Contrasting Views on the Role of Mesenchymal Stromal/Stem Cells in Tumour Growth: A Systematic Review of Experimental Design

  • Ahmed Kolade Oloyo
  • Melvin Anyasi Ambele
  • Michael Sean PepperEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1083)


The effect of mesenchymal stromal/stem cells (MSCs) on tumour growth remains controversial. Experimental evidence supports both an inhibitory and a stimulatory effect. We have assessed factors responsible for the contrasting effects of MSCs on tumour growth by doing a meta-analysis of existing literature between 2000 and May 2017. We assessed 183 original research articles comprising 338 experiments. We considered (a) in vivo and in vitro experiments, (b) whether in vivo studies were syngeneic or xenogeneic, and (c) if animals were immune competent or deficient. Furthermore, the sources and types of cancer cells and MSCs were considered together with modes of cancer induction and MSC administration. 56% of all 338 experiments reported that MSCs promote tumour growth. 78% and 79% of all experiments sourced human MSCs and cancer cells, respectively. MSCs were used in their naïve and engineered form in 86% and 14% of experiments, respectively, the latter to produce factors that could alter either their activity or that of the tumour. 53% of all experiments were conducted in vitro with 60% exposing cancer cells to MSCs via coculture. Of all in vivo experiments, 79% were xenogeneic and 63% were conducted in immune-competent animals. Tumour growth was inhibited in 80% of experiments that used umbilical cord-derived MSCs, whereas tumour growth was promoted in 64% and 57% of experiments that used bone marrow- and adipose tissue-derived MSCs, respectively. This contrasting effect of MSCs on tumour growth observed under different experimental conditions may reflect differences in experimental design. This analysis calls for careful consideration of experimental design given the large number of MSC clinical trials currently underway.


Cancer Mesenchymal stem cell Syngeneic Tumour Xenogeneic 



Adipose tissue


Bone marrow




C-C motif chemokine receptor 2


Tyrosine-protein kinase Kit also known as mast/stem cell growth factor receptor (SCFR)


Conditioned medium


Tyrosine-protein kinase Met or hepatocyte growth factor receptor


C-X-C motif chemokine receptor 4


Epithelial growth factor


Hepatocyte growth factor


Head and neck squamous cell carcinoma


Interleukin 1-beta


Interleukin 8






Monocyte chemotactic protein 1


Mesenchymal stromal/stem cell


Platelet-derived growth factor




Stem cell factor


Severe combined immunodeficiency


Stromal cell-derived factor 1


Transforming growth factor-beta


Tumour necrosis factor alpha


Umbilical cord


Vascular endothelial growth factor


Vascular endothelial growth factor receptor



This research was funded by the South African Medical Research Council in terms of theSAMRC’s Flagship Award Project SAMRC-RFA-UFSP-01-2013/STEM CELLS, the SAMRCExtramural Stem Cell Research and Therapy Unit, the National Research Foundation ofSouth Africa (grant no. 86942), the National Health Laboratory Services Research Trust (grant no. 94453), the University of Pretoria Research Development Programme (A0Z778), the University of Pretoria Vice Chancellor’s Postdoctoral Fellowship and the Institute for Cellular and Molecular Medicine of the University of Pretoria.

Competing Interests

No conflicts of interest, financial or otherwise, are declared by the authors.

Authors’ Contribution

MSP conceptualized the idea of the review, AKO and MAA did the literature search, AKO and MAA analysed the data, AKO and MAA prepared the manuscript, MSP edited and reviewed the drafted manuscript and AKO, MAA and MSP approved of the final version of the manuscript.


  1. Abrate, A., Buono, R., Canu, T., Esposito, A., Del Maschio, A., Lucianò, R., Bettiga, A., Colciago, G., Guazzoni, G., Benigni, F., Hedlund, P., Altaner, C., Montorsi, F., & Cavarretta, I. T. R. (2014). Mesenchymal stem cells expressing therapeutic genes induce autochthonous prostate tumour regression. European Journal of Cancer, 50, 2478–2488.CrossRefPubMedGoogle Scholar
  2. Ahn, J. O., Chae, J. S., Coh, Y. R., Jung, W. S., Lee, H. W., Shin, I. S., Kang, S. K., & Youn, H. Y. (2014). Human adipose tissue-derived mesenchymal stem cells inhibit T-cell lymphoma growth in vitro and in vivo. Anticancer Research, 34, 4839–4847.PubMedGoogle Scholar
  3. Albarenque, S. M., Zwacka, R. M., & Mohr, A. (2011). Both human and mouse mesenchymal stem cells promote breast cancer metastasis. Stem Cell Research, 7, 163–171.CrossRefPubMedGoogle Scholar
  4. Bianco, P., Cao, X., Frenette, P. S., Mao, J. J., Robey, P. G., Simmons, P. J., & Wang, C.-Y. (2013). The meaning, the sense and the significance: Translating the science of mesenchymal stem cells into medicine. Nature Medicine, 19, 35–42.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bock, B. C., Stein, U., Schmitt, C. A., & Augustin, H. G. (2014). Mouse models of human cancer. Cancer Research, 74, 4671–4675.CrossRefPubMedGoogle Scholar
  6. Bonuccelli, G., Avnet, S., Grisendi, G., Salerno, M., Granchi, D., Dominici, M., Kusuzaki, K., & Baldini, N. (2014). Role of mesenchymal stem cells in osteosarcoma and metabolic reprogramming of tumor cells. Oncotarget, 5, 7575–7588.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chao, K. C., Yang, H. T., & Chen, M. W. (2012). Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell-cell contact and internalization. Journal of Cellular and Molecular Medicine, 16, 1803–1815.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen, Z., He, X., He, X., Chen, X., Lin, X., Zou, Y., Wu, X., & Lan, P. (2014a). Bone marrow mesenchymal stem cells ameliorate colitis-associated tumorigenesis in mice. Biochemical and Biophysical Research Communications, 450, 1402–1408.CrossRefPubMedGoogle Scholar
  9. Chen, D.-R., Lu, D.-Y., Lin, H.-Y., & Yeh, W.-L. (2014b). Mesenchymal stem cell-induced doxorubicin resistance in triple negative breast cancer. BioMed Research International, 2014, 10.Google Scholar
  10. Ciavarella, S., Caselli, A., Tamma, A. V., Savonarola, A., Loverro, G., Paganelli, R., Tucci, M., & Silvestris, F. (2015). A peculiar molecular profile of umbilical cord-mesenchymal stromal cells drives their inhibitory effects on multiple myeloma cell growth and tumor progression. Stem Cells and Development, 24, 1457–1470.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Clarke, M. R., Imhoff, F. M., & Baird, S. K. (2015). Mesenchymal stem cells inhibit breast cancer cell migration and invasion through secretion of tissue inhibitor of metalloproteinase-1 and -2. Molecular Carcinogenesis, 54, 1214–1219.CrossRefPubMedGoogle Scholar
  12. Cuiffo, B. G., Campagne, A., Bell, G. W., Lembo, A., Orso, F., Lien, E. C., Bhasin, M. K., Raimo, M., Hanson, S. E., Marusyk, A., El-Ashry, D., Hematti, P., Polyak, K., Mechta-Grigoriou, F., Mariani, O., Volinia, S., Vincent-Salomon, A., Taverna, D., & Karnoub, A. E. (2014). MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell, 15, 762–774.CrossRefPubMedGoogle Scholar
  13. De Boeck, A., Pauwels, P., Hensen, K., Rummens, J. L., Westbroek, W., Hendrix, A., Maynard, D., Denys, H., Lambein, K., Braems, G., Gespach, C., Bracke, M., & De Wever, O. (2013). Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut, 62, 550–560.CrossRefPubMedGoogle Scholar
  14. De Luca, A., Lamura, L., Gallo, M., Maffia, V., & Normanno, N. (2012). Mesenchymal stem cell-derived interleukin-6 and vascular endothelial growth factor promote breast cancer cell migration. Journal of Cellular Biochemistry, 113, 3363–3370.CrossRefPubMedGoogle Scholar
  15. Di, G. H., Liu, Y., Lu, Y., Liu, J., Wu, C., & Duan, H. F. (2014). IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLoS One, 9, e113572.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dittmer, J., & Leyh, B. (2014). Paracrine effects of stem cells in wound healing and cancer progression. International Journal of Oncology, 44, 1789–1798.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noel, D., & Jorgensen, C. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102, 3837–3844.CrossRefPubMedGoogle Scholar
  18. Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127, 2893–2917.CrossRefPubMedGoogle Scholar
  19. Fong, C. Y., Chak, L. L., Biswas, A., Tan, J. H., Gauthaman, K., Chan, W. K., & Bongso, A. (2011). Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews, 7, 1–16.CrossRefPubMedGoogle Scholar
  20. Ganta, C., Chiyo, D., Ayuzawa, R., Rachakatla, R., Pyle, M., Andrews, G., Weiss, M., Tamura, M., & Troyer, D. (2009). Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Research, 69, 1815–1820.CrossRefPubMedGoogle Scholar
  21. Halpern, J. L., Kilbarger, A., & Lynch, C. C. (2011). Mesenchymal stem cells promote mammary cancer cell migration in vitro via the CXCR2 receptor. Cancer Letters, 308, 91–99.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Han, I., Yun, M., Kim, E. O., Kim, B., Jung, M. H., & Kim, S. H. (2014). Umbilical cord tissue-derived mesenchymal stem cells induce apoptosis in PC-3 prostate cancer cells through activation of JNK and downregulation of PI3K/AKT signaling. Stem Cell Research & Therapy, 5, 54.CrossRefGoogle Scholar
  23. Hong, I. S., Lee, H. Y., & Kang, K. S. (2014). Mesenchymal stem cells and cancer: Friends or enemies? Mutation Research, 768, 98–106.CrossRefPubMedGoogle Scholar
  24. Hung, S. P., Yang, M. H., Tseng, K. F., & Lee, O. K. (2013). Hypoxia-induced secretion of TGF-beta1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplantation, 22, 1869–1882.CrossRefPubMedGoogle Scholar
  25. Kamat, P., Schweizer, R., Kaenel, P., Salemi, S., Calcagni, M., Giovanoli, P., Gorantla, V. S., Eberli, D., Andres, A. C., & Plock, J. A. (2015). Human adipose-derived Mesenchymal stromal cells may promote breast cancer progression and metastatic spread. Plastic and Reconstructive Surgery, 136, 76–84.CrossRefPubMedGoogle Scholar
  26. Kawabata, A., Ohta, N., Seiler, G., Pyle, M. M., Ishiguro, S., Zhang, Y. Q., Becker, K. G., Troyer, D., & Tamura, M. (2013). Naïve rat umbilical cord matrix stem cells significantly attenuate mammary tumor growth through modulation of endogenous immune responses. Cytotherapy, 15, 586–597.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ke, C. C., Liu, R. S., Suetsugu, A., Kimura, H., Ho, J. H., Lee, O. K., & Hoffman, R. M. (2013). In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells. PLoS One, 8, e69658.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kéramidas, M., de Fraipont, F., Karageorgis, A., Moisan, A., Persoons, V., Richard, M.-J., Coll, J.-L., & Rome, C. (2013). The dual effect of mesenchymal stem cells on tumour growth and tumour angiogenesis. Stem Cell Research & Therapy, 4, 41–41.CrossRefGoogle Scholar
  29. Kidd, S., Spaeth, E., Dembinski, J. L., Dietrich, M., Watson, K., Klopp, A., Battula, V. L., Weil, M., Andreeff, M., & Marini, F. C. (2009). Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem cells (Dayton, Ohio), 27, 2614–2623.CrossRefGoogle Scholar
  30. Klopp, A. H., Lacerda, L., Gupta, A., Debeb, B. G., Solley, T., Li, L., Spaeth, E., Xu, W., Zhang, X., Lewis, M. T., Reuben, J. M., Krishnamurthy, S., Ferrari, M., Gaspar, R., Buchholz, T. A., Cristofanilli, M., Marini, F., Andreeff, M., & Woodward, W. A. (2010). Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS One, 5, e12180.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kucerova, L., Matuskova, M., Hlubinova, K., Altanerova, V., & Altaner, C. (2010). Tumor cell behaviour modulation by mesenchymal stromal cells. Molecular Cancer, 9, 129.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kucerova, L., Skolekova, S., Demkova, L., Bohovic, R., & Matuskova, M. (2014). Long-term efficiency of mesenchymal stromal cell-mediated CD-MSC/5FC therapy in human melanoma xenograft model. Gene Therapy, 21, 874–887.CrossRefPubMedGoogle Scholar
  33. Lazennec, G., & Lam, P. Y. (2016). Recent discoveries concerning the tumor – mesenchymal stem cell interactions. Biochimica et Biophysica Acta, 1866, 290–299.PubMedGoogle Scholar
  34. Lee, R. H., Yoon, N., Reneau, J. C., & Prockop, D. J. (2012). Preactivation of human MSCs with TNF-alpha enhances tumor-suppressive activity. Cell Stem Cell, 11, 825–835.CrossRefPubMedGoogle Scholar
  35. Lee, M. J., Heo, S. C., Shin, S. H., Kwon, Y. W., Do, E. K., Suh, D. S., Yoon, M. S., & Kim, J. H. (2013). Oncostatin M promotes mesenchymal stem cell-stimulated tumor growth through a paracrine mechanism involving periostin and TGFBI. The International Journal of Biochemistry & Cell Biology, 45, 1869–1877.CrossRefGoogle Scholar
  36. Li, Q., Wijesekera, O., Salas, S. J., Wang, J. Y., Zhu, M., Aprhys, C., Chaichana, K. L., Chesler, D. A., Zhang, H., Smith, C. L., Guerrero-Cazares, H., Levchenko, A., & Quinones-Hinojosa, A. (2014). Mesenchymal stem cells from human fat engineered to secrete BMP4 are nononcogenic, suppress brain cancer, and prolong survival. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 20, 2375–2387.CrossRefGoogle Scholar
  37. Lin, R., Wang, S., & Zhao, R. C. (2013). Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Molecular and Cellular Biochemistry, 383, 13–20.CrossRefPubMedGoogle Scholar
  38. Ljujic, B., Milovanovic, M., Volarevic, V., Murray, B., Bugarski, D., Przyborski, S., Arsenijevic, N., Lukic, M. L., & Stojkovic, M. (2013). Human mesenchymal stem cells creating an immunosuppressive environment and promote breast cancer in mice. Scientific Reports, 3, 2298.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Loebinger, M. R., Kyrtatos, P. G., Turmaine, M., Price, A. N., Pankhurst, Q., Lythgoe, M. F., & Janes, S. M. (2009). Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Research, 69, 8862–8867.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lopez, M. J., & Spencer, N. D. (2011). In vitro adult rat adipose tissue-derived stromal cell isolation and differentiation. Methods in Molecular Biology, 702, 37–46.CrossRefPubMedGoogle Scholar
  41. Ma, F., Chen, D., Chen, F., Chi, Y., Han, Z., Feng, X., Li, X., & Han, Z. (2015). Human umbilical cord Mesenchymal stem cells promote breast cancer metastasis by Interleukin-8- and Interleukin-6-dependent induction of CD44(+)/CD24(−) cells. Cell Transplantation, 24, 2585–2599.CrossRefPubMedGoogle Scholar
  42. Maurya, D. K., Doi, C., Kawabata, A., Pyle, M. M., King, C., Wu, Z., Troyer, D., & Tamura, M. (2010). Therapy with un-engineered naive rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma. BMC Cancer, 10, 590.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Menon, L. G., Picinich, S., Koneru, R., Gao, H., Lin, S. Y., Koneru, M., Mayer-Kuckuk, P., Glod, J., & Banerjee, D. (2007). Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells (Dayton, Ohio), 25, 520–528.CrossRefGoogle Scholar
  44. Molloy, A. P., Martin, F. T., Dwyer, R. M., Griffin, T. P., Murphy, M., Barry, F. P., O’Brien, T., & Kerin, M. J. (2009). Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. International Journal of Cancer, 124, 326–332.CrossRefPubMedGoogle Scholar
  45. Motaln, H., Schichor, C., & Lah, T. T. (2010). Human mesenchymal stem cells and their use in cell-based therapies. Cancer, 116, 2519–2530.CrossRefPubMedGoogle Scholar
  46. Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., Chen, J., Hentschel, S., Vecil, G., Dembinski, J., Andreeff, M., & Lang, F. F. (2005). Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Research, 65, 3307–3318.CrossRefPubMedGoogle Scholar
  47. Nakamura, K., Ito, Y., Kawano, Y., Kurozumi, K., Kobune, M., Tsuda, H., Bizen, A., Honmou, O., Niitsu, Y., & Hamada, H. (2004). Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Therapy, 11, 1155–1164.CrossRefPubMedGoogle Scholar
  48. Nomoto-Kojima, N., Aoki, S., Uchihashi, K., Matsunobu, A., Koike, E., Ootani, A., Yonemitsu, N., Fujimoto, K., & Toda, S. (2011). Interaction between adipose tissue stromal cells and gastric cancer cells in vitro. Cell and Tissue Research, 344, 287–298.CrossRefPubMedGoogle Scholar
  49. Ono, M., Kosaka, N., Tominaga, N., Yoshioka, Y., Takeshita, F., Takahashi, R. U., Yoshida, M., Tsuda, H., Tamura, K., & Ochiya, T. (2014). Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science Signaling, 7, ra63.CrossRefPubMedGoogle Scholar
  50. Paris, J. L., de la Torre, P., Manzano, M., Cabanas, M. V., Flores, A. I., & Vallet-Regi, M. (2016). Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors. Acta Biomaterialia, 33, 275–282.CrossRefPubMedGoogle Scholar
  51. Park, Y. M., Yoo, S. H., & Kim, S. H. (2013). Adipose-derived stem cells induced EMT-like changes in H358 lung cancer cells. Anticancer Research, 33, 4421–4430.PubMedGoogle Scholar
  52. Patel, S. A., Meyer, J. R., Greco, S. J., Corcoran, K. E., Bryan, M., & Rameshwar, P. (2010). Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-beta. Journal of immunology (Baltimore, Md: 1950), 184, 5885–5894.CrossRefGoogle Scholar
  53. Quante, M., Tu, S. P., Tomita, H., Gonda, T., Wang, S. S., Takashi, S., Baik, G. H., Shibata, W., Diprete, B., Betz, K. S., Friedman, R., Varro, A., Tycko, B., & Wang, T. C. (2011). Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 19, 257–272.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rachakatla, R. S., Marini, F., Weiss, M. L., Tamura, M., & Troyer, D. (2007). Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Therapy, 14, 828–835.CrossRefPubMedGoogle Scholar
  55. Rachakatla, R. S., Pyle, M. M., Ayuzawa, R., Edwards, S. M., Marini, F. C., Weiss, M. L., Tamura, M., & Troyer, D. (2008). Combination treatment of human umbilical cord matrix stem cell-based interferon-beta gene therapy and 5-fluorouracil significantly reduces growth of metastatic human breast cancer in SCID mouse lungs. Cancer Investigation, 26, 662–670.CrossRefPubMedGoogle Scholar
  56. Revell, C. M., & Athanasiou, K. A. (2009). Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects. Tissue Engineering, Part B: Reviews, 15, 1–15.CrossRefGoogle Scholar
  57. Rhodes, L. V., Antoon, J. W., Muir, S. E., Elliott, S., Beckman, B. S., & Burow, M. E. (2010). Effects of human mesenchymal stem cells on ER-positive human breast carcinoma cells mediated through ER-SDF-1/CXCR4 crosstalk. Molecular Cancer, 9, 295.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ridge, S. M., Sullivan, F. J., & Glynn, S. A. (2017). Mesenchymal stem cells: Key players in cancer progression. Molecular Cancer, 16, 31.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sasportas, L. S., Kasmieh, R., Wakimoto, H., Hingtgen, S., van de Water, J. A., Mohapatra, G., Figueiredo, J. L., Martuza, R. L., Weissleder, R., & Shah, K. (2009). Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 106, 4822–4827.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sasser, A. K., Mundy, B. L., Smith, K. M., Studebaker, A. W., Axel, A. E., Haidet, A. M., Fernandez, S. A., & Hall, B. M. (2007). Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Letters, 254, 255–264.CrossRefPubMedGoogle Scholar
  61. Scherzed, A., Hackenberg, S., Radeloff, A., Froelich, K., Rak, K., Hagen, R., & Kleinsasser, N. (2013). Human mesenchymal stem cells promote cancer motility and cytokine secretion in vitro. Cells, Tissues, Organs, 198, 327–337.CrossRefPubMedGoogle Scholar
  62. Senst, C., Nazari-Shafti, T., Kruger, S., Honer Zu Bentrup, K., Dupin, C. L., Chaffin, A. E., Srivastav, S. K., Worner, P. M., Abdel-Mageed, A. B., Alt, E. U., & Izadpanah, R. (2013). Prospective dual role of mesenchymal stem cells in breast tumor microenvironment. Breast Cancer Research and Treatment, 137, 69–79.CrossRefPubMedGoogle Scholar
  63. Serakinci, N., Fahrioglu, U., & Christensen, R. (2014). Mesenchymal stem cells, cancer challenges and new directions. European Journal of Cancer, 50, 1522–1530.CrossRefPubMedGoogle Scholar
  64. Shin, S. Y., Nam, J. S., Lim, Y., & Lee, Y. H. (2010). TNFalpha-exposed bone marrow-derived mesenchymal stem cells promote locomotion of MDA-MB-231 breast cancer cells through transcriptional activation of CXCR3 ligand chemokines. The Journal of Biological Chemistry, 285, 30731–30740.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sigrist, S., Ebel, N., Langlois, A., Bosco, D., Toso, C., Kleiss, C., Mandes, K., Berney, T., Pinget, M., Belcourt, A., & Kessler, L. (2005). Role of chemokine signaling pathways in pancreatic islet rejection during allo- and xenotransplantation. Transplantation Proceedings, 37, 3516–3518.CrossRefPubMedGoogle Scholar
  66. Soerjomataram, I., Lortet-Tieulent, J., Parkin, D. M., Ferlay, J., Mathers, C., Forman, D., & Bray, F. (2012). Global burden of cancer in 2008: A systematic analysis of disability-adjusted life-years in 12 world regions. Lancet, 380, 1840–1850.CrossRefPubMedGoogle Scholar
  67. Squillaro, T., Peluso, G., & Galderisi, U. (2016). Clinical trials with Mesenchymal stem cells: An update. Cell Transplantation, 25, 829–848.CrossRefPubMedGoogle Scholar
  68. Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J., & Andreeff, M. (2002). Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Research, 62, 3603–3608.PubMedGoogle Scholar
  69. Tholpady, S. S., Katz, A. J., & Ogle, R. C. (2003). Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 272, 398–402.CrossRefGoogle Scholar
  70. Tobar, N., Avalos, M. C., Mendez, N., Smith, P. C., Bernabeu, C., Quintanilla, M., & Martinez, J. (2014). Soluble MMP-14 produced by bone marrow-derived stromal cells sheds epithelial endoglin modulating the migratory properties of human breast cancer cells. Carcinogenesis, 35, 1770–1779.CrossRefPubMedGoogle Scholar
  71. Usha, L., Rao, G., Christopherson Ii, K., & Xu, X. (2013). Mesenchymal stem cells develop tumor tropism but do not accelerate breast cancer tumorigenesis in a somatic mouse breast cancer model. PLoS One, 8, e67895.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W., & Ho, A. D. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology, 33, 1402–1416.CrossRefPubMedGoogle Scholar
  73. Wan, S., Liu, Y., Weng, Y., Wang, W., Ren, W., Fei, C., Chen, Y., Zhang, Z., Wang, T., Wang, J., Jiang, Y., Zhou, L., He, T., & Zhang, Y. (2014). BMP9 regulates cross-talk between breast cancer cells and bone marrow-derived mesenchymal stem cells. Cellular Oncology (Dordrecht), 37, 363–375.CrossRefGoogle Scholar
  74. Wu, S., Ju, G. Q., Du, T., Zhu, Y. J., & Liu, G. H. (2013). Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One, 8, e61366.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Xu, Q., Wang, L., Li, H., Han, Q., Li, J., Qu, X., Huang, S., & Zhao, R. C. (2012). Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-beta. International Journal of Oncology, 41, 959–968.CrossRefPubMedGoogle Scholar
  76. Yang, C., Lei, D., Ouyang, W., Ren, J., Li, H., Hu, J., & Huang, S. (2014a). Conditioned media from human adipose tissue-derived Mesenchymal stem cells and umbilical cord-derived Mesenchymal stem cells efficiently induced the apoptosis and differentiation in human Glioma cell lines in vitro. BioMed Research International, 2014, 13.Google Scholar
  77. Yang, X., Li, Z., Ma, Y., Gao, J., Liu, S., Gao, Y., & Wang, G. (2014b). Human umbilical cord mesenchymal stem cells promote carcinoma growth and lymph node metastasis when co-injected with esophageal carcinoma cells in nude mice. Cancer Cell International, 14, 93.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yang, T., Zhang, X., Wang, M., Zhang, J., Huang, F., Cai, J., Zhang, Q., Mao, F., Zhu, W., Qian, H., & Xu, W. (2014c). Activation of mesenchymal stem cells by macrophages prompts human gastric cancer growth through NF-kappaB pathway. PLoS One, 9, e97569.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yu, J. M., Jun, E. S., Bae, Y. C., & Jung, J. S. (2008). Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells and Development, 17, 463–473.CrossRefPubMedGoogle Scholar
  80. Yu, X., Su, B., Ge, P., Wang, Z., Li, S., Huang, B., Gong, Y., & Lin, J. (2016). AB237. Human adipose derived stem cells induced cell apoptosis and S phase arrest in bladder tumor. Translational Andrology and Urology, 5, AB237.CrossRefPubMedCentralGoogle Scholar
  81. Yu, P. F., Huang, Y., Xu, C. L., Lin, L. Y., Han, Y. Y., Sun, W. H., Hu, G. H., Rabson, A. B., Wang, Y., & Shi, Y. F. (2017). Downregulation of CXCL12 in mesenchymal stromal cells by TGFbeta promotes breast cancer metastasis. Oncogene, 36, 840–849.CrossRefPubMedGoogle Scholar
  82. Zhang, T., Lee, Y. W., Rui, Y. F., Cheng, T. Y., Jiang, X. H., & Li, G. (2013). Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Research & Therapy, 4, 70.CrossRefGoogle Scholar
  83. Zhang, Y., Dong, W., Wang, J., Cai, J., & Wang, Z. (2017). Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro. Oncotargets and Therapy, 10, 1655–1663.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhao, M., Sachs, P. C., Wang, X., Dumur, C. I., Idowu, M. O., Robila, V., Francis, M. P., Ware, J., Beckman, M., Rizki, A., Holt, S. E., & Elmore, L. W. (2012). Mesenchymal stem cells in mammary adipose tissue stimulate progression of breast cancer resembling the basal-type. Cancer Biology & Therapy, 13, 782–792.CrossRefGoogle Scholar
  85. Zhao, Y., Gao, J., & Lu, F. (2013). Human adipose-derived stem cell adipogenesis induces paracrine regulation of the invasive ability of MCF-7 human breast cancer cells in vitro. Experimental and Therapeutic Medicine, 6, 937–942.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zhao, Q., Gregory, C. A., Lee, R. H., Reger, R. L., Qin, L., Hai, B., Park, M. S., Yoon, N., Clough, B., McNeill, E., Prockop, D. J., & Liu, F. (2015). MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs. Proceedings of the National Academy of Sciences of the United States of America, 112, 530–535.CrossRefPubMedGoogle Scholar
  87. Zhou, Z., Chen, Y., Zhang, H., Min, S., Yu, B., He, B., & Jin, A. (2013). Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy, 15, 434–448.CrossRefPubMedGoogle Scholar
  88. Zischek, C., Niess, H., Ischenko, I., Conrad, C., Huss, R., Jauch, K. W., Nelson, P. J., & Bruns, C. (2009). Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Annals of Surgery, 250, 747–753.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ahmed Kolade Oloyo
    • 1
    • 2
  • Melvin Anyasi Ambele
    • 1
    • 3
  • Michael Sean Pepper
    • 1
    Email author
  1. 1.Institute for Cellular and Molecular Medicine, Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of Physiology, Faculty of Basic Medical Science, College of MedicineUniversity of LagosLagosNigeria
  3. 3.Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations