Cancer Stem Cells in Head and Neck Carcinomas: Identification and Possible Therapeutic Implications

  • Elize Wolmarans
  • Sonja C. Boy
  • Sulette Nel
  • Anne E. Mercier
  • Michael Sean PepperEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1083)


The recurrence and/or lack of response of certain tumors to radio- and chemotherapy has been attributed to a small subpopulation of cells termed cancer stem cells (CSCs). CSCs have been identified in many tumors (including solid and hematological tumors). CSCs are characterized by their capacity for self-renewal, their ability to introduce heterogeneity within a tumor mass and its metastases, genomic instability, and their insensitivity to both radiation and chemotherapy. The latter highlights the clinical importance of studying this subpopulation since their resistance to traditional treatments may lead to metastatic disease and/or tumor relapse. Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignancy worldwide with the highest incidence occurring in East Asia and eastern and southern Africa. Several cellular subpopulations believed to have CSC properties have been isolated from HNSCCs, but at present, identification and characterization of CSCs remains an experimental challenge with no established or standardized protocols in place to confirm their identity. In this review we discuss current approaches to the study of CSCs with a focus on HNSCCs, particularly in the context of what this might mean from a therapeutic perspective.


Cancer stem cells Head and neck carcinomas 



ATP-binding cassette


Protein kinase B


Activated leukocyte cell adhesion molecule


Aldehyde dehydrogenase


Adenosine triphosphate


Breast cancer resistant protein


Moloney murine leukemia virus insertion site 1


Cluster of differentiation


Cancer stem cell


Epithelial-mesenchymal transition


Esophageal squamous cell carcinoma


Fluorescence-activated cell sorting


Hypoxia-inducible factors


Head and neck carcinoma


Head and neck squamous cell carcinoma


Human papillomavirus


Heat stable antigen


Intercellular adhesion molecule 1


Mitogen-activated protein kinases


Nonobese diabetic


Octamer-binding transcription factor 3/4


Oral squamous cell carcinoma








Squamous cell carcinoma


Severe combined immunodeficiency


Sex-determining region Y-box2


Side population



This research was funded by the South African Medical Research Council in terms of the SAMRC's Flagship Award Project SAMRC-RFA-UFSP-01-2013/STEM CELLS, the SAMRC Extramural Unit for Stem Cell Research and Therapy and the Institute for Cellular and Molecular Medicine of the University of Pretoria.

Conflicts of Interest

The authors have no conflicts of interest to declare.

Author Contribution

MSP conceived the project, EW drafted the first version of the manuscript, and EW, SB, SN, AEM, and MSP provided intellectual input and contributed to the writing of the manuscript. All authors vetted and approved the final version of the manuscript.


  1. Albrecht, C., & Viturro, E. (2007). The ABCA subfamily--gene and protein structures, functions and associated hereditary diseases. Pflügers Archiv, 453(5), 581–589.CrossRefPubMedGoogle Scholar
  2. Allegra, E., & Trapasso, S. (2012). Cancer stem cells in head and neck cancer. Oncotargets and Therapy, 5, 375–583.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Borst, P., Evers, R., Kool, M., et al. (1999). The multidrug resistance protein family. Biochimica et Biophysica Acta, 1461, 347–357.CrossRefPubMedGoogle Scholar
  4. Bourguignon, L. Y., Wong, G., Earie, C., et al. (2012). Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. The Journal of Biological Chemistry, 287(39), 32800–32824.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bruni, L., Barrionuevo-Rosas, L., Albero, G. et al. (2017). Human papillomavirus and related diseases in South Africa. Summary Report.Google Scholar
  6. Chen, Y. C., Chen, Y. W., Hsu, H. S., et al. (2009). Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochemical and Biophysical Research Communications, 385(3), 307–313.CrossRefPubMedGoogle Scholar
  7. Chen, D., Wu, M., Li, Y., et al. (2017). Targeting BMI1 + cancer stem cells overcomes Chemoresistance and inhibits metastases in squamous cell carcinoma. Cell Stem Cell, 20(5), 621–634.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chiou, S. H., CC, Y., Huang, C. Y., et al. (2008). Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clinical Cancer Research, 14(13), 4085–4095.CrossRefPubMedGoogle Scholar
  9. Clarke, M., & Fuller, M. (2006). Stem cells and cancer: Two faces of eve. Cell, 124(6), 111–1115.CrossRefGoogle Scholar
  10. Clay, M. R., Tabor, M., Owen, J. H., et al. (2010). Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head & Neck, 23(9), 1195–1201.CrossRefGoogle Scholar
  11. Dean, M. (2009). ABC transporters, drug resistance, and cancer stem cells. Journal of Mammary Gland Biology and Neoplasia, 14(1), 3–9.CrossRefPubMedGoogle Scholar
  12. Dean, M., Hamon, Y., & Chimini, G. (2001). The human ATP-binding cassette (ABC) transporter superfamily. Journal of Lipid Research, 42(7), 1007–1017.PubMedGoogle Scholar
  13. Ding, X., Wu, J., & Jiang, C. (2010). ABCG2: A potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sciences, 86(17–18), 631–637.CrossRefPubMedGoogle Scholar
  14. El-Naggar, A., Chan, J., & Grandis, J. (Eds). (2017). Tumours of the oropharynx (base of tongue, tonsils, adenoids). In WHO Classification of Head and Nect Tumours. IARC.Google Scholar
  15. Erdei, Z., Lőrincz, R., Szebényi, K., et al. (2014). Expression pattern of the human ABC transporters in pluripotent embryonic stem cells and in their derivatives. Cytometry Part B, Clinical Cytometry, 86(5), 299–310.CrossRefPubMedGoogle Scholar
  16. Eun, K., Ham, S. W., & Kim, H. (2017). Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Reports, 50(3), 117–125.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eyler, C., & Rich, J. (2008). Survival of the fittest: Cancer stem cells in therapeutic resistance and angiogenesis. Journal of Clinical Oncology, 26(17), 2839–2845.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fábián, Á., Vereb, G., & Szöllosi, J. (2013). The hitchhikers guide to cancer stem cell theory: Markers, pathways and therapy. Cytometry. Part A, 83(1), 62–71.CrossRefGoogle Scholar
  19. Falasca, M., & Linton, K. J. (2012). Investigational ABC transporter inhibitors. Expert Opinion on Investigational Drugs, 21(5), 657–666.CrossRefPubMedGoogle Scholar
  20. Fan, Z., Li, M., Chen, X., et al. (2017). Prognostic value of cancer stem cell markers in head and neck squamous cell carcinoma: A meta-analysis. Scientific Reports, 7, 1–8.CrossRefGoogle Scholar
  21. Gil, J., Stembalska, A., Pesz, K. A., et al. (2008). Cancer stem cells: The theory and perspectives in cancer therapy. Journal of Applied Genetics, 49(2), 193–199.CrossRefPubMedGoogle Scholar
  22. Golebiewska, A., Brons, N. H., Bjerkvig, R., et al. (2011). Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell, 8(2), 136–147.CrossRefPubMedGoogle Scholar
  23. González-Moles, M. A., Scully, C., Ruiz-Ávila, I., et al. (2013). The cancer stem cell hypothesis applied to oral carcinoma. Oral Oncology, 49(8), 738–746.CrossRefPubMedGoogle Scholar
  24. Goodell, M. A., Brose, K., Paradis, G., et al. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. The Journal of Experimental Medicine, 183, 1797–1806.CrossRefPubMedGoogle Scholar
  25. Grimm, M., Krimmel, M., Polligkeit, J., et al. (2012). ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma. European Journal of Cancer, 48(17), 3186–3197.CrossRefPubMedGoogle Scholar
  26. Han, J., Fujisawa, T., Husain, S. R., et al. (2014). Identification and characterization of cancer stem cells in human head and neck squamous cell carcinoma. BMC Cancer, 14(1), 173–184.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hang, D., Dong, H. C., Ning, T., et al. (2012). Prognostic value of the stem cell markers CD133 and ABCG2 expression in esophageal squamous cell carcinoma. Diseases of the Esophagus, 25(7), 638–644.CrossRefPubMedGoogle Scholar
  28. Harper, L. J., Piper, K., Common, J., et al. (2007). Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. Journal of Oral Pathology & Medicine, 36(10), 594–603.CrossRefGoogle Scholar
  29. Heddleston, J. M., Li, Z., Lathia, J. D., et al. (2010). Hypoxia inducible factors in cancer stem cells. British Journal of Cancer, 102(5), 789–795.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huls, M., Russel, F. G., & Masereeuw, R. (2009). The role of ATP binding cassette transporters in tissue defense and organ regeneration. The Journal of Pharmacology and Experimental Therapeutics, 328(1), 3–9.CrossRefPubMedGoogle Scholar
  31. Jamal-Hanjani, M., Quezada, S. A., Larkin, J., et al. (2015). Translational implications of tumor heterogeneity. Clinical Cancer Research, 21(6), 1258–1266.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jemal, A., Bray, F., Center, M. M., et al. (2011). Global cancer statistics. CA: a Cancer Journal for Clinicians, 61(2), 69–90.Google Scholar
  33. Karimnejad, K., Lindquist, N., & Lin, R. (2016). The role of cancer stem cells in head and neck squamous cell carcinoma and its clinical implications. In New aspects in molecular and cellular mechanisms of human carcinogenesis (pp. 97–113).Google Scholar
  34. Kaseb, H. O., Fohrer-Ting, H., Lewis, D. W., et al. (2016). Identification, expansion and characterization of cancer cells with stem cell properties from head and neck squamous cell carcinomas. Experimental Cell Research, 348(1), 75–86.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Koukourakis, M. I., Giatromanolaki, A., Tsakmaki, V., et al. (2012). Cancer stem cell phenotype relates to radio-chemotherapy outcome in locally advanced squamous cell head–neck cancer. British Journal of Cancer, 106(5), 846–853.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Leonard, G. D., Fojo, T., & Bates, S. E. (2003). The role of ABC transporters in clinical practice. The Oncologist, 8(5), 411–424.CrossRefPubMedGoogle Scholar
  37. Li, H., Gao, Q., Guo, L., et al. (2011). The PTEN/PI3K/Akt pathway regulates stem-like cells in primary esophageal carcinoma cells. Cancer Biology & Therapy, 11(11), 950–958.CrossRefGoogle Scholar
  38. Liang, S. B., & Fu, L. W. (2017). Application of single-cell technology in cancer research. Biotechnology Advances, 35(4), 443–449.CrossRefPubMedGoogle Scholar
  39. Lin, T., Islam, O., & Heese, K. (2006). ABC transporters, neural stem cells and neurogenesis – a different perspective. Cell Research, 16, 857–871.CrossRefPubMedGoogle Scholar
  40. Mao, Q., & Unadkat, J. D. (2015). Role of the Breast Cancer Resistance Protein (BCRP/ABCG2) in drug transport—An update. The AAPS Journal, 17(1), 65–82.CrossRefPubMedGoogle Scholar
  41. Mǎrgǎritescu, C., Pirici, D., Simionescu, C., et al. (2012). The utility of CD44, CD117 and CD133 in identification of cancer stem cells (CSC) in oral squamous cell carcinomas (OSCC). Romanian Journal of Morphology and Embryology, 52, 985–993.Google Scholar
  42. Méry, B., Guy, J. B., Espenel, S., et al. (2016). Targeting head and neck tumoral stem cells: From biological aspects to therapeutic perspectives. World J Stem Cells, 8(1), 13–21.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Misra, S., Toole, B. P., & Ghatak, S. (2006). Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. The Journal of Biological Chemistry, 281(46), 34936–34941.CrossRefPubMedGoogle Scholar
  44. Modur, V., Joshi, P., Nie, D., et al. (2016). CD24 expression may play a role as a predictive indicator and a modulator of cisplatin treatment response in head and neck squamous cellular carcinoma. PLoS One. Scholar
  45. Noto, Z., Yoshida, T., Okabe, M., et al. (2013). CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics. Oral Oncology, 49(8), 787–795.CrossRefPubMedGoogle Scholar
  46. Okamoto, H., Fujishima, F., Nakamura, Y., et al. (2013). Significance of CD133 expression in esophageal squamous cell carcinoma. World Journal of Surgical Oncology, 11(1), 51–60.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Prince, M. E., Sivanandan, R., Kaczorowski, A., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 973–978.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Qian, X., Tan, C., Wang, F., et al. (2016). Esophageal cancer stem cells and implications for future therapeutics. OncoTargets Ther, 9, 2247–2254.Google Scholar
  49. Ren, Z. H., Zhang, C. P., & Ji, T. (2016). Expression of SOX2 in oral squamous cell carcinoma and the association with lymph node metastasis. Oncology Letters, 11(3), 1973–1979.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Saliba, A. E., Westermann, A. J., Gorski, S. A., et al. (2014). Single-cell RNA-seq: Advances and future challenges. Nucleic Acids Research, 42, 8845–8860.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sato, N., Meijer, L., Skaltsounis, L., et al. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10(1), 55–63.CrossRefPubMedGoogle Scholar
  52. Satpute, P. S., Hazarey, V., Ahmed, R., et al. (2013). Cancer stem cells in head and neck squamous cell carcinoma: A review. Asian Pacific Journal of Cancer Prevention, 14(10), 5579–5587.CrossRefPubMedGoogle Scholar
  53. Spiegelberg, D., Kuku, G., Selvaraju, R., et al. (2014). Characterization of CD44 variant expression in head and neck squamous cell carcinomas. Tumor Biology, 35(3), 2053–2062.CrossRefPubMedGoogle Scholar
  54. Takahashi-Yanaga, F., & Kahn, M. (2010). Targeting Wnt signaling: Can we safely eradicate cancer stem cells? Clinical Cancer Research, 16(12), 3153–3162.CrossRefPubMedGoogle Scholar
  55. Toledano, I., Graff, P., Serre, A., et al. (2012). Intensity-modulated radiotherapy in head and neck cancer: Results of the prospective study GORTEC 2004-03. Radiotherapy and Oncology, 103(1), 57–62.CrossRefPubMedGoogle Scholar
  56. Torre, L. A., Bray, F., Siegel, R. L., et al. (2015). Global cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 65(2), 87–108.Google Scholar
  57. Tsai, L. L., CC, Y., Chang, Y. C., et al. (2011). Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma. Journal of Oral Pathology & Medicine, 40(8), 621–628.CrossRefGoogle Scholar
  58. Tsai, S. T., Wang, P. J., Liou, N. J., et al. (2015). ICAM1 is a potential cancer stem cell marker of esophageal squamous cell carcinoma. PLoS One. Scholar
  59. Valent, P., Bonnet, D., De Maria, R., et al. (2012). Cancer stem cell definitions and terminology : The devil is in the details. Nature Review Cancer, 12, 767–775.CrossRefGoogle Scholar
  60. Vallard, A., Espenel, S., & Guy, J. B. (2016). Targeting stem cells by radiation: From the biological angle to clinical aspects. World Journal Stem Cells, 8(8), 243–250.CrossRefGoogle Scholar
  61. Vasiliou, V., Vasiliou, K., & Nebert, D. W. (2009). Human ATP-binding cassette (ABC) transporter family. Human Genomics, 3(3), 281–290.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Vigneswaran, N., & Williams, D. M. (2014). Epidemiological trends in head and neck cancer and aids in diagnosis. Oral and Maxillofacial Surgery Clinics of North America, 26(2), 123–141.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vissink, A., Mitchell, J. B., Baum, B. J., et al. (2010). Clinical management of salivary gland hypofunction and xerostomia in head and neck cancer patients: Successes and barriers. International Journal of Radiation Oncology, Biology, Physics, 78(4), 983–991.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Visvader, J. E., & Lindeman, G. J. (2012). Perspective cancer stem Cells : Current status and evolving complexities. Cell Stem Cell, 10(6), 717–728.CrossRefPubMedGoogle Scholar
  65. Vlashi, E., McBride, W., & Pajonk, F. (2009). Radiation responses of cancer stem cells. Journal of Cellular Biochemistry, 108(2), 339–342.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wang, E., Casciano, C. N., Clement, R. P., et al. (2000). In vitro flow cytometry method to quantitatively assess inhibitors of P-glycoprotein. Drug Metabolism and Disposition, 28(5), 522–528.PubMedGoogle Scholar
  67. Wang, J., Guo, L. P., Chen, L. Z., et al. (2007). Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Research, 67(8), 3716–3724.CrossRefPubMedGoogle Scholar
  68. Wang, S., Wong, G., & de Heer, A. (2009). CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope, 119(8), 1518–1530.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wang, Y., Zhe, H., Zhang, N., et al. (2012). Cancer stem cell marker ALDH1 expression is associated with lymph node metastasis and poor survival in esophageal squamous cell carcinoma: a study from high incidence area of northern China. Diseases of the Esophagus, 25, 560–565.CrossRefPubMedGoogle Scholar
  70. Wicha, M., Liu, S., & Dontu, G. (2006). Cancer stem cells: An old idea – a paradigm shift. Cancer Research, 66(4), 1883–1890.CrossRefPubMedGoogle Scholar
  71. Yan, M., Yang, X., Wang, L., et al. (2013). Plasma membrane proteomics of tumor spheres identify CD166 as a novel marker for cancer stem-like cells in head and neck squamous cell carcinoma. Molecular & Cellular Proteomics, 12(11), 3271–3284.CrossRefGoogle Scholar
  72. Yang, M. H., Hsu, D. S., Wang, H. W., et al. (2010). Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nature Cell Biology, 12(10), 982–992.CrossRefPubMedGoogle Scholar
  73. Yaromina, A., Krause, M., Thames, H., et al. (2007). Pre-treatment number of clonogenic cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation. Radiotherapy and Oncology, 83(3), 304–310.CrossRefPubMedGoogle Scholar
  74. Yata, K., Beder, L., Tamagawa, S., et al. (2015). MicroRNA expression profiles of cancer stem cells in head and neck squamous cell carcinoma. International Journal of Oncology, 47(4), 1249–1256.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yu, C., Lo, W., Chen, Y., et al. (2010). Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells. Journal of Oncology, 2011, 1–16.CrossRefGoogle Scholar
  76. Zechner, D., Fuijita, Y., Hulsken, J., et al. (2003). Beta-catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Developmental Biology, 258(2), 406–418.CrossRefPubMedGoogle Scholar
  77. Zhang, P., Zhang, Y., Mao, L., et al. (2009). Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Letters, 277(2), 227–234.CrossRefPubMedGoogle Scholar
  78. Zhang, Q., Shi, S., Yen, Y., et al. (2010). A subpopulation of CD133+ cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Letters, 289(2), 151–160.CrossRefPubMedGoogle Scholar
  79. Zhang, G., Ma, L., Xie, Y., et al. (2012a). Esophageal cancer tumorspheres involve cancer stem-like populations with elevated aldehyde dehydrogenase enzymatic activity. Molecular Medicine Reports, 6(3), 519–524.CrossRefPubMedGoogle Scholar
  80. Zhang, Z., Filho, M. S. A., & Nor, J. E. (2012b). The biology of head and neck cancer stem cells. Oral Oncology, 49(1), 1–9.CrossRefGoogle Scholar
  81. Zhu, L., Yuan, L., Wang, H., et al. (2015). A meta-analysis of concurrent chemoradiotherapy for advanced esophageal cancer. PLoS One. Scholar
  82. Zimmerer, R., Ludwig, N., Kampmann, A., et al. (2017). CD24+ tumor-initiating cells from oral squamous cell carcinoma induce initial angiogenesis in vivo. Microvascular Research, 112, 101–108.CrossRefPubMedGoogle Scholar
  83. Zscheppang, K., Kurth, I., Wachtel, N., et al. (2016). Efficacy of beta1 integrin and EGFR targeting in sphere-forming human head and neck cancer cells. Journal of Cancer, 7(6), 736–745.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Elize Wolmarans
    • 1
  • Sonja C. Boy
    • 2
  • Sulette Nel
    • 3
  • Anne E. Mercier
    • 4
  • Michael Sean Pepper
    • 1
    Email author
  1. 1.Institute for Cellular and Molecular Medicine (ICMM), Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of Oral Pathology, School of Oral Health SciencesSefako Makgatho Health Sciences UniversityPretoriaSouth Africa
  3. 3.Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
  4. 4.Department of Physiology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations