal stem cells in hematopoietic stress induced by arabinosylcytosine. PLoS One, 10(3), e0120629. Scholar
  95. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W., Jr. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation, 112(12), 1796–1808. Scholar
  96. Yan, H., Aziz, E., Shillabeer, G., Wong, A., Shanghavi, D., Kermouni, A., Abdel-Hafez, M., & Lau, D. C. (2002). Nitric oxide promotes differentiation of rat white preadipocytes in culture. Journal of Lipid Research, 43(12), 2123–2129.CrossRefPubMedGoogle Scholar
  97. Yang, J. Y., Della-Fera, M. A., Rayalam, S., Ambati, S., Hartzell, D. L., Park, H. J., & Baile, C. A. (2008). Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sciences, 82(19–20), 1032–1039. Scholar
  98. Yoshihara, A., Hara, T., Kawashima, A., Akama, T., Tanigawa, K., Wu, H., Sue, M., Ishido, Y., Hiroi, N., Ishii, N., Yoshino, G., & Suzuki, K. (2012). Regulation of dual oxidase expression and H2O2 production by thyroglobulin. Thyroid : Official Journal of the American Thyroid Association, 22(10), 1054–1062. Scholar
  99. Younce, C., & Kolattukudy, P. (2012). MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 30(2), 307–320. Scholar
  100. Zhang, M., Ikeda, K., JW, X., Yamori, Y., Gao, X. M., & Zhang, B. L. (2009). Genistein suppresses adipogenesis of 3T3-L1 cells via multiple signal pathways. Phytotherapy Research: PTR, 23(5), 713–718. Scholar
  101. Zhao, W.-E., Fan, J., Gao, R., & Ngoc, N. B. (2017). Suppressive effects of carotenoids on proliferation and differentiation of 3T3-L1 Preadipocytes. Journal of Food and Nutrition Research, 5(2), 129–136.  10.12691/jfnr-5-2-9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Danielle de Villiers
    • 1
  • Marnie Potgieter
    • 1
    • 2
  • Melvin A. Ambele
    • 1
    • 3
  • Ladislaus Adam
    • 1
  • Chrisna Durandt
    • 1
  • Michael S. Pepper
    • 1
    Email author
  1. 1.Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
  2. 2.Center for Microbial Ecology and Genomics, Department of Genetics, Faculty of Natural and Agricultural SciencesUniversity of PretoriaPretoriaSouth Africa
  3. 3.Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations